CN102479741A - 浅沟渠隔离结构的制造方法 - Google Patents

浅沟渠隔离结构的制造方法 Download PDF

Info

Publication number
CN102479741A
CN102479741A CN2010105606109A CN201010560610A CN102479741A CN 102479741 A CN102479741 A CN 102479741A CN 2010105606109 A CN2010105606109 A CN 2010105606109A CN 201010560610 A CN201010560610 A CN 201010560610A CN 102479741 A CN102479741 A CN 102479741A
Authority
CN
China
Prior art keywords
layer
dielectric layer
isolation structure
ditches
shallow slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105606109A
Other languages
English (en)
Inventor
骆统
杨镇豪
苏金达
杨令武
杨大弘
陈光钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN2010105606109A priority Critical patent/CN102479741A/zh
Publication of CN102479741A publication Critical patent/CN102479741A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)

Abstract

本发明是有关于一种浅沟渠隔离结构的制造方法及沟填方法。该浅沟渠隔离结构的制造方法包括下列步骤:首先,提供基底,基底上具有罩幕层,且在基底与罩幕层中具有沟渠。接着,在基底上形成第一介电层,第一介电层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一介电层中形成开口。然后,在位于开口底部的第一介电层上形成阻挡层。接下来,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一介电层。之后,移除阻挡层。再者,形成填满沟渠的第二介电层。

Description

浅沟渠隔离结构的制造方法
技术领域
本发明涉及一种半导体组件的制造方法,特别是涉及一种浅沟渠隔离结构的制造方法及沟填方法。
背景技术
随着半导体技术的进步,元件的尺寸也不断地缩小,为了防止相邻的元件之间发生短路的现象,因此元件与元件之间的隔离则变得相当重要。
元件之间的隔离技术比较普遍的是区域硅氧化法(local oxidation ofsilicon,LOCOS)。然而,局部硅氧化法具有多项缺点,包括因产生应力所衍生出的相关问题,以及形成于隔离结构周围的鸟嘴区(bird’s beak)等。因此,取而代之的方法为浅沟渠隔离(shallow trench isolation,STI)结构工艺。
传统的浅沟渠隔离结构是利用非等向性蚀刻的方法先在半导体基底中形成沟渠,再在此沟渠中填入氧化物而形成,用以作为元件的隔离区。
然而,随着集成电路集成度的提升,元件的尺寸也越作越小。当浅沟渠隔离结构随着集成电路集成度的提升而缩小化之后,伴随而来的问题就是因沟渠具有过高的深宽比(aspect ratio)所产生氧化层填入沟渠内的沟填不完全的问题,从而使得最后所形成的浅沟渠隔离结构内会有孔洞产生。倘若在浅沟渠隔离结构内存在有孔洞,将会使得浅沟渠隔离结构的隔离能力恶化,进而造成元件漏电流或元件可靠度变差等问题。
由此可见,上述现有的浅沟渠隔离技术在方法及使用上,显然仍存在有不便与缺陷,而亟待加以进一步改进。为了解决上述存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般方法又没有适切的方法能够解决上述问题,此显然是相关业者急欲解决的问题。因此如何能创设一种新的浅沟渠隔离结构的制造方法及沟填方法,实属当前重要研发课题之一,亦成为当前业界极需改进的目标。
发明内容
本发明的目的在于,克服现有的浅沟渠隔离技术存在的缺陷,而提供一种新的沟填方法,所要解决的技术问题是使其具有较佳的沟填能力,非常适于实用。
本发明的另一目的在于,克服现有的浅沟渠隔离技术存在的缺陷,而提供一种新的浅沟渠隔离结构的制造方法,所要解决的技术问题是使其可以形成具有较佳隔离能力的浅沟渠隔离结构,从而更加适于实用。
本发明的再一目的在于,克服现有的浅沟渠隔离技术存在的缺陷,而提供一种新的浅沟渠隔离结构的制造方法,所要解决的技术问题是使其可用以保护周边电路区,从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种浅沟渠隔离结构的制造方法,包括下列步骤。首先,提供基底,基底上具有罩幕层,且在基底与罩幕层中具有沟渠。接着,在基底上形成第一介电层,第一介电层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一介电层中形成开口。然后,在位于开口底部的第一介电层上形成阻挡层。接下来,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一介电层。之后,移除阻挡层。再者,在第一介电层上形成填满沟渠的第二介电层。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的浅沟渠隔离结构的制造方法,其中所述的罩幕层包括垫氧化层及硬罩幕层。垫氧化层设置于基底上。硬罩幕层设置于垫氧化层上。
前述的浅沟渠隔离结构的制造方法,其中所述的罩幕层更包括导体层,设置于垫氧化层与硬罩幕层之间。
前述的浅沟渠隔离结构的制造方法,其中所述的导体层的材料例如是掺杂多晶硅。
前述的浅沟渠隔离结构的制造方法,其中所述的第一介电层的形成方法例如是高密度等离子体化学气相沉积法(high density plasma chemicalvapor depositon,HDPCVD)、次大气压未掺杂硅玻璃(sub-atmosphericundoped silicon glass,SAUSG)工艺、高深宽比沟填工艺(high aspectratio process,HARP)或旋涂式玻璃(spin-on-glass,SOG)工艺。
前述的浅沟渠隔离结构的制造方法,其中所述的沟渠具有第一高度,而第一介电层填满沟渠的部分具有第二高度,且第一高度例如是高于第二高度。
前述的浅沟渠隔离结构的制造方法,其中所述的第二高度例如是第一高度的0.3倍至0.7倍。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的形成方法包括下列步骤。首先,在第一介电层上形成有机材料层,且有机材料层填满开口。接着,以罩幕层为研磨终止层,进行一个化学机械研磨工艺,以移除部分有机材料层。然后,对有机材料层进行一个回蚀刻工艺,以移除部分有机材料层。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的形成方法包括下列步骤。首先,在第一介电层上形成有机材料层,且有机材料层填满开口。接着,对有机材料层进行一个回蚀刻工艺,以移除部分有机材料层。
前述的浅沟渠隔离结构的制造方法,其中所述的有机材料层的材料例如是光阻或有机介电层。
前述的浅沟渠隔离结构的制造方法,其中覆盖沟渠侧壁的第一介电层的移除方法例如是回蚀刻法。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的移除方法例如是干式蚀刻法或湿式蚀刻法。
前述的浅沟渠隔离结构的制造方法,其中所述的第二介电层的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。
本发明的目的及解决其技术问题还采用以下技术方案来实现。依据本发明提出的一种浅沟渠隔离结构的制造方法,包括下列步骤。提供基底,基底包括元件密集区及元件疏松区,且在元件密集区的基底上具有罩幕层,且在基底与罩幕层中具有沟渠。接着,在基底上形成第一介电层,第一介电层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一介电层中形成开口。然后,在第一介电层上形成阻挡层,而元件密集区中的阻挡层只位于开口底部的第一介电层上,且元件疏松区中的阻挡层的厚度大于元件密集区中的阻挡层的厚度。接下来,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一介电层。之后,移除阻挡层。再者,在第一介电层上形成填满沟渠的第二介电层。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的浅沟渠隔离结构的制造方法,其中所述的罩幕层包括垫氧化层及硬罩幕层。垫氧化层设置于基底上。硬罩幕层设置于垫氧化层上。
前述的浅沟渠隔离结构的制造方法,其中所述的罩幕层更包括导体层,设置于垫氧化层与硬罩幕层之间。
前述的浅沟渠隔离结构的制造方法,其中所述的导体层的材料例如是掺杂多晶硅。
前述的浅沟渠隔离结构的制造方法,其中所述的第一介电层的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。
前述的浅沟渠隔离结构的制造方法,其中所述的沟渠具有第一高度,而第一介电层填满沟渠的部分具有第二高度,且第一高度例如是高于第二高度。
前述的浅沟渠隔离结构的制造方法,其中所述的第二高度例如是第一高度的0.3倍至0.7倍。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的形成方法包括下列步骤。首先,在第一介电层上形成光阻层,且光阻层填满开口。接着,对该光阻层进行微影工艺,以移除元件密集区中的部分光阻层。
前述的浅沟渠隔离结构的制造方法,更包括在进行微影工艺之后,对阻挡层进行一个回蚀刻工艺。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的形成方法包括下列步骤。首先,在第一介电层上形成有机介电层,且有机介电层填满开口。接着,在有机介电层上形成图案化光阻层,而图案化光阻层暴露出元件密集区中的有机介电层且覆盖元件疏松区的有机介电层。然后,以图案化光阻层为罩幕,移除元件密集区中的部分有机介电层。
前述的浅沟渠隔离结构的制造方法,其中所述的元件密集区中的部分有机介电层的移除方法例如是回蚀刻法。
前述的浅沟渠隔离结构的制造方法,其中覆盖沟渠侧壁的第一介电层的移除方法例如是回蚀刻法。
前述的浅沟渠隔离结构的制造方法,其中所述的阻挡层的移除方法例如是干式蚀刻法或湿式蚀刻法。
前述的浅沟渠隔离结构的制造方法,其中所述的第二介电层的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。
前述的浅沟渠隔离结构的制造方法,其中所述的元件密集区例如是记忆体阵列区,而元件疏松区例如是周边电路区。
本发明的目的及解决其技术问题另外再采用以下技术方案来实现。依据本发明提出的一种沟填方法,包括下列步骤。首先,提供基底,基底上具有图案层,且在图案层中具有沟渠。接着,在基底上形成第一材料层,第一材料层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一材料层中形成开口。然后,在位于开口底部的第一材料层上形成阻挡层。接下来,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一材料层。之后,移除阻挡层。再者,在第一材料层上形成填满沟渠的第二材料层。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
前述的沟填方法,例如是用于浅沟渠隔离工艺、层间介电层沟填工艺或金属导线沟填工艺。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明浅沟渠隔离结构的制造方法及沟填方法至少具有下列优点及有益效果:
本发明由于是在形成第一材料层之后,会以阻挡层为罩幕,移除覆盖沟渠侧壁的第一材料层,以降低沟渠的深宽比,而使得第二材料层能有效地填满沟渠,因此此沟填方法具有较佳的沟填能力。
另外,在本发明所提出的浅沟渠隔离结构的制造方法中,由于在形成第一介电层之后,会以阻挡层为罩幕,移除覆盖沟渠侧壁的第一介电层,所以可降低沟渠的深宽比,以使得第二介电层能有效地填满沟渠,因此所形成的浅沟渠隔离结构具有较佳的隔离能力,进而可避免产生元件漏电流或元件可靠度变差等问题。
此外,在本发明所提出的浅沟渠隔离结构的制造方法中,由于元件疏松区中的阻挡层的厚度大于元件密集区中的阻挡层的厚度,所以元件疏松区中的阻挡层可有效地保护元件疏松区中的元件不受到蚀刻工艺的伤害。
综上所述,本发明是有关于一种浅沟渠隔离结构的制造方法及沟填方法。该浅沟渠隔离结构的制造方法,包括下列步骤:首先,提供基底,基底上具有罩幕层,且在基底与罩幕层中具有沟渠。接着,在基底上形成第一介电层,第一介电层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一介电层中形成开口。然后,在位于开口底部的第一介电层上形成阻挡层。接下来,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一介电层。之后,移除阻挡层。再者,形成填满沟渠的第二介电层。本发明在技术上有显著的进步,具有明显的积极效果,诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明的一实施例的沟填方法的流程图。
图2A至图2E是本发明的一实施例的浅沟渠隔离结构的制造流程的剖面图。
图3A至图3E是本发明的另一实施例的浅沟渠隔离结构的制造流程的剖面图。
图4A至图4E是本发明的另一实施例的浅沟渠隔离结构的制造流程的剖面图。
100、200、300:基底          102、206、306:罩幕层
104、208、308:沟渠          106、210、310:垫氧化层
108、212、312:硬罩幕层      110、214、214:导体层
112、216、316:第一介电层    114、218、218:开口
116:有机材料层              118、222、324:阻挡层
120、224、326:第二介电层    122、226、328:浅沟渠隔离结构
202、302:元件密集区        204、304:元件疏松区
220:光阻层                 320:有机介电层
322:图案化光阻层           D1、D1′、D2、D2′、D3、D4:厚度
H1:第一高度                H2:第二高度
H3:第三高度                H4:第四高度
H5:第五高度                H6:第六高度
S100、S102、S104、S106、S108、S110:步骤标号
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的浅沟渠隔离结构的制造方法及沟填方法其具体实施方式、方法、步骤、特征及其功效,详细说明如后。
有关本发明的前述及其他技术内容、特点及功效,在以下配合参考图式的较佳实施例的详细说明中将可清楚呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效获得一更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
图1是本发明的一实施例的沟填方法的流程图。
请参阅图1所示,首先,进行步骤S100,提供基底,基底上具有图案层,且在图案层中具有沟渠。图案层可为任何具有图案的膜层,如罩幕层等。
接着,进行步骤S102,在基底上形成第一材料层,第一材料层填满部分沟渠且覆盖沟渠侧壁,而在位于沟渠中的第一材料层中形成开口。第一材料层的材料例如是介电材料或导电材料,可依照在沟渠中所要形成的构件而定。
然后,进行步骤S104,在位于开口底部的第一材料层上形成阻挡层,用以保护位于阻挡层下方的第一材料层。
接下来,进行步骤S106,以阻挡层为罩幕,移除覆盖沟渠侧壁的第一材料层,以降低位于沟渠的深宽比。
之后,进行步骤S108,移除阻挡层。
再者,进行步骤S110,在第一材料层上形成填满沟渠的第二材料层。第二材料层的材料例如是介电材料或导电材料,可依照在沟渠中所要形成的构件而定。
上述实施例的沟填方法可用于浅沟渠隔离工艺、层间介电层沟填工艺或金属导线沟填工艺。
基于上述实施例可知,在本发明的一实施例所提出的沟填方法中,在形成第一材料层之后,会以阻挡层为罩幕,移除覆盖沟渠侧壁的第一材料层,以降低沟渠的深宽比,所以第二材料层能有效地填满沟渠,而使得上述沟填方法具有较佳的沟填能力。
以下,以制造浅沟渠隔离结构的实施例为例,详细地说明上述沟填方法的应用方式。
图2A至图2E是本发明的一实施例的浅沟渠隔离结构的制造流程的剖面图。
首先,请参阅图2A所示,提供基底100,基底100上具有罩幕层102,且在基底100与罩幕层102中具有沟渠104。基底100例如是硅基底。罩幕层102可包括垫氧化层106及硬罩幕层108。垫氧化层106设置于基底100上。硬罩幕层108设置于垫氧化层106上。此外,罩幕层102更可选择性地包括导体层110,设置于垫氧化层106与硬罩幕层108之间。垫氧化层106的材料例如是氧化硅。硬罩幕层108的材料例如是氮化硅。导体层110的材料例如是掺杂多晶硅。当导体层110的材料为掺杂多晶硅时,导体层110可经由后续工艺形成浮置栅极,而垫氧化层106可作为穿隧介电层使用。
接着,在基底100上形成第一介电层112,第一介电层112填满部分沟渠104且覆盖沟渠104侧壁,而在位于沟渠104中的第一介电层112中形成开口114,且在第一介电层112中例如是不存在包覆于其中的孔洞。其中,第一介电层112更可覆盖罩幕层102。第一介电层112的材料例如为氧化硅。第一介电层112的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。举例来说,第一介电层112可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可是经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。此外,沟渠104具有第一高度H1,而第一介电层112填满沟渠104的部分具有第二高度H2。第一高度H1例如是高于第二高度H2,且第二高度H2例如是第一高度H1的0.3倍至0.7倍。
然后,请参阅图2B所示,在第一介电层112上形成有机材料层116,且有机材料层116填满开口114。有机材料层116的材料例如是光阻或有机介电层。有机材料层116的厚度例如是1500埃至10000埃。有机材料层116的形成方法例如是涂布法,如旋转涂布法。
接下来,请参阅图2C所示,以罩幕层102为研磨终止层,进行一个化学机械研磨工艺,以移除部分有机材料层116。在进行化学机械研磨工艺时,可一并移除覆盖罩幕层102的上表面的第一介电层112。
之后,请参阅图2D所示,对有机材料层116进行一个回蚀刻工艺,以移除部分有机材料层116,而在位于开口114底部的第一介电层112上形成阻挡层118,用以保护位于阻挡层118下方的第一介电层112。直至形成阻挡层118为止,所移除的有机材料层116的厚度例如是1000埃至9500埃。
在本实施例中,虽然是以上述方法形成阻挡层118,然而阻挡层118的形成方法并不限于此。举例来说,在本发明的另一实施例中,可对图2B中的有机材料层116进行回蚀刻工艺,而直接形成图2D中的阻挡层118,亦即可不需进行图2C中的化学机械研磨工艺。
再者,以阻挡层118为罩幕,移除覆盖沟渠104侧壁的第一介电层112,同时可移除残留在罩幕层102上的第一介电层112,以降低位于沟渠104的深宽比。覆盖沟渠104侧壁的第一介电层112的移除方法例如是回蚀刻法。
随后,请参阅图2E所示,移除阻挡层118,以暴露出第一介电层112。阻挡层118的移除方法例如是干式蚀刻法或湿式蚀刻法。
再者,在第一介电层112上形成填满沟渠104的第二介电层120,且第一介电层112与第二介电层120形成浅沟渠隔离结构122。第二介电层120的材料例如是氧化硅。第二介电层120的形成方法例如是利用如高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺等方法先形成覆盖罩幕层102及第一介电层112的第二介电材料层(未绘示),再利用如化学机械研磨法等方法移除位于沟渠104以外的第二介电材料层而形。其中,第二介电材料层可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可以经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。
基于上述实施例可知,由于在形成第一介电层112之后,会以阻挡层118为罩幕,移除覆盖沟渠104侧壁的第一介电层112,所以可降低沟渠104的深宽比,以使得第二介电层120能有效地填满沟渠104。因此,可防止在所形成的浅沟渠隔离结构122中形成孔洞,使浅沟渠隔离结构122具有较佳的隔离能力,进而可避免因浅沟渠隔离结构122的品质不佳而产生的元件漏电流或元件可靠度变差等问题。
图3A至图3E是本发明的另一实施例的浅沟渠隔离结构的制造流程的剖面图。
首先,请参阅图3A所示,提供基底200,基底200包括元件密集区202及元件疏松区204,且在元件密集区202的基底200上具有罩幕层206,且在基底200与罩幕层206中具有沟渠208。元件密集区202例如是记忆体阵列区,而元件疏松区204例如是周边电路区。基底200例如是硅基底。罩幕层206可包括垫氧化层210及硬罩幕层212。垫氧化层210设置于基底200上。硬罩幕层212设置于垫氧化层210上。此外,罩幕层206更可选择性地包括导体层214,设置于垫氧化层210与硬罩幕层212之间。垫氧化层210的材料例如是氧化硅。硬罩幕层212的材料例如是氮化硅。导体层214的材料例如是掺杂多晶硅。当导体层214的材料为掺杂多晶硅时,导体层214可经由后续工艺形成浮置栅极,而垫氧化层210可作为穿隧介电层使用。
接着,在基底200上形成第一介电层216,第一介电层216填满部分沟渠208且覆盖沟渠208侧壁,而在位于沟渠208中的第一介电层216中形成开口218,且在第一介电层216中例如是不存在包覆于其中的孔洞。其中,第一介电层216更可覆盖罩幕层206。第一介电层216的材料例如氧化硅。第一介电层216的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。举例来说,第一介电层216可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可是经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。此外,沟渠208具有第三高度H3,而第一介电层216填满沟渠208的部分具有第四高度H4。第三高度H 3例如是高于第四高度H4,且第四高度H4例如是第三高度H3的0.3倍至0.7倍。
然后,请参阅图3B所示,在第一介电层216上形成光阻层220,且光阻层220填满开口218。光阻层220的厚度例如是1500埃至10000埃。光阻层220的形成方法例如是涂布法,如旋转涂布法。
接下来,请参阅图3C所示,对光阻层200进行一个微影工艺,以移除元件密集区202中的部分光阻层220,而在第一介电层216上形成阻挡层222,用以保护位于阻挡层222下方的第一介电层216。元件密集区202中的阻挡层222只位于开口218底部的第一介电层216上,且元件疏松区204中的阻挡层222的厚度D1大于元件密集区202中的阻挡层220的厚度D2。
之后,请参阅图3D所示,可选择性地对阻挡层222进行一个回蚀刻工艺,以调整阻挡层222的厚度,例如是将厚度D1及厚度D2分别调整为厚度D1′及厚度D2′,其中厚度D1′大于厚度D2′。直至形成阻挡层222为止,所移除的光阻层220的厚度例如是1000埃至9500埃。在本实施例中,虽然是以上述方法形成阻挡层222,然而阻挡层222的形成方法并不限于此。
再者,以阻挡层222为罩幕,移除覆盖沟渠208侧壁的第一介电层216,同时可一并移除覆盖沟渠208上表面的第一介电层216,以降低位于沟渠208的深宽比。覆盖沟渠208侧壁的第一介电层216的移除方法例如是回蚀刻法。
随后,请参阅图3E所示,移除阻挡层222,以暴露出第一介电层216。阻挡层222的移除方法例如是干式蚀刻法或湿式蚀刻法。
再者,形成填满沟渠208的第二介电层224,且第一介电层216与第二介电层224形成浅沟渠隔离结构226。第二介电层224的材料例如是氧化硅。第二介电层224的形成方法例如是利用如高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺等方法先形成覆盖罩幕层206及第一介电层216的第二介电材料层(未绘示),再利用如化学机械研磨法等方法移除位于沟渠208以外的第二介电材料层而形成。其中,第二介电材料层可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可是经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。
基于上述实施例可知,由于在形成第一介电层216之后,会以阻挡层222为罩幕,移除覆盖沟渠208侧壁的第一介电层216,所以可降低沟渠208的深宽比,以使得第二介电层224能有效地填满沟渠208,且不在浅沟渠隔离结构226中产生孔洞,因此所形成的浅沟渠隔离结构226具有较佳的隔离能力。
此外,由于元件疏松区204中的阻挡层222的厚度D1(或D1′)大于元件密集区202中的阻挡层222的厚度D2(或D2′),所以元件疏松区204中的阻挡层222可有效地保护元件疏松区204中位于阻挡层222下方的元件(未绘示)不受到蚀刻工艺的伤害。
图4A至图4E是本发明的另一实施例的浅沟渠隔离结构的制造流程的剖面图。
首先,请参阅图4A所示,提供基底300,基底300包括元件密集区302及元件疏松区304,且在元件密集区302的基底300上具有罩幕层306,且在基底300与罩幕层306中具有沟渠308。元件密集区302例如是记忆体阵列区,而元件疏松区304例如是周边电路区。基底300例如是硅基底。罩幕层306可包括垫氧化层310及硬罩幕层312。垫氧化层310设置于基底300上。硬罩幕层312设置于垫氧化层310上。此外,罩幕层306更可选择性地包括导体层314,设置于垫氧化层310与硬罩幕层312之间。垫氧化层310的材料例如是氧化硅。硬罩幕层312的材料例如是氮化硅。导体层314的材料例如是掺杂多晶硅。当导体层314的材料为掺杂多晶硅时,导体层314可经由后续工艺形成浮置栅极,而垫氧化层310可作为穿隧介电层使用。
接着,在基底300上形成第一介电层316,第一介电层316填满部分沟渠308且覆盖沟渠308侧壁,而在位于沟渠308中的第一介电层316中形成开口318,且在第一介电层316中例如是不存在包覆于其中的孔洞。其中,第一介电层316更可覆盖罩幕层306。第一介电层316的材料例如氧化硅。第一介电层316的形成方法例如是高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。举例来说,第一介电层316可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可是经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。此外,沟渠308具有第五高度H5,而第一介电层316填满沟渠308的部分具有第六高度H6。第五高度H5例如是高于第六高度H6,且第六高度H6例如是第五高度H5的0.3倍至0.7倍。
然后,请参阅图4B所示,在第一介电层316上形成有机介电层320,且有机介电层320填满开口318。有机介电层320的厚度例如是1500埃至10000埃。有机介电层320的形成方法例如是涂布法,如旋转涂布法。
继之,在有机介电层320上形成图案化光阻层322,而图案化光阻层322暴露出元件密集区302中的有机介电层320且覆盖元件疏松区304的有机介电层320。
接下来,请参阅图4C所示,以图案化光阻层322为罩幕,移除元件密集区302中的部分有机介电层320,而在第一介电层316上形成阻挡层324,用以保护位于阻挡层324下方的第一介电层316。元件密集区302中的阻挡层324只位于开口318底部的第一介电层316上,且元件疏松区304中的阻挡层324的厚度D3大于元件密集区302中的阻挡层324的厚度D4。元件密集区302中的部分有机介电层320的移除方法例如是回蚀刻法。直至形成阻挡层324为止,所移除的有机介电层320的厚度例如是1000埃至9500埃。在本实施例中,虽然是以上述方法形成阻挡层324,然而阻挡层324的形成方法并不限于此。
之后,请参阅图4D所示,以阻挡层324为罩幕,移除覆盖沟渠308侧壁的第一介电层316,同时可一并移除覆盖沟渠308上表面的第一介电层316,以降低位于沟渠308的深宽比。覆盖沟渠308侧壁的第一介电层316的移除方法例如是回蚀刻法。
随后,请参阅图4E所示,移除图案化光阻层322。图案化光阻层322的移除方法例如是干式蚀刻法。
接着,移除阻挡层324,以暴露出第一介电层316。阻挡层324的移除方法例如是干式蚀刻法或湿式蚀刻法。
再者,在第一介电层316上形成填满沟渠308的第二介电层326,且第一介电层316与第二介电层326形成浅沟渠隔离结构328。第二介电层326的材料例如是氧化硅。第二介电层326的形成方法例如是利用如高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺等方法先形成覆盖罩幕层306及第一介电层316的第二介电材料层(未绘示),再利用如化学机械研磨法等方法移除位于沟渠308以外的第二介电材料层而形成。其中,第二介电材料层可经由进行单一道高密度等离子体化学气相沉积工艺所形成,也可是经由重复进行高密度等离子体化学气相沉积工艺及蚀刻工艺所形成。
同样地,由于在形成第一介电层316之后,会以阻挡层324为罩幕,移除覆盖沟渠308侧壁的第一介电层316,所以可降低沟渠308的深宽比,以使得第二介电层326能有效地填满沟渠308,且不在浅沟渠隔离结构328中产生孔洞,因此可形成具有较佳的隔离能力的浅沟渠隔离结构328。
此外,由于元件疏松区304中的阻挡层324的厚度D3大于元件密集区302中的阻挡层324的厚度D4,所以元件疏松区304中的阻挡层324有可防止元件疏松区304中位于阻挡层324下方的元件(未绘示)在蚀刻工艺中受到伤害。
综上所述,本发明的实施例至少具有下列优点:
1.本发明的实施例所提出的沟填方法具有较佳的沟填能力。
2.本发明的实施例所提出的浅沟渠隔离结构的制造方法可制作出具有较佳隔离能力的浅沟渠隔离结构。
3.本发明的实施例所提出的浅沟渠隔离结构的制造方法可有效地保护元件疏松区中的元件不受到蚀刻工艺的伤害。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种浅沟渠隔离结构的制造方法,其特征在于其包括以下步骤:
提供一基底,该基底上具有一罩幕层,且在该基底与该罩幕层中具有一沟渠;
在该基底上形成一第一介电层,该第一介电层填满部分该沟渠且覆盖该沟渠侧壁,而在位于该沟渠中的该第一介电层中形成一开口;
在位于该开口底部的该第一介电层上形成一阻挡层;
以该阻挡层为罩幕,移除覆盖该沟渠侧壁的该第一介电层;
移除该阻挡层;以及
在该第一介电层上形成填满该沟渠的一第二介电层。
2.根据权利要求1所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的罩幕层包括:
一垫氧化层,设置于该基底上;以及
一硬罩幕层,设置于该垫氧化层上。
3.根据权利要求2所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的罩幕层更包括一导体层,设置于该垫氧化层与该硬罩幕层之间。
4.根据权利要求3所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的导体层的材料包括掺杂多晶硅。
5.根据权利要求1所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的第一介电层的形成方法包括高密度等离子体化学气相沉积法、次大气压未掺杂硅玻璃工艺、高深宽比沟填工艺或旋涂式玻璃工艺。
6.根据权利要求1所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的沟渠具有一第一高度,而该第一介电层填满该沟渠的部分具有一第二高度,且该第一高度高于该第二高度。
7.根据权利要求6所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的第二高度为该第一高度的0.3倍至0.7倍。
8.根据权利要求1所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的阻挡层的形成方法包括:
在该第一介电层上形成一有机材料层,且该有机材料层填满该开口;
以该罩幕层为研磨终止层,进行一化学机械研磨工艺,以移除部分该有机材料层;以及
对该有机材料层进行一回蚀刻工艺,以移除部分该有机材料层。
9.根据权利要求8所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的有机材料层的材料包括光阻或有机介电层。
10.根据权利要求1所述的沟填方法及浅沟渠隔离结构的制造方法,其特征在于其中所述的阻挡层的形成方法包括:
在该第一介电层上形成一有机材料层,且该有机材料层填满该开口;以及
对该有机材料层进行一回蚀刻工艺,以移除部分该有机材料层。
CN2010105606109A 2010-11-23 2010-11-23 浅沟渠隔离结构的制造方法 Pending CN102479741A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105606109A CN102479741A (zh) 2010-11-23 2010-11-23 浅沟渠隔离结构的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105606109A CN102479741A (zh) 2010-11-23 2010-11-23 浅沟渠隔离结构的制造方法

Publications (1)

Publication Number Publication Date
CN102479741A true CN102479741A (zh) 2012-05-30

Family

ID=46092318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105606109A Pending CN102479741A (zh) 2010-11-23 2010-11-23 浅沟渠隔离结构的制造方法

Country Status (1)

Country Link
CN (1) CN102479741A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223469A (zh) * 1997-12-30 1999-07-21 西门子公司 凹进的浅沟槽隔离结构氮化物衬垫及其制造方法
US6479369B1 (en) * 1999-11-08 2002-11-12 Nec Corporation Shallow trench isolation (STI) and method of forming the same
CN1512559A (zh) * 2002-12-26 2004-07-14 富士通株式会社 具有无凹痕浅槽隔离的半导体器件及其制造方法
US20040173870A1 (en) * 2001-09-20 2004-09-09 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device with filling insulating film into trench

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223469A (zh) * 1997-12-30 1999-07-21 西门子公司 凹进的浅沟槽隔离结构氮化物衬垫及其制造方法
US6479369B1 (en) * 1999-11-08 2002-11-12 Nec Corporation Shallow trench isolation (STI) and method of forming the same
US20040173870A1 (en) * 2001-09-20 2004-09-09 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device with filling insulating film into trench
CN1512559A (zh) * 2002-12-26 2004-07-14 富士通株式会社 具有无凹痕浅槽隔离的半导体器件及其制造方法

Similar Documents

Publication Publication Date Title
JP6263569B2 (ja) 絶縁構造およびその製造方法
TWI508221B (zh) 自對準溝槽之形成方法
CN101147257A (zh) 形成凹进式通路装置的方法
CN103534807B (zh) 具有用于嵌入式动态随机存取存储器(edram)的集成双壁电容器的半导体结构及其形成方法
CN104956482A (zh) 用于光子及电子结构的半导体衬底及制造方法
KR101212260B1 (ko) 매립게이트를 구비한 반도체 장치 및 그 제조방법
US9396985B2 (en) Element isolation structure of semiconductor and method for forming the same
CN104217986B (zh) 浅沟槽隔离结构的制作方法和nand闪存的制作方法
CN104425350B (zh) 一种半导体器件及其制造方法
CN102157435B (zh) 接触孔形成方法
CN1971846A (zh) 形成沟渠电容的方法
CN102479741A (zh) 浅沟渠隔离结构的制造方法
CN102376563A (zh) 平坦化凹槽和形成半导体结构的方法
US6897108B2 (en) Process for planarizing array top oxide in vertical MOSFET DRAM arrays
US7122428B2 (en) Device isolation method of semiconductor memory device and flash memory device fabricating method using the same
KR20130022950A (ko) 반도체 장치 및 그의 제조 방법
TWI394230B (zh) 半導體元件之製作方法
CN105336676A (zh) 接触插塞的形成方法
KR20020022120A (ko) 소자 분리막 형성 방법
KR20070062735A (ko) 반도체 소자의 소자분리막 제조방법
KR100897958B1 (ko) 반도체 장치의 소자 분리막 및 이의 형성방법
KR100652288B1 (ko) 반도체 소자의 소자 분리막 제조 방법
KR100707592B1 (ko) 반도체 소자의 트렌치 소자 분리막 형성 방법
KR100773673B1 (ko) 플래시 메모리 소자의 제조방법
CN103378009B (zh) 制造金属氧化物半导体存储器的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120530