CN102443736B - 一种高磁通密度取向硅钢产品的生产方法 - Google Patents

一种高磁通密度取向硅钢产品的生产方法 Download PDF

Info

Publication number
CN102443736B
CN102443736B CN2010102989547A CN201010298954A CN102443736B CN 102443736 B CN102443736 B CN 102443736B CN 2010102989547 A CN2010102989547 A CN 2010102989547A CN 201010298954 A CN201010298954 A CN 201010298954A CN 102443736 B CN102443736 B CN 102443736B
Authority
CN
China
Prior art keywords
temperature
annealing
silicon steel
normalizing
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102989547A
Other languages
English (en)
Other versions
CN102443736A (zh
Inventor
徐琪
沈侃毅
李国保
靳伟忠
金冰忠
宿德军
张仁彪
刘海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2010102989547A priority Critical patent/CN102443736B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to PCT/CN2011/072768 priority patent/WO2012041054A1/zh
Priority to US13/823,424 priority patent/US20130233450A1/en
Priority to EP11827950.4A priority patent/EP2623621B1/en
Priority to MX2013003367A priority patent/MX350000B/es
Priority to RU2013114861/02A priority patent/RU2552562C2/ru
Priority to KR1020137008095A priority patent/KR101451824B1/ko
Priority to JP2013530534A priority patent/JP5864587B2/ja
Publication of CN102443736A publication Critical patent/CN102443736A/zh
Application granted granted Critical
Publication of CN102443736B publication Critical patent/CN102443736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Abstract

一种高磁通密度取向硅钢产品的生产方法,包括如下步骤:1)冶炼及浇铸,成分重量百分比:C 0.035~0.065%,Si 2.9~4.0%,Mn 0.05~0.20%,S 0.005~0.012%,Als 0.015~0.035%,N 0.004~0.009%,Sn 0.005~0.090%,Nb 0.200~0.800%,余Fe;冶炼,钢水经二次精炼和连铸后获得板坯;2)热轧;3)常化;4)冷轧;5)脱碳退火;6)MgO涂层;7)高温退火,一次升温至700℃~900℃,再以V二次升温二次升温至1200℃,保温20小时进行净化退火;V二次升温=9℃/hr~17℃/hr;8)绝缘涂层。本发明解决低温板坯加热技术生产高磁感取向硅钢时渗氮难点;由于钢板在高温退火过程中完成渗氮;所以能确保二次再结晶完善,最终获得磁性能优异的高磁通密度取向硅钢产品。

Description

一种高磁通密度取向硅钢产品的生产方法
技术领域
本发明涉及取向硅钢的制造方法,特别涉及一种高磁通密度取向硅钢产品的生产方法。
背景技术
传统高磁通密度取向硅钢的生产方法如下:用转炉(或电炉)炼钢,进行二次精炼及合金化,连铸成板坯,其基本化学成分为:Si 2.5~4.5%、C 0.06~0.10%、Mn 0.03~0.1%、S 0.012~0.050%、Als 0.02~0.05%、N0.003~0.012%,有的成分体系还含有Cu、Mo、Sb、B、Bi等元素中的一种或多种,其余为铁及不可避免的杂质元素。板坯在专用高温加热炉内加热到1350℃以上的温度,并进行45min以上的保温,使有利夹杂物MnS或AlN充分固溶,然后进行轧制,终轧温度达到950℃以上,进行快速喷水冷却到500℃以下,然后卷取。以便在随后的常化过程中在硅钢基体内析出细小、弥散的第二相质点,即抑制剂;热轧板常化后,进行酸洗,除去表面氧化铁皮;冷轧将样品轧到成品厚度,进行脱碳退火和涂布以MgO为主要成分的退火隔离剂,把钢板中的[C]脱到不影响成品磁性的程度(一般应在30ppm以下);高温退火过程中,钢板发生二次再结晶、硅酸镁底层形成及净化(除去钢中的S、N等对磁性有害的元素)等物理化学变化,获得取向度高、铁损低的高磁感取向硅钢;最后,经过涂布绝缘涂层和拉伸退火,得到商业应用形态的取向硅钢产品。
上述生产方法的不足在于:为了使抑制剂充分固溶,加热温度最高需达到1400℃,这是传统加热炉的极限水平。此外,由于加热温度高,烧损大、加热炉需频繁修补,利用率低。同时,能耗高,热轧卷的边裂大,致使冷轧工序生产困难,成材率低,成品磁性能B8不理想,成本也高。
正是鉴于上述这些问题,国内外的研发人员开展了大量降低取向硅钢加热温度的研究,其主要改进的趋势按照加热温度范围来区分有两种,一种是板坯加热温度在1250~1320℃,采用AlN和Cu的抑制剂;另一种是板坯加热温度在1100~1250℃,主要采用脱碳后渗氮形成抑制剂的方法来获得抑制能力。
现阶段低温板坯加热技术发展较快,例如美国专利US 5049205和日本专利特开平5-112827采用在1200℃以下进行板坯加热,最终冷轧采用80%的大冷轧压下率,并在脱碳退火后采用氨气进行连续渗氮处理,获得取向度较高的二次再结晶晶粒。但这种方法由于采用基板脱碳后渗氮形成抑制剂的方法来获得抑制能力,在实际控制中很难克服带钢表面氧化严重、渗氮困难和不均匀等难题,因此造成获得型抑制剂在钢板内形成困难、分布不均匀,从而影响抑制能力和二次再结晶的均匀性,引起最终产品磁性能不均匀。
中国专利CN 200510110899描述了在1200℃以下进行板坯加热,并对已经轧制到成品厚度的冷轧板进行先渗氮后脱碳退火的新工艺,但是在渗氮过程中需要严格控制露点,同时又会引入了脱碳困难的新问题。
近期韩国专利KR 2002074312提出在1200℃以下进行板坯加热后,采用脱碳和渗氮同步进行的方法,这虽然可以解决后脱碳困难或后渗氮困难的问题,但仍无法避免因渗氮不均匀造成产品磁性能不均匀和成本昂贵等问题。
炼钢中添加Nb元素,如日本专利JP6025747和JP6073454中提出,在炼钢成分中加入0.02~0.20%的Nb,其目的是通过形成碳化铌和氮化铌等析出物,使热轧板再结晶组织细化,改善脱碳退火板的晶粒分布和集合组织,在高温退火过程中作为辅助抑制剂,起到抑制正常晶粒长大的作用,从而提高取向硅钢磁性。然而,该专利的问题是为了在热轧前获得氮化铌等析出物,必须采用高温板坯加热技术,这势必会带来烧损大、能耗高、成材率低以及成本高等问题。
MgO隔离剂中添加的氮化物,如日本专利JP51106622和美国专利US4171994中提出,在MgO隔离剂中添加Al、Fe、Mg和Zn的硝酸盐,使其在高温退火过程中分解后向板内渗入氮。然而,由于这些氮化物分解的产物为氮氧化合物和氧气等,因此在实际生产中存在爆炸的危险。
日本专利JP52039520和美国专利US4010050中提出,在MgO隔离剂中添加磺胺酸,作为高温分解时渗氮原料。但是,作为有机物,磺胺酸分解温度较低(约205℃),实际生产中分解出来的[N]在低温下很难渗入到钢板中。
日本专利JP61096080和JP62004881中分别提出,通过添加Mn和Si的氮化物来满足高温退火时的渗氮。但是,该方法的问题在于,由于上述氮化物热稳定性高,因此其分解的效率低,需要延长退火时间或增加氮化物量来满足渗氮要求。
高温退火升温速度的控制,如日本专利JP54040227和JP200119751中提出,在高温退火过程中可以通过降低升温速度来获得高磁通密度的取向硅钢。但是,单纯的降低升温速度会造成生产效率的大幅下降。
发明内容
本发明的目的在于提供一种高磁通密度取向硅钢产品的生产方法,解决低温板坯加热技术生产高磁感取向硅钢时渗氮难点,同时采用低温加热技术有效确保炼钢炉等一系列设备安全、稳定、使用寿命长;由于钢板在高温退火过程中完成渗氮;所以能确保二次再结晶完善,最终获得磁性能优异的高磁通密度取向硅钢产品。
本发明的技术方案是,
通过在炼钢中添加合适的Nb含量,使钢板在高温退火过程中更易吸氮,因为氮含量决定着最终成品板磁性能是否达标。通过在MgO隔离剂中添加含氮化合物,使之涂覆于钢板表面,并在高温退火过程中受热分解,起到向钢板内渗氮均匀目的。在高温退火过程中,根据钢中Nb含量、二次升温前氮含量和二次升温起始温度,调整不同的升温速度,从而确保二次再结晶完善,最终获得磁性能优异的高磁通密度取向硅钢产品。
具体地,本发明的一种高磁通密度取向硅钢产品的生产方法,包括如下步骤:
1)冶炼及浇铸
取向硅钢成分重量百分比为:C 0.035~0.065%,Si 2.9~4.0%,Mn0.05~0.20%,S 0.005~0.012%,Als 0.015~0.035%,N 0.004~0.009%,Sn 0.005~0.090%,Nb 0.200~0.800%,其余为Fe及不可避免的夹杂物;采用转炉或电炉炼钢,钢水经二次精炼和连铸后,获得板坯;
2)热轧
板坯在加热炉内加热到1090~1200℃,1180℃以下开轧,860℃以上终轧,轧后层流冷却,650℃以下卷取;
3)常化
常化工艺:常化温度1050~1180℃,时间1~20sec,常化温度850~950℃,时间30~200sec;随后进行冷却,冷却速度10~60℃/sec;
4)冷轧
常化后,将钢板轧制到成品板厚度,冷轧压下率≥75%;
5)脱碳退火
升温速度15~35℃/sec,脱碳温度800~860℃,保温90~160sec;由于在高温退火时才进行渗氮,所以在脱碳退火时只要达到脱碳要求即可,简化了脱碳工艺。
6)MgO涂层
在钢板表面涂覆以MgO为主要成分,0.1~10%NH4Cl和0.5~30%P3N5,余量为MgO,以重量百分比计;
7)高温退火
一次升温,先升温至700℃~900℃,再以升温速度V二次升温二次升温至1200℃,而后保温20小时进行净化退火;其中,V二次升温=9℃/hr~17℃/hr;
8)绝缘涂层
在高温退火板表面涂敷绝缘涂层,并经热拉伸平整退火得到磁性优良的高磁通密度取向硅钢。
本发明在炼钢成分中加入适量的Nb。其目的是有两点:一方面,当取向硅钢中含有Nb时,更易于在高温退火完成渗氮。这是因为相对于Fe、Mn而言,Nb原子的次外层d亚层的电子填充更不饱和,因此更容易形成氮化物,且氮化物更稳定。另一方面,这部分在高温退火时渗入的氮原子,既能和Als形成高磁通密度取向硅钢所必须的主抑制剂AlN,又能同时获取以Nb2N和NbN形式的析出物。这部分Nb的氮化物的可作为辅助抑制剂,起到增强抑制正常晶粒长大的效果,最终提高取向硅钢成品板磁性能的作用。
本发明在MgO涂液中填加了适量NH4Cl和P3N5。其目的是,用高温退火过程中的氮化物分解来完成向板内渗氮,从而替代脱碳退火过程中氨气分解实现的渗氮,其最大的益处在于能确保板内渗氮更均匀。此外,之所以选择NH4Cl和P3N5这两种无机氮化物作为高温分解时的渗氮原料是因为,NH4Cl的分解温度在330~340℃,而P3N5的分解温度在760℃左右。不同的氮化物分解温度区域可以确保在高温退火过程中相当长的时间内都能均匀释放出活性氮原子,从而完成向钢板内部渗氮,并且使氮含量【N】保持在200~250ppm这一标准范围内。
本发明要求在高温退火过程中对二次升温速度进行控制。其目的是,通过设定合适的二次升温速度能够确保最终成品获得优异的磁性。这是因为,在高温退火的二次升温过程中,涵盖了取向硅钢二次再结晶发展的温度范围。因此,合适的升温速度能够使二次再结晶过程中长大的高斯晶粒取向度更好,偏离角<3°,磁性更优。
本发明高温退火过程中,相对的慢速升温能确保二次再结晶完善,成品磁性好。这是因为,在高温退火的二次升温过程中会发生二次再结晶,此时也是AlN抑制剂逐步粗化和分解,抑制力同步消失的过程。如果在此温度范围内,不对升温速度过快的话,会导致二次再结晶尚未完成,抑制剂却已分解失效,成品二次再结晶不完善,磁性差的严重后果。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1
按照表1所述的化学成分冶炼和浇铸。将不同成分的板坯放在1155℃加热炉内保温1.5小时后热轧至厚度为2.3mm的热轧板,开轧和终轧温度分别为1062℃和937℃。对热轧板采用两段式常化:(1120℃×15sec)+(870℃×150sec),随后以-15℃/sec速度进行冷却。经酸洗后,冷轧到成品厚度0.30mm。而后以升温速度25℃/sec,脱碳温度820℃,均温140s进行脱碳退火。涂布以MgO为主要成分,并含4.5%NH4Cl和15%P3N5的隔离剂。高温退火时,先升温至800℃,获得二次升温前氮含量b;再二次升温至1200℃,而后保温20小时进行净化退火。开卷后经过涂敷绝缘涂层及拉伸平整退火。其中,二次升温前氮含量b和成品磁性能见表1。
表1  化学成分对二次升温前氮含量和磁性能的影响
Figure BDA0000027668330000061
从表1可以看出,实施例中各项化学成分的选择符合发明生产步骤中[冶炼及浇铸]标准范围,而比较例中Nb成分的选择不符合标准范围0.200~0.800%,所以二次升温前经检测氮含量[N]不在200~250ppm标准范围内,最终导致取向硅钢成品板铁损(P17/50)和磁感(B8)性能较差。
实施例2
取向硅钢板坯的组分及重量百分比为C:0.050%,Si:3.25%,Mn:0.15%,S:0.009%,Als:0.032%,N:0.005%,Sn:0.02%,Nb:0.5%,其余为Fe及不可避免的杂质。将板坯放在1155℃加热炉内保温1.5小时后热轧至厚度为2.3mm的热轧板,开轧和终轧温度分别为1080℃和910℃。对热轧板采用两段式常化:(1110℃×10sec)+(910℃×120sec),随后以-35℃/sec速度进行冷却。经酸洗后,冷轧到成品厚度0.30mm。而后以升温速度25℃/sec,脱碳温度840℃,均温130s进行脱碳退火。涂布以MgO为主要成分,并添加不同含量的NH4Cl和P3N5。高温退火时,先升温至800℃,获得二次升温前氮含量b;再二次升温至1200℃,而后保温20小时进行净化退火。开卷后经过涂敷绝缘涂层及拉伸平整退火。其中,二次升温前氮含量b和成品磁性能见表2。
表2  NH4Cl和P3N5含量对二次升温前氮含量和磁性能的影响
从表2可以看出,实施例中NH4Cl、P3N5的选择符合发明生产步骤中[MgO涂层]标准范围0.1~10%、0.5~30%,而比较例NH4Cl、P3N5的选择中任何一项不符合要求则会造成二次升温前检测氮含量[N]不在200~250ppm标准内,最终导致取向硅钢成品板铁损(P17/50)和磁感(B8)性能较差。
实施例3
取向硅钢板坯的组分及重量百分比为C:0.050%,Si:3.25%,Mn:0.15%,S:0.009%,Als:0.032%,N:0.005%,Sn:0.02%,Nb含量(a):0.2~0.8%,其余为Fe及不可避免的杂质。将板坯放在1115℃加热炉内保温2.5小时后热轧至厚度为2.3mm的热轧板,开轧和终轧温度分别为1050℃和865℃。对热轧板采用两段式常化:(1120℃×15sec)+(900℃×120sec),随后以-25℃/sec速度进行冷却。经酸洗后,冷轧到成品厚度0.30mm。而后以升温速度25℃/sec,脱碳温度850℃,均温115s进行脱碳退火。涂布以MgO为主要成分,并添加7.5%NH4Cl和12.5%P3N5。高温退火过程中,先升温至700℃~900℃,作为二次升温的起始温度(c),获得二次升温前氮含量(b)。再以一定的二次升温速度(V)升温至1200℃,而后保温20小时进行净化退火。开卷后经涂敷绝缘涂层及拉伸平整退火。
表3  不同常化和渗氮工艺对成品磁性能的影响
从表3可以看出:
实施例和比较例两者中Nb含量(a)、二次升温前氮含量(b)和二次升温起始温度(c)三个条件相同时;实施例中二次升温速度实际值在9℃/hr~17℃/hr,并且理论值与实际值之差为正数时成品磁性能较好;反之,比较例情况相反,所以成品板磁性能较差。
低温板坯加热技术生产的高磁感取向硅钢具有加热炉寿命长,能耗和成本低等优势。但是长期以来,由于存在着后工序脱碳渗氮不均匀以及在生产过程中难以有效调整和控制等问题,从而影响到基板内局部或整体的抑制能力,导致二次再结晶不完善,产品磁性能不稳定。
综上所述,本发明是基于低温板坯加热工艺的一种新的高磁通密度取向硅钢生产方法,它有效地解决了上述问题。其特点在于,通过在炼钢中添加合适的Nb含量,使钢板在高温退火过程中更易吸氮;通过在MgO隔离剂中添加含氮化合物,使之在高温退火过程中受热分解,达到向钢板均匀渗氮的目的。在高温退火过程中,根据钢中Nb含量、氮含量和二次升温起始温度,控制升温速度,从而确保二次再结晶完善,最终获得磁性能优异的高磁通密度取向硅钢产品。

Claims (1)

1.一种高磁通密度取向硅钢产品的生产方法,包括如下步骤:
1)冶炼及浇铸
取向硅钢成分重量百分比为:C 0.035~0.065%,Si 2.9~4.0%,Mn0.05~0.20%,S 0.005~0.012%,Als 0.015~0.035%,N 0.004~0.009%,Sn 0.005~0.090%,Nb 0.200~0.800%,其余为Fe及不可避免的夹杂物;采用转炉或电炉炼钢,钢水经二次精炼和连铸后,获得板坯;
2)热轧
板坯在加热炉内加热到1090~1200℃,1180℃以下开轧,860℃以上终轧,轧后层流冷却,650℃以下卷取;
3)常化
常化工艺:常化温度1050~1180℃,时间1~20sec,常化温度850~950℃,时间30~200sec;随后进行冷却,冷却速度10~60℃/sec;
4)冷轧
常化后,将钢板轧制到成品板厚度,冷轧压下率≥75%;
5)脱碳退火
升温速度15~35℃/sec,脱碳温度800~860℃,保温90~160sec;
6)MgO涂层
在钢板表面涂覆以MgO为主要成分,0.1~10%NH4Cl和0.5~30%P3N5,余量为MgO,以重量百分比计;
7)高温退火
一次升温,先升温至700℃~900℃,再以升温速度V二次升温二次升温至1200℃,而后保温20小时进行净化退火;其中,V二次升温=9℃/hr~17℃/hr;
8)绝缘涂层
在高温退火板表面涂敷绝缘涂层,并经热拉伸平整退火得到磁性优良的高磁通密度取向硅钢。
CN2010102989547A 2010-09-30 2010-09-30 一种高磁通密度取向硅钢产品的生产方法 Active CN102443736B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2010102989547A CN102443736B (zh) 2010-09-30 2010-09-30 一种高磁通密度取向硅钢产品的生产方法
US13/823,424 US20130233450A1 (en) 2010-09-30 2011-04-14 Method for manufacturing oriented silicon steel product with high magnetic-flux density
EP11827950.4A EP2623621B1 (en) 2010-09-30 2011-04-14 Production method of grain-oriented silicon steel with high magnetic flux density
MX2013003367A MX350000B (es) 2010-09-30 2011-04-14 Un método para fabricar un producto de acero al silicio orientado con elevada densidad de flujo magnético.
PCT/CN2011/072768 WO2012041054A1 (zh) 2010-09-30 2011-04-14 一种高磁通密度取向硅钢产品的生产方法
RU2013114861/02A RU2552562C2 (ru) 2010-09-30 2011-04-14 Способ производства листа из текстурированной электротехнической стали с высокой плотностью магнитного потока
KR1020137008095A KR101451824B1 (ko) 2010-09-30 2011-04-14 높은 자기 선속 밀도를 가진 방향성 규소강 제품의 제조 방법
JP2013530534A JP5864587B2 (ja) 2010-09-30 2011-04-14 高磁束密度の方向性ケイ素鋼製品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102989547A CN102443736B (zh) 2010-09-30 2010-09-30 一种高磁通密度取向硅钢产品的生产方法

Publications (2)

Publication Number Publication Date
CN102443736A CN102443736A (zh) 2012-05-09
CN102443736B true CN102443736B (zh) 2013-09-04

Family

ID=45891877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102989547A Active CN102443736B (zh) 2010-09-30 2010-09-30 一种高磁通密度取向硅钢产品的生产方法

Country Status (8)

Country Link
US (1) US20130233450A1 (zh)
EP (1) EP2623621B1 (zh)
JP (1) JP5864587B2 (zh)
KR (1) KR101451824B1 (zh)
CN (1) CN102443736B (zh)
MX (1) MX350000B (zh)
RU (1) RU2552562C2 (zh)
WO (1) WO2012041054A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695619B (zh) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
CN104726761A (zh) * 2013-12-23 2015-06-24 鞍钢股份有限公司 一种低成本高磁感取向硅钢的生产方法
CN104726670B (zh) * 2013-12-23 2017-07-21 鞍钢股份有限公司 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN103898409B (zh) * 2014-04-26 2016-08-17 河北联合大学 降低取向硅钢板坯加热温度的抑制剂及制备方法
CN104120233A (zh) * 2014-07-02 2014-10-29 东北大学 一次轧制制备取向高硅钢板的方法
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101700125B1 (ko) * 2015-12-23 2017-01-26 주식회사 포스코 방향성 전기강판 및 이의 제조방법
CN107881411B (zh) 2016-09-29 2019-12-31 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
CN109306198A (zh) * 2018-08-22 2019-02-05 武汉钢铁有限公司 用于改善高磁感取向硅钢硅酸镁底层质量的涂液及其制备方法
CN110055393B (zh) * 2019-04-28 2021-01-12 首钢智新迁安电磁材料有限公司 一种薄规格低温高磁感取向硅钢带生产方法
CN110218853B (zh) * 2019-06-26 2020-11-24 武汉钢铁有限公司 制备低温高磁感取向硅钢的工艺方法
CN112391512B (zh) * 2019-08-13 2022-03-18 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN111020140A (zh) * 2019-12-17 2020-04-17 无锡晶龙华特电工有限公司 一种磁性优良取向硅钢氧化镁退火隔离剂及其涂覆工艺
WO2023090986A1 (en) * 2021-11-16 2023-05-25 Māris KESNERS Steel surface decarburizing method for finishing the surface of steel parts with smoothing
EP4273280A1 (en) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
CN117363963A (zh) * 2022-06-30 2024-01-09 宝山钢铁股份有限公司 一种取向硅钢及其制造方法
CN115449741B (zh) * 2022-09-20 2023-11-24 武汉钢铁有限公司 一种基于薄板坯连铸连轧生产高磁感取向硅钢及方法
CN116004970B (zh) * 2023-01-04 2023-09-22 安庆新普电气设备有限公司 一种提高取向硅钢高温退火温度均匀性的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278872A (zh) * 1997-11-12 2001-01-03 Ebg电磁材料股份有限公司 用退火隔离剂涂覆电炉钢带的方法
CN1978707A (zh) * 2005-11-29 2007-06-13 宝山钢铁股份有限公司 一种具有良好底层的低温加热生产取向硅钢的方法
CN101748257A (zh) * 2008-12-12 2010-06-23 鞍钢股份有限公司 一种取向硅钢的生产方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171994A (en) * 1975-02-13 1979-10-23 Allegheny Ludlum Industries, Inc. Use of nitrogen-bearing base coatings in the manufacture of high permeability silicon steel
AR208355A1 (es) * 1975-02-13 1976-12-20 Allegheny Ludlum Ind Inc Procedimiento para producir acero electromagnetico al silico
US4010050A (en) * 1975-09-08 1977-03-01 Allegheny Ludlum Industries, Inc. Processing for aluminum nitride inhibited oriented silicon steel
SU1652362A1 (ru) * 1988-09-19 1991-05-30 Новолипецкий металлургический комбинат Способ производства анизотропной электротехнической стали
JPH0625747A (ja) * 1992-07-13 1994-02-01 Nippon Steel Corp 薄手高磁束密度一方向性電磁鋼板の製造方法
RU2048543C1 (ru) * 1992-12-21 1995-11-20 Верх-Исетский металлургический завод Способ производства электротехнической анизотропной стали
JPH06192732A (ja) * 1992-12-24 1994-07-12 Kawasaki Steel Corp 磁気特性に優れた一方向性電磁鋼板の製造方法
RU2089626C1 (ru) * 1994-04-20 1997-09-10 Научно-производственное предприятие "Эста" Способ производства текстурированной электротехнической стали
JP3357578B2 (ja) * 1997-07-25 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い方向性電磁鋼板及びその製造方法
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP2000119752A (ja) * 1998-10-19 2000-04-25 Kawasaki Steel Corp 一方向性電磁鋼板の製造方法
JP2000129355A (ja) * 1998-10-29 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP3873489B2 (ja) * 1998-11-10 2007-01-24 Jfeスチール株式会社 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法
RU2199594C1 (ru) * 2002-06-25 2003-02-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали
JP4123847B2 (ja) * 2002-07-09 2008-07-23 Jfeスチール株式会社 方向性珪素鋼板
JP4265400B2 (ja) * 2003-04-25 2009-05-20 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
EP1679386B1 (en) * 2003-10-06 2019-12-11 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP4593317B2 (ja) * 2005-03-02 2010-12-08 新日本製鐵株式会社 磁気特性が優れた方向性電磁鋼板の製造方法
JP4823719B2 (ja) * 2006-03-07 2011-11-24 新日本製鐵株式会社 磁気特性が極めて優れた方向性電磁鋼板の製造方法
CN100513060C (zh) * 2006-05-12 2009-07-15 武汉分享科工贸有限公司 无取向冷轧电工钢板制造方法
CN100567545C (zh) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278872A (zh) * 1997-11-12 2001-01-03 Ebg电磁材料股份有限公司 用退火隔离剂涂覆电炉钢带的方法
CN1978707A (zh) * 2005-11-29 2007-06-13 宝山钢铁股份有限公司 一种具有良好底层的低温加热生产取向硅钢的方法
CN101748257A (zh) * 2008-12-12 2010-06-23 鞍钢股份有限公司 一种取向硅钢的生产方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN101845582A (zh) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 一种高磁感取向硅钢产品的生产方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CN特开昭51-106622 1976.09.21
张颖等.Nb(C N)作为取向硅钢中抑制剂的可行性.《中国冶金》.2008
张颖等.Nb(C,N)作为取向硅钢中抑制剂的可行性.《中国冶金》.2008,第18卷(第7期),第14-18页. *

Also Published As

Publication number Publication date
MX350000B (es) 2017-08-23
KR101451824B1 (ko) 2014-10-16
RU2013114861A (ru) 2014-11-10
EP2623621B1 (en) 2019-03-13
US20130233450A1 (en) 2013-09-12
RU2552562C2 (ru) 2015-06-10
EP2623621A1 (en) 2013-08-07
JP2013545885A (ja) 2013-12-26
MX2013003367A (es) 2013-05-22
CN102443736A (zh) 2012-05-09
JP5864587B2 (ja) 2016-02-17
KR20130049823A (ko) 2013-05-14
WO2012041054A1 (zh) 2012-04-05
EP2623621A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
CN102443736B (zh) 一种高磁通密度取向硅钢产品的生产方法
CN102758127B (zh) 具有优异磁性能和良好底层的高磁感取向硅钢生产方法
CN101768697B (zh) 用一次冷轧法生产取向硅钢的方法
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
CN101845582B (zh) 一种高磁感取向硅钢产品的生产方法
CN101545072B (zh) 一种高电磁性能取向硅钢的生产方法
CN103255274B (zh) 一般取向硅钢由两次冷轧改为一次冷轧的生产方法
CN1258608C (zh) 冷轧无取向电工钢的制造方法
CN103805918B (zh) 一种高磁感取向硅钢及其生产方法
CN103509996B (zh) 抗拉强度400MPa级高强度碳锰结构钢的制造方法
CN103667874A (zh) 取向硅钢在高温退火期间缩短在炉时间的生产方法
CN110964969B (zh) 一种高强度热镀锌淬火配分钢及其生产方法
CN103882289A (zh) 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN102575314A (zh) 低铁损、高磁通密度、取向电工钢板及其制造方法
CN102041368A (zh) 一种表面质量优异的取向电工钢生产方法
CN104726795B (zh) 晶粒取向电工钢板及其制造方法
CN105950966B (zh) 采用固有抑制剂法和铸坯低温加热工艺生产Hi-B钢的方法
CN108754338A (zh) 一种高磁感低铁损取向硅钢的生产工艺
CN110714165B (zh) 一种320MPa级家电面板用冷轧薄板及其生产方法
CN103882293A (zh) 无取向电工钢及其生产方法
CN103834908B (zh) 一种提高取向硅钢电磁性能的生产方法
CN103031420B (zh) 一种磁性能优良的取向硅钢生产方法
CN101684535A (zh) 直接一次搪瓷用冷轧钢板及其制造方法
CN101824582B (zh) 采用多元抑制剂的取向电工钢板带及其生产方法
CN108165876B (zh) 一种改善低温渗氮取向硅钢表面质量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant