JPH06192732A - 磁気特性に優れた一方向性電磁鋼板の製造方法 - Google Patents

磁気特性に優れた一方向性電磁鋼板の製造方法

Info

Publication number
JPH06192732A
JPH06192732A JP34457092A JP34457092A JPH06192732A JP H06192732 A JPH06192732 A JP H06192732A JP 34457092 A JP34457092 A JP 34457092A JP 34457092 A JP34457092 A JP 34457092A JP H06192732 A JPH06192732 A JP H06192732A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
electrical steel
cold rolling
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34457092A
Other languages
English (en)
Inventor
Masaki Kono
正樹 河野
Katsuo Iwamoto
勝生 岩本
Ujihiro Nishiike
氏裕 西池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34457092A priority Critical patent/JPH06192732A/ja
Publication of JPH06192732A publication Critical patent/JPH06192732A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

(57)【要約】 【構成】 S及びSeのうち少なくとも1種をMnとともに
含み、かつ酸可溶性Al及びBのうち少なくとも1種をN
とともに含有する電磁鋼用熱延板に、少なくとも1回の
冷間圧延を施したのち、脱炭焼鈍次いで仕上焼鈍を施す
一連の工程によって一方向性電磁鋼板を製造するにあた
り、最終冷延後、脱炭焼鈍に先立ち、窒化能を有する物
質を鋼板表面に塗布する。 【効果】 サブスケールの影響をさほど被ることなくよ
り効果的に窒化を進行させることにより、磁気特性のよ
り一層の安定した向上が可能となる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、磁気特性に優れた一
方向性電磁鋼板の製造方法、なかでもインヒビターとし
てAlNないしはBNを含有する一方向性電磁鋼板の、該
インヒビターの適切なコントロールを簡便に行うことの
できる方法に関する。
【0002】
【従来の技術】一方向性電磁鋼板は、主として変圧器、
発電機その他の電気機器の鉄心材料として用いられ、磁
気特性として励磁特性及び鉄損特性が良好な鋼板が要求
されている。一方向性電磁鋼板は、二次再結晶現象を利
用して圧延面に{110}面、圧延方向に〈001〉軸
が揃う、いわゆるゴス方位を有する結晶粒を発達させた
ものである。この一方向性電磁鋼板のなかでも、磁気特
性の優れた鋼板を得るための方法としては、上記ゴス方
位結晶粒の集積度を高めることや、二次結晶粒径を小さ
くすることが挙げられる。
【0003】ここにおいて、ゴス方位への集積度を高め
る方法としては、例えば特公昭40-15644号公報に記載さ
れているようなAl含有素材に対する最終強冷延法や特開
昭52-12610号公報に記載さているようなB含有素材から
製造する方法などが知られている。AlやBは、AlN,B
N等の窒化物として鋼中に微細析出させて、仕上焼鈍時
に、ゴス方位以外の一次再結晶粒の成長を抑制する、い
わゆるインヒビターとして利用するのであるが、仕上焼
鈍時に、経済的観点から多用される不活性ガスとしての
N2の影響を受け易く、鋼板表面近傍のインヒビターが過
不足状態になって、最終的には製品の磁気特性にも変動
が生じてしまうという問題がある。この問題点を解決す
るためには、鋼中のインヒビターとしての窒化物のコン
トロールが不可避となる。
【0004】そこで、特開平1-168817 号公報には、最
終仕上焼鈍時に先立って塗布する焼鈍分離剤中に窒化能
を有する窒化物を複合混入させる方法が開示されてい
る。しかしながら、この方法は、窒化物による表面窒化
を百数十トンといった巻きコイル状態で行うために、鋼
板の層間雰囲気が均一にコントロールしにくく、たとえ
最終仕上焼鈍時の雰囲気を微妙にコントロールしたとし
ても、結局磁気特性が変動し易いという問題点がある。
【0005】一方最終冷延板後から仕上焼鈍の二次再結
晶開始までの昇温過程段階の間に鋼板の窒化処理を行う
方法として、特開平1-230721 号公報には窒化能のある
気体例えばアンモニアガスを、雰囲気ガス中に含有させ
る方法が開示されている。しかしこの方法は、Ti及びB
の複合添加が必須とされ、さらに脱炭焼鈍終了後に窒化
を行うため、この脱炭焼鈍時に生じるサブスケールをコ
ントロールして窒化を容易にする必要が生じる。このサ
ブスケールのコントロールが工程的に容易でなく、脱炭
とサブスケールを同時にコントロールするというように
工程が複雑化する問題点を有していた。
【0006】
【発明が解決しようとする課題】この発明は、上記の問
題点を有利に解決するもので、インヒビターとしてAlN
ないしはBNを含有する一方向性電磁鋼板において、該
インヒビターの適切なコントロールを簡便な手法で可能
にして、磁気特性の優れた鋼板を製造することのできる
方法を提案することを目的とする。
【0007】
【課題を解決するための手段】さて発明者らは、窒化を
脱炭時のサブスケールの影響を受けることなしに可能と
し、しかも最終仕上焼鈍時での雰囲気の微妙な雰囲気コ
ントロールが不必要な方法について鋭意検討した。その
結果、窒化能を有する物質を最終冷延後の鋼板表面に塗
布することが特に有利であることを発見した。
【0008】また、かかる窒化能を有する物質を最終冷
延後の鋼板表面に塗布する際に、Sn、Sb、Pb及びBi並び
にこれらの元素を含有する物質のうちから選んだ少なく
とも1種を共に塗布することが、磁気特性を安定させる
ために好ましいことも見いだした。この発明は、上記知
見に立脚するものである。
【0009】すなわちこの発明は、S及びSeのうち少な
くとも1種をMnとともに含み、かつ酸可溶性Al及びBの
うち少なくとも1種をNとともに含有する電磁鋼用熱延
板に、少なくとも1回の冷間圧延を施したのち、脱炭焼
鈍次いで仕上焼鈍を施す一連の工程によって一方向性電
磁鋼板を製造するにあたり、最終冷延後、脱炭焼鈍に先
立ち、窒化能を有する物質を鋼板表面に塗布することを
特徴とする磁気特性に優れた一方向性電磁鋼板の製造方
法(第1発明)である。
【0010】またこの発明は、S及びSeのうち少なくと
も1種をMnとともに含み、かつ酸可溶性Al及びBのうち
少なくとも1種をNとともに含有する電磁鋼用熱延板
に、少なくとも1回の冷間圧延を施したのち、脱炭焼鈍
次いで仕上焼鈍を施す一連の工程によって一方向性電磁
鋼板を製造するにあたり、最終冷延後、脱炭焼鈍に先立
ち、窒化能を有する物質とSn、Sb、Pb及びBi並びにこれ
らの元素を含有する物質のうちから選んだ少なくとも1
種とを鋼板表面に塗布することを特徴とする磁気特性に
優れた一方向性電磁鋼板の製造方法(第2発明)であ
る。
【0011】ここにおいて、窒化能を有する物質として
は、窒化物又はアンモニウム化合物が好適であり、磁気
特性を顕著に向上させることができる。
【0012】
【作用】この発明の出発材である電磁鋼板用熱延板素材
は、窒化物系インヒビター形成成分として、Al及びBの
1種又は2種をNとともに含有し、さらに、この窒化物
系インヒビターだけだと磁気特性の不安定性が増すた
め、S、Seのうちの1種又は2種を、MnS,MnSeを形成
するためのMnとともに含有するものである。
【0013】出発材の代表的な成分組成の一例として
は、C:0.02〜0.06wt%、Si:2.5 〜4.0 wt%及びMn:
0.02〜0.20wt%を含み、かつS, Seのうちから少なくと
も1種をそれぞれS:0.005 〜0.05wt%、Se:0.005 〜
0.05wt%の範囲で含有し、さらにN:0.002 〜0.010 wt
%並びに酸可溶Al:0.010 〜0.065 wt%及びB:0.0005
〜0.0045wt%のうち少なくとも1種を含有するものであ
る。
【0014】Cは、熱間圧延後の結晶粒を微細化するた
めに含有させるが、0.02wt%程度に満たないと熱間圧延
時の結晶粒を微細化する効果がなく、一方0.06wt%程度
を超えると、後工程での脱炭が不充分になる不都合を生
じるので0.02〜0.06wt%程度が好ましい。Siは、冷延歩
留まりをさほど損なうことなく十分に低い鉄損を得るた
めに含有させるが、2.5 wt%程度に満たないと十分な鉄
損特性が得られす、一方4.0 wt%程度を超えると冷延歩
留まりが劣化するので2.5 〜4.0 wt%程度が望ましい。
Mnは、MnS,MnSeといったインヒビターの結晶粒界への
偏析状態あるいは析出物の分散状態を好適にするため含
有させる。Mn量が0.02wt%程度に満たないとインヒビタ
ーとしての分散状態が不充分となる不利があり、一方0.
20wt%程度を超えると析出物が粗大化し、インヒビター
効果を著しく低減するという不都合を生じるため、0.02
〜0.20wt%程度が好ましい。
【0015】さらにS,Seは、結晶粒界に偏析するかあ
るいは主にMnと結合した析出物となって結晶粒界の移動
を抑制するインヒビターとして作用させるために一方ま
たは双方を含有させる。S量又はSe量がいずれも0.005
wt%程度に満たないと、いずれもインヒビターとしての
分散状態が不充分となる不利があり、一方S量又はSe量
がいずれも0.05wt%程度を超えると、析出物が粗大化
し、インヒビター効果を著しく低減するという不都合が
あるのでS:0.005 〜0.05wt%程度、Se:0.005〜0.05w
t%程度とするのが好ましい。
【0016】酸可溶性Al及びBは、前述の如く窒化物系
析出物を形成してやはりインヒビターとして作用させる
ために一方または双方を含有させるが、酸可溶Al量が0.
010wt%程度に満たないとインヒビター形成元素として
の役割が不充分となる問題があり、一方0.065 wt%程度
を超えるとインヒビターが粗大化し、インヒビター効果
を著しく低減するという問題があるので0.010 〜0.065
wt%程度が好ましく、同様にB量が0.0005wt%程度に満
たないとインヒビター形成元素としての役割が不充分と
なる問題があり、一方0.0045wt%程度を超えるとインヒ
ビターが粗大化し、インヒビター効果を著しく低減する
という問題があるのでB:0.0005〜0.0045wt%程度とす
るのが望ましい。
【0017】Nは、上記AlNないしはBNのインヒビタ
ーの結晶粒界への偏析状態あるいは析出物の分散状態を
好適にするために含有させる。N量が0.002 wt%程度に
満たないと析出分散が効果的でないという問題があり、
一方0.010 wt%程度をを超えるとブリスターが発生する
ため、0.002 〜0.010 wt%程度とするのが好ましい。
【0018】次に上記製造工程について説明すると、製
鋼工程、熱延工程には、特別な制約はなく、公知の方法
を適用すればよい。熱延板焼鈍は、必要に応じて750 〜
1100℃の範囲で10秒〜10分間施せばよい。焼鈍後の冷却
過程においては、400 ℃までの間を10℃/s以上で急冷す
るのが望ましい。その後、1回以上の冷間圧延によっ
て、製品板厚に仕上げるが、最終の冷間圧延は、81〜95
%の圧下率とするのが望ましい。冷延圧延を2回以上行
う場合の中間焼鈍についても750 〜1100℃の範囲で10秒
〜10分間施せばよい。焼鈍後の冷却過程においては、40
0 ℃までの間を10℃/s以上で急冷するのが望ましい。
【0019】その後公知の方法で脱脂し、次いで、鋼板
に窒化能を有する物質を塗布することがこの発明の特徴
である。窒化能を有する物資としては、その後の脱炭焼
鈍時の熱処理にて、分解又は酸化することにより窒素化
合物が生成する物質であればよい。特に効果的なのは、
窒化物とアンモニウム化合物である。
【0020】窒化物として好適なのは、BN,VN、NbN 、
Nb2N、MnN 、FeN 、Fe2N4 、CaN 、AlN 、Si3N4 等であ
り、アンモニウム化合物として好適なのは、NH4CH3COO
、 (NH4)2CO3・H2O 、 NH4Cl、(NH4)2 S、(NH4)2SO4
等である。
【0021】このような窒化物は、酸化物に比較して脱
炭焼鈍時の高温酸化性雰囲気にて不安定で、分解や、酸
化が進行しやすい。詳細な機構は不明であるが、その際
に発生するNが鋼板表面に吸着、拡散して窒化が可能に
なると考えられる。また、アンモニウム化合物は、100
〜200 ℃の低温で分解しやすく、その際に発生するアン
モニアが鋼板に付着して窒化が容易に行われるのであ
る。
【0022】上述した窒化能を有する物質の塗布方法
は、スプレー法、滴下法、浸漬塗布法等の従来公知の各
方法を利用することができる。塗布は、鋼板に対して均
一に行うこともできるし、局部的に塗布することによ
り、Nの含有量を局部的に変化させることも可能であ
る。塗布量は、後述するとおり脱炭焼鈍時の脱炭量に依
存するわけであるが、窒化能を有する物質の種類によ
り、適量が決定される。
【0023】かくして、窒化能を有する物質の塗布を適
量で行うことにより、脱炭焼鈍時において、脱炭を抑制
することなく窒化が可能である。脱炭促進のためには、
高露点雰囲気を必要とするが、この雰囲気は窒化物の分
解、酸化にも好都合で、窒化のための特別な雰囲気コン
トロールは必要とせず、現状のプロセスを利用できる分
だけ、工程が簡略化できる利点も有する。さらに、この
高露点雰囲気は、アンモニウム化合物の分解にも何ら悪
影響を及ぼさない。したがってサブスケールの特別なコ
ントロールなく窒化が可能となる。その理由についても
詳細は不明であるが、窒化は、脱炭の開始する600 ℃近
傍以下で進行し始めるため、脱炭及びサブスケール形成
には影響を与えないものと考えられる。
【0024】ところで、窒化能を有する物質の塗布にあ
たっては、他の作用効果を有する物質を混合させて塗布
してもよい。
【0025】第2発明においては、窒化能を有する物質
とともにSn、Pb、Sb及びBiならびにこれら元素を含有す
る物質のうちから選んだ少なくとも1種を塗布する。こ
れらSn、Pb、Sb及びBiならびにこれら元素を含有する物
質は、酸化を防止するためのもので、サブスケールの形
成を抑制する効果があり、窒化能を有する物質の、鋼中
への窒化をより効果的にする作用を持つ。Sn、Pb、Sb及
びBiならびにこれら元素を含有する物質としては、例え
ば、NaBiO3、Bi(NO3)3、PbO 、SbO5等がある。塗布は、
窒化能を有する物質と混合して行ってもよいし、最初に
これらの物質を塗布したのち、窒化能を有する物質を塗
布してもよい。
【0026】Sn、Pb、Sb及びBiならびにこれら元素を含
有する物質の塗布量は、鋼板の種類、窒化能を有する物
質の種類、脱炭条件等に大きく依存するため、限定され
るものではなく、適宜用いられる。Sn、Pb、Sb及びBiな
らびにこれら元素を含有する物質の作用については詳細
は明らかでないが、これらの物質の塗布により、サブス
ケール生成に起因する窒化のばらつきが抑制される。こ
のことが磁気特性の安定化に大きく寄与する。
【0027】以上述べた窒化能を有する物質、必要に応
じてさらにSn、Pb、Sb及びBiならびにこれら元素を含有
する物質を塗布後の鋼板には、次いで700 〜900 ℃の水
蒸気を含んだ水素雰囲気中で脱炭焼鈍を施す。この処理
により脱炭する一方で鋼中にNが浸窒する。なお、この
脱炭焼鈍による脱炭量にて、前述の窒化能を有する物質
の塗布量が規制される。脱炭量は、脱炭焼鈍後の鋼中C
量が、0.005 wt%以下であることが望ましく、したがっ
て窒化能を有する物質の塗布量は、鋼中Cが0.005 wt%
を超えないような量にする必要がある。というのは、塗
布量があまりに多すぎると、脱炭が抑制されて十分に低
い鋼中C量にならないことがあるからである。この脱炭
抑制の程度は、塗布する物質の種類によって異なり、塗
布する物質毎に適宜決定される。一方、窒化能を有する
物質の塗布による脱炭焼鈍時の浸窒量の好適範囲は、20
〜200ppm程度である。
【0028】次いでMgO を主体とする焼鈍分離剤を鋼板
表面に塗布してから、800 〜1000℃の温度域で2次再結
晶焼鈍、引き続いて水素雰囲気中,1100〜1250℃の温度
域で純化焼鈍を施す。2次再結晶焼鈍時の雰囲気は特に
限定されない。その後、鋼板表面に残存する焼鈍分離剤
を除去した後、張力コーティングを施してから700 〜90
0 ℃の温度域で平坦化焼鈍を行い製品とする。
【0029】
【実施例】
実施例1 C:0.0057wt%、Si:3.20wt%、Mn:0.085 wt%、S:
0.028 wt%、sol.Al:0.025 wt%、N:0.0090wt%を含
有する組成になる板厚3mmの熱延板を、1次冷延により
板厚1.5 mmにまで圧延した後、1100℃,30秒の中間焼鈍
を施し、400 ℃までは冷却速度30℃/sで急冷し、次いで
再度冷間圧延を施して最終板厚0.23mmにまで仕上げた。
脱脂後、塗布物としてBN,AlN ,MnN ,VN,NbN を選択
し、該窒化物をそれぞれエチルアルコール中に適量分散
させ、表1に示す目付量(窒化物重量で規定)でロール
コーターにより該鋼板表面に塗布して乾燥させた。
【0030】
【表1】
【0031】次いで、湿水素中で830 ℃、3分間の脱炭
焼鈍を施した後、MgO を主成分とする焼鈍分離剤を塗
布、乾燥させてから、H2雰囲気中で1200℃、10h の仕上
焼鈍を施して製品とした。なお比較のために、脱炭焼鈍
前に窒化物の塗布を行わない従来法に従う鋼板も得た。
かくして得られた製品の磁気特性と、脱炭時のNの増加
量を表1に併記する。なお、サブスケール性状は、5μ
m 以上のサブスケール層がある場合を良と判定した。ま
た、磁気特性は24枚でのエプスタイン試験により測定し
たものである。
【0032】表1から明らかなとおり、この発明に従
い、脱炭焼鈍に先立ち、窒化物を鋼板表面に塗布付着さ
せることにより、N量が脱炭焼鈍後に増加し、なおかつ
サブスケールも良好な脱炭焼鈍板が得られ、最終焼鈍後
の磁気特性が向上した。
【0033】実施例2 実施例1と同一の成分組成の熱延板を、実施例1と同一
の工程により最終冷延板厚0.23mmに仕上げて脱脂を行っ
た。次いでこの鋼板表面にアンモニウム化合物を塗布し
た。塗布要領は、アンモニウム化合物として(NH4)2S
O4 、NH4CH3COO 、(NH4)2CO3・H2O を選択し、これらの
アンモニウム化合物をそれぞれ水に0.15モル/リットル
溶解させた溶液を準備し、鋼板を直接この溶液中に1分
間浸漬させた後、ゴム製絞りロールを通過させ、次いで
乾燥させたものである。その後、実施例1と同一の工程
を経て製品を得た。なお比較のために、脱炭焼鈍前にア
ンモニウム化合物の塗布を行わない従来法に従う鋼板も
得た。かくして得られた製品の磁気特性及び脱炭時のN
の増加量を表2に示す。なお評価方法は実施例1と同様
である。
【0034】
【表2】
【0035】表2から明らかなとおり、この発明に従
い、脱炭焼鈍に先立ち、アンモニウム化合物を鋼板表面
に塗布付着させることにより、N量が脱炭焼鈍後に増加
し、なおかつサブスケールも良好な脱炭焼鈍板が得ら
れ、最終焼鈍後の磁気特性が向上した。
【0036】実施例3 C:0.0050wt%、Si:3.15wt%、Mn:0.025 wt%、S:
0.003 wt%、Se:0.012 wt%、B:0.0008wt%、N:0.
0085wt%を含有する組成になる板厚3mmの熱延板を、実
施例1と同一の工程により最終冷延板厚0.23mmに仕上げ
て脱脂を行った。次いで塗布物としてBN,(NH4)2SO4
選択し、塗布方法はそれぞれ実施例1,2と同様に行
い、鋼板に塗布後、乾燥させた。その後、実施例1,2
と同一の工程を経て製品を得た。なお比較のために、脱
炭焼鈍前に窒化能を有する物質の塗布を行わない従来法
に従う鋼板も得た。かくして得られた製品の磁気特性及
び脱炭時のNの増加量を表3に示す。なお評価方法は実
施例1,2と同様である。
【0037】
【表3】
【0038】表3から明らかなとおり、Se及びB含有鋼
においてもこの発明に従い、脱炭焼鈍に先立ち、窒化能
を有する物質を鋼板表面に塗布付着させることにより、
N量が脱炭焼鈍後に増加し、なおかつサブスケールも良
好な脱炭焼鈍板が得られ、最終焼鈍後の磁気特性が向上
した。
【0039】実施例4 C:0.0057wt%、Si:3.20wt%、Mn:0.085 wt%、S:
0.028 wt%、sol.Al:0.025 wt%、N:0.0090wt%を含
有する組成になる板厚3mmの熱延板を、1次冷延により
板厚1.5 mmにまで圧延した後、1100℃,30秒の中間焼鈍
を施し、400 ℃までは冷却速度30℃/sで急冷し、次いで
再度冷間圧延を施して最終板厚0.23mmにまで仕上げた。
脱脂後、窒化能を有する物質と、酸化防止剤とを混合し
た塗布物を選択して塗布した。この塗布物の一つはBNと
NaBiO3との混合物であり、もう一つは、(NH4)2SO4 とNa
BiO3との混合物である。BNとNaBiO3との混合物は、0.00
1モル/リットルのNaBiO3のエチルアルコール液中にBN
を分散させて、該混合物をロールコーターにてBN重量で
0.5 g/m2となるように鋼板表面に塗布し乾燥させた。ま
た(NH4)2SO4 とNaBiO3との混合物は、0.001 モル/リッ
トルのNaBiO3分散水中に(NH4)2SO4 を0.15モル/リット
ル溶かして、この混合物液中に鋼板を1分間浸漬しゴム
製絞りロールを通過させた後、乾燥させた。次いで、湿
水素中で830 ℃、3分間の脱炭焼鈍を施した後、MgO を
主成分とする焼鈍分離剤を塗布、乾燥させてから、H2
囲気中で1200℃、10h の仕上焼鈍を施して製品とした。
なお比較のために、脱炭焼鈍前に窒化物の塗布を行わな
い従来法に従う鋼板も得た。かくして得られた製品の磁
気特性と、脱炭時のNの増加量を表4に併記する。
【0040】
【表4】
【0041】表4から明らかなとおり、この発明に従
い、脱炭焼鈍に先立ち、窒化能を有する物質と酸化防止
剤との混合物を鋼板表面に塗布することにより、N量が
脱炭焼鈍後に増加し、なおかつサブスケールも良好な脱
炭焼鈍板が得られ、最終焼鈍後の磁気特性が向上した。
また、酸化防止剤を塗布しない適合例a,iとの対比に
より、脱炭焼鈍後のN量が増大していて、より一層浸窒
し、しかも磁気特性も向上してることがわかる。
【0042】
【発明の効果】この発明によれば、最終冷延後、脱炭焼
鈍に先立ち、窒化能を有する物質を鋼板表面に塗布する
ことから、サブスケールの影響をさほど被ることなくよ
り効果的に窒化を進行させることにより、磁気特性のよ
り一層の安定した向上が可能となった。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成5年1月6日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0029
【補正方法】変更
【補正内容】
【0029】
【実施例】 実施例1 C:0.057 wt%、Si:3.20wt%、Mn:0.085 wt%、S:
0.028 wt%、sol.Al:0.025 wt%、N:0.0090wt%を含
有する組成になる板厚3mmの熱延板を、1次冷延により
板厚1.5 mmにまで圧延した後、1100℃,30秒の中間焼鈍
を施し、400 ℃までは冷却速度30℃/sで急冷し、次いで
再度冷間圧延を施して最終板厚0.23mmにまで仕上げた。
脱脂後、塗布物としてBN,AlN ,MnN ,VN,NbN を選択
し、該窒化物をそれぞれエチルアルコール中に適量分散
させ、表1に示す目付量(窒化物重量で規定)でロール
コーターにより該鋼板表面に塗布して乾燥させた。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0039
【補正方法】変更
【補正内容】
【0039】実施例4 C:0.057 wt%、Si:3.20wt%、Mn:0.085 wt%、S:
0.028 wt%、sol.Al:0.025 wt%、N:0.0090wt%を含
有する組成になる板厚3mmの熱延板を、1次冷延により
板厚1.5 mmにまで圧延した後、1100℃,30秒の中間焼鈍
を施し、400 ℃までは冷却速度30℃/sで急冷し、次いで
再度冷間圧延を施して最終板厚0.23mmにまで仕上げた。
脱脂後、窒化能を有する物質と、酸化防止剤とを混合し
た塗布物を選択して塗布した。この塗布物の一つはBNと
NaBiO3との混合物であり、もう一つは、(NH4)2SO4 とNa
BiO3との混合物である。BNとNaBiO3との混合物は、0.00
1モル/リットルのNaBiO3のエチルアルコール液中にBN
を分散させて、該混合物をロールコーターにてBN重量で
0.5 g/m2となるように鋼板表面に塗布し乾燥させた。ま
た(NH4)2SO4 とNaBiO3との混合物は、0.001 モル/リッ
トルのNaBiO3分散水中に(NH4)2SO4 を0.15モル/リット
ル溶かして、この混合物液中に鋼板を1分間浸漬しゴム
製絞りロールを通過させた後、乾燥させた。次いで、湿
水素中で830 ℃、3分間の脱炭焼鈍を施した後、MgO を
主成分とする焼鈍分離剤を塗布、乾燥させてから、H2
囲気中で1200℃、10h の仕上焼鈍を施して製品とした。
なお比較のために、脱炭焼鈍前に窒化物の塗布を行わな
い従来法に従う鋼板も得た。かくして得られた製品の磁
気特性と、脱炭時のNの増加量を表4に併記する。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 S及びSeのうち少なくとも1種をMnとと
    もに含み、かつ酸可溶性Al及びBのうち少なくとも1種
    をNとともに含有する電磁鋼用熱延板に、少なくとも1
    回の冷間圧延を施したのち、脱炭焼鈍次いで仕上焼鈍を
    施す一連の工程によって一方向性電磁鋼板を製造するに
    あたり、 最終冷延後、脱炭焼鈍に先立ち、窒化能を有する物質を
    鋼板表面に塗布することを特徴とする磁気特性に優れた
    一方向性電磁鋼板の製造方法。
  2. 【請求項2】 S及びSeのうち少なくとも1種をMnとと
    もに含み、かつ酸可溶性Al及びBのうち少なくとも1種
    をNとともに含有する電磁鋼用熱延板に、少なくとも1
    回の冷間圧延を施したのち、脱炭焼鈍次いで仕上焼鈍を
    施す一連の工程によって一方向性電磁鋼板を製造するに
    あたり、 最終冷延後、脱炭焼鈍に先立ち、窒化能を有する物質と
    Sn、Sb、Pb及びBi並びにこれらの元素を含有する物質の
    うちから選んだ少なくとも1種とを鋼板表面に塗布する
    ことを特徴とする磁気特性に優れた一方向性電磁鋼板の
    製造方法。
  3. 【請求項3】 窒化能を有する物質が、窒化物である請
    求項1又は2記載の磁気特性に優れた一方向性電磁鋼板
    の製造方法。
  4. 【請求項4】 窒化能を有する物質が、アンモニウム化
    合物である請求項1又は2記載の磁気特性に優れた一方
    向性電磁鋼板の製造方法。
JP34457092A 1992-12-24 1992-12-24 磁気特性に優れた一方向性電磁鋼板の製造方法 Pending JPH06192732A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34457092A JPH06192732A (ja) 1992-12-24 1992-12-24 磁気特性に優れた一方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34457092A JPH06192732A (ja) 1992-12-24 1992-12-24 磁気特性に優れた一方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
JPH06192732A true JPH06192732A (ja) 1994-07-12

Family

ID=18370297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34457092A Pending JPH06192732A (ja) 1992-12-24 1992-12-24 磁気特性に優れた一方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPH06192732A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522942A (ja) * 1997-11-12 2001-11-20 エーベーゲー ゲゼルシャフト フュル エレクトロマグネティシェ ベルクストッフェ ミット ベシュレンクテル ハフツング 電磁鋼板に焼鈍分離剤を被覆する方法
JP2013545885A (ja) * 2010-09-30 2013-12-26 宝山鋼鉄股▲分▼有限公司 高磁束密度の方向性ケイ素鋼製品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522942A (ja) * 1997-11-12 2001-11-20 エーベーゲー ゲゼルシャフト フュル エレクトロマグネティシェ ベルクストッフェ ミット ベシュレンクテル ハフツング 電磁鋼板に焼鈍分離剤を被覆する方法
JP2013545885A (ja) * 2010-09-30 2013-12-26 宝山鋼鉄股▲分▼有限公司 高磁束密度の方向性ケイ素鋼製品の製造方法

Similar Documents

Publication Publication Date Title
US4692193A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
KR100259400B1 (ko) 코일 전장에 걸쳐 자기특성이 우수한 방향성 규소강판의 제조방법
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JP3359449B2 (ja) 超高磁束密度一方向性電磁鋼板の製造方法
KR940008932B1 (ko) 자기특성과 피막특성이 개선된 일방향성 전자강판의 제조방법
JP2650817B2 (ja) 被膜特性及び磁気特性に優れた一方向性けい素鋼板の製造方法
KR101408230B1 (ko) 자성과 생산성이 우수한 방향성 전기강판의 제조방법
JP2603130B2 (ja) 高磁束密度方向性電磁鋼板の製造法
EP4273277A1 (en) Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
JP3483457B2 (ja) グラス皮膜と磁気特性に極めて優れた方向性電磁鋼板の製造方法
JPH06192732A (ja) 磁気特性に優れた一方向性電磁鋼板の製造方法
JP4604827B2 (ja) 一方向性電磁鋼板の製造方法
JPH1136018A (ja) グラス皮膜と磁気特性の極めて優れる方向性電磁鋼板の製造方法
JPH0832928B2 (ja) 磁気特性およびグラス皮膜特性に優れた一方向性電磁鋼板の製造方法
RU2805838C1 (ru) Способ производства листа анизотропной электротехнической стали
JP2000273550A (ja) グラス被膜及び磁気特性の優れる方向性電磁鋼板の製造方法
JPH06172939A (ja) 高磁束密度低鉄損一方向性電磁鋼板およびその製造法
KR101408231B1 (ko) 자기특성이 우수한 방향성 전기강판의 제조방법
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JPH06192736A (ja) 磁気特性の優れた方向性けい素鋼板の製造方法
JPH0949027A (ja) 表面性状の優れるグラス被膜を有さない方向性電磁鋼板の焼鈍分離剤及びそれを用いた方向性電磁鋼板の製造方法
JPH11269543A (ja) 方向性電磁鋼板の製造方法
US20240240292A1 (en) Method of producing grain-oriented electrical steel sheet and annealing separator used for same
KR101408229B1 (ko) 철손이 낮고 자속밀도가 높은 저온가열 방향성 전기강판제조방법
JPH10158744A (ja) 表面性状および磁気特性の優れた方向性電磁鋼板の製造方法