CN102350331A - 超声-水热耦合制备TiO2纳米管的方法 - Google Patents

超声-水热耦合制备TiO2纳米管的方法 Download PDF

Info

Publication number
CN102350331A
CN102350331A CN2011102411762A CN201110241176A CN102350331A CN 102350331 A CN102350331 A CN 102350331A CN 2011102411762 A CN2011102411762 A CN 2011102411762A CN 201110241176 A CN201110241176 A CN 201110241176A CN 102350331 A CN102350331 A CN 102350331A
Authority
CN
China
Prior art keywords
nanotube
tio
ultrasonic
hydrothermal reaction
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102411762A
Other languages
English (en)
Other versions
CN102350331B (zh
Inventor
陈金媛
赖世强
王慧娟
魏秀珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN 201110241176 priority Critical patent/CN102350331B/zh
Publication of CN102350331A publication Critical patent/CN102350331A/zh
Application granted granted Critical
Publication of CN102350331B publication Critical patent/CN102350331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种超声-水热耦合制备TiO2纳米管的方法,所述的方法为:将钛酸丁酯或TiO2粉末与无水乙醇混合,再加入硝酸水溶液中,搅拌1~2h,获得溶胶,再将溶胶加入NaOH水溶液中搅拌混合,获得混合液;将混合液加入上述水热反应釜内,超声波发生器通过超声波换能器作用于水热反应釜,在5~25KHz反应20~60min,再在100~280℃下反应24~48h,反应结束,反应液经后处理制得所述的TiO2纳米管;本发明方法将超声和水热相耦合,在简单易控的工艺条件下制备出粗细均匀,管壁厚度清晰可见的TiO2纳米管,并有效改善了TiO2团聚现象,提高了TiO2纳米管光催化活性,反应时间缩短,物质分散更均匀,反应更充分;具有较好的应用前景。

Description

超声-水热耦合制备TiO2纳米管的方法
(一)技术领域
本发明涉及一种纳米管材料的制备方法,特别涉及一种超声-水热耦合制备TiO2纳米管的方法。
(二)背景技术
纳米材料是20世纪80年代中期发展起来的一种具有全新结构的材料,粒径为1~100nm,相当于普通钛白粉粒径的1/10。具有无毒、最佳的不透明性、最佳白度和光亮度,介电系数高、折射率高,表面能大,易于吸附有机物等特性。纳米粒子因其具有小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应,故具有不同于常规固体的光、热、电、磁等特性。
在众多的半导体光催化剂中,TiO2因其化学性质稳定、难溶、无毒、成本低而成为广泛应用的光催化剂。目前,TiO2纳米管的制备方法有模板合成法、电化学阳极氧化法、水热合成法等。模板合成法是指把纳米结构基元组装到模板孔而制备纳米管或纳米线的一类方法,该方法可以制备出不同长度、管径和管壁厚度的纳米管,但难以合成直径较小的纳米管,另外在除去模板的过程中纳米材料表面甚至结构可能会受到破坏,制备过程及工艺复杂。电化学阳极氧化法是采用纯钛板与惰性电极组成的两电极体系,恒电位下金属钛在电解液体系中经阳极氧化而获得纳米管阵列的电化学方法。用于精确构建特定的纳米结构材料,该方法制备出的TiO2纳米管为单层壁管,管径10~150nm,比表面积较高。水热合成法是指在密封的压力容器(高压釜)内,采用水溶液作为反应介质,通过将反应体系加热至临界温度,在反应体系中产生高温、高压环境,并在水热条件下前驱物得到充分的溶解,达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶。水热合成法所得的产物粉末细、纯度高、晶型好,无需高温煅烧,晶粒物相和形貌易控制,工艺较为简单。合成的纳米级的TiO2具有量子尺寸效应(带隙边蓝移)和表面效应(高比表面积),在紫外光条件下有较高的光催化活性。
水热法的主要装置是水热反应釜。水热反应釜是在温度为100~1000℃、压力为1MPa~1GPa的条件下利用水溶液中物质化学反应进行合成的一种装置。在亚临界和超临界水热条件下,由于反应处于分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。又由于水热反应的均相成核及非均相成核机理与固相反应的扩散机制不同,因而可以创造出其它方法无法制备的新化合物和新材料。这种具有特殊光、电、磁性质及催化性能的无机材料合成、制备与组装以及结构与性能之间关系研究的突破,导致新物种和新材料的出现,甚至会带动新的产业革命。
(三)发明内容
本发明目的是提供一种超声-水热耦合制备TiO2纳米管的方法,在简单易控的工艺条件下制备出粗细均匀,管壁厚度清晰可见的TiO2纳米管,并有效改善了TiO2团聚现象,提高了TiO2纳米管光催化活性。
本发明采用的技术方案是:
一种超声-水热耦合制备TiO2纳米管的方法,所述的方法为:(1)所述的超声-水热耦合制备TiO2纳米管的装置由电热恒温控制箱、水热反应釜系统和超声波发生器组成,所述的水热反应釜系统由水热反应釜、超声波变幅杆和超声波换能器组成,所述的电热恒温控制箱上方有铁架支撑台,所述超声波换能器固定于铁架支撑台上,所述超声波换能器顶端通过线路与超声波发生器连接,所述超声波换能器底端与超声波变幅杆通过螺纹旋钮连接,所述超声波变幅杆通过螺纹旋钮与水热反应釜连接,所述水热反应釜悬挂于电热恒温控制箱内;(2)将钛酸丁酯或TiO2粉末与无水乙醇混合,再加入硝酸水溶液中,搅拌1~2h,获得溶胶,再将溶胶或TiO2粉末加入NaOH水溶液中搅拌混合,获得混合液;(2)将步骤(1)获得的混合液加入上述水热反应釜内,超声波发生器通过超声波换能器作用于水热反应釜,在5~25KHz反应20~60min,再在100~280℃下反应24~48h,反应结束,反应液经后处理制得所述的TiO2纳米管。
所述的步骤(2)中钛酸丁酯与无水乙醇、硝酸水溶液、NaOH水溶液体积比为1∶2.5~5.5∶1.5~6∶4~7,所述硝酸水溶液的摩尔浓度为0.1~4mol/L、NaOH水溶液摩尔浓度为8~12mol/L,所述TiO2粉末与NaOH水溶液质量比为1∶40~60。
所述的步骤(3)的反应条件优选在10~20KHz反应20~40min。
所述的步骤(3)中所述的后处理方法为:反应结束,反应液自然冷却至室温,用物质的量浓度0.01~1mol/L盐酸溶液洗涤至pH值为3~5,再用蒸馏水洗涤至pH值为7.0,过滤,滤饼在60~80℃烘干,制得所述的TiO2纳米管。
通常本发明所制得的TiO2纳米管管长为50~200nm。
本发明所述的TiO2纳米管在光催化降解活性艳红X-3B中的应用,所述的应用为:采用活性艳红X-3B模拟染料废水,利用自行设计的三相类流化床加压光催化反应器(见ZL 200810163497)研究光催化降解效果:试验配置0.25g/L的活性艳红溶液,加入本发明TiO2纳米管搅拌,置于反应器中吸附20min,然后以紫外灯(UV365-250W)为光源,降解染料,每隔10min取样,用紫外可见分光光度计(TU-1810,北京普希通仪器公司)测其505nm处吸光度值,重复试验取其平均值,根据光照前后的吸光度值的差异,计算光催化降解率。
本发明所述的水热反应釜系统设有1~6个,每个水热反应釜系统中的超声波换能器各自独立与同一台超声波发生器连接。
优选所述的水热反应釜系统有2个,并各自独立与同一台超声波发生器连接。
所述的变幅杆一端悬置于电热恒温控制箱内通过螺纹旋钮与反应釜连接,另一端伸出电热恒温控制箱外通过螺纹旋钮与超声波换能器连接。
当超声波发生器处于工作状态时,换能器将超声能量通过变幅杆传递至反应釜液体内部,使液体内部运动的粒子受到空化冲击,在固液交界面上急速形成气体空泡,继而迅速发展和溃灭,空泡溃灭时产生的脉冲作用加大了分子间的振动,破坏分子间作用力,生成新物质并产生振动能量,使反应物质充分混合,分散均匀,以达到充分反应的目的。超声频率可以达到5KHz~25KHz;电热恒温控制箱控制反应所需的温度100℃~280℃。水热反应釜内的物质在高温高压、强碱性的条件下进行化学反应,随着时间的延长逐渐生成纳米管。
与现有技术相比,本发明的有益效果主要体现在:本发明制备方法简单,所制备TiO2纳米管粗细均匀,管壁厚度清晰可见,并有效改善了TiO2团聚现象,提高了TiO2纳米管光催化活性。
(四)附图说明
图1为超声-水热耦合制备TiO2纳米管装置图,1-电热恒温控制箱,2-水热反应釜,3-超声波换能器,4-铁架支撑台,5-线路,6-超声波发生器,7-超声波变幅杆,8-水热反应釜系统;
图2为水热反应釜系统结构示意图,3-超声波换能器,7-超声波变幅杆,2-水热反应釜;
图3为实施例1制备的TiO2纳米管透射电镜(TEM)图;
图4为实施例2制备的TiO2纳米管TEM图;
图5为实施例3制备的TiO2纳米管TEM图;
图6为实施例4制备的TiO2纳米管BET图;
图7为实施例5制备的TiO2纳米管X射线衍射(XRD)图;
图8为实施例6制备的TiO2纳米管降解活性艳红X-3B所得的光催化降解率随时间变化曲线图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1
(1)所述的超声-水热耦合制备TiO2纳米管的装置由电热恒温控制箱1、水热反应釜系统8和超声波发生器6组成,所述的水热反应釜系统8由水热反应釜2、超声波变幅杆7和超声波换能器3组成,所述的电热恒温控制箱1上方有铁架支撑台4,所述超声波换能器3固定于铁架支撑台4上,所述超声波换能器3顶端通过线路5与超声波发生器6连接,所述超声波换能器3底端与超声波变幅杆7通过螺纹旋钮连接,所述超声波变幅杆7通过螺纹旋钮与水热反应釜2连接,所述水热反应釜2悬挂于电热恒温控制箱1内,如图1-2所示;(2)将30ml无水乙醇加入10ml钛酸丁酯中充分搅拌30min,形成透明的淡黄色溶液,再将溶液滴加到20ml 1mol/L的硝酸水溶液中,搅拌1h,获得透明溶胶,再将溶胶缓慢加入50ml 10mol/LNaOH水溶液中,剧烈搅拌混合,获得混合液;(3)将步骤(2)获得的混合液加入上述水热反应釜2内,超声波发生器6通过超声波换能器3作用于水热反应釜2,在5KHz条件下反应20min,再在100℃下反应24h,反应结束,反应液自然冷却至室温,取出反应液,用0.01mol/L HCl溶液洗涤至pH值3,再用蒸馏水洗涤至pH值7,过滤,滤饼60℃烘干,获得TiO2纳米管,纳米管管长50nm。透射电镜图(TEM)如图3所示,可以看出纳米管粗细均匀,管壁厚度清晰可见。
实施例2
TiO2纳米管实验操作及装置同实施例1,将由钛酸丁酯获得的溶胶换成TiO2粉末2g(即市售的P25)作为前驱物,与50ml 10mol/LNaOH水溶液(110g),其他条件相同进行合成反应,得到具有清晰管状形貌的TiO2纳米管,纳米管管长200nm,透射电镜图如图4所示。
实施例3
TiO2纳米管实验操作及装置同实施例1,超声反应40min,100℃水热反应36h,获得TiO2纳米管,纳米管管长150nm,透射电镜如图5所示,其透射电镜形貌粗细均匀,管壁厚度清晰。
实施例4
TiO2纳米管实验操作及装置同实施例1,钛酸丁酯20ml,无水乙醇100ml,30ml 2mol/LHNO3水溶液中剧烈搅拌2h,100ml 12mol/L NaOH水溶液,超声反应1h,将电热恒温控制箱的温度控制在280℃,反应48h,80℃烘干,获得TiO2纳米管,纳米管管长120nm,其BET表征图见图6,得到纳米管的比表面积为484m2/g。
实施例5
TiO2纳米管实验操作及装置同实施例1,无水乙醇80ml,钛酸丁酯20ml,1mol/L的HNO3水溶液30ml,10mol/L的NaOH水溶液80ml,超声反应1h,将电热恒温控制箱的温度控制在200℃,反应36h,80℃烘干,获得TiO2纳米管,纳米管管长60nm,其X射线衍射(XRD)表征测试见图7,可以看到所得纳米管全部为锐钛矿。
实施例6
TiO2纳米管实验操作及装置同实施例1,无水乙醇80ml,钛酸丁酯25ml,4mol/L的HNO3水溶液40ml,剧烈搅拌90min,10mol/L的NaOH水溶液100ml,超声反应40min,将电热恒温控制箱的温度控制在120℃,反应36h,80℃烘干,得到TiO2纳米管,纳米管管长100nm。
以该TiO2纳米管为光催化剂在紫外光的照射下降解活性艳红X-3B,配置0.25g/L的活性艳红X-3B溶液,加入上述制备的TiO2纳米管搅拌,置于自行设计的三相类流化床加压光催化反应器(见ZL 200810163497)中吸附20min,然后以紫外灯(UV365-250W)为光源,降解染料,每隔10min取样,用紫外可见分光光度计(TU-1810,北京普希通仪器公司)测其505nm处吸光度值,重复试验取其平均值,根据光照前后的吸光度值的差异,计算光催化降解率,降解率变化如图8所示,反应1h后,其降解率即可达到96%。

Claims (5)

1.一种超声-水热耦合制备TiO2纳米管的方法,其特征在于所述的方法为:(1)所述的超声-水热耦合制备TiO2纳米管的装置由电热恒温控制箱、水热反应釜系统和超声波发生器组成,所述的水热反应釜系统由水热反应釜、超声波变幅杆和超声波换能器组成,所述的电热恒温控制箱上方有铁架支撑台,所述超声波换能器固定于铁架支撑台上,所述超声波换能器顶端通过线路与超声波发生器连接,所述超声波换能器底端与超声波变幅杆通过螺纹旋钮连接,所述超声波变幅杆通过螺纹旋钮与水热反应釜连接,所述水热反应釜悬挂于电热恒温控制箱内;(2)将钛酸丁脂与无水乙醇混合,再加入硝酸水溶液中,搅拌1~2h,获得溶胶,再将溶胶或TiO2粉末加入NaOH水溶液中搅拌混合,获得混合液;(3)将步骤(2)获得的混合液加入水热反应釜内,超声波5~25KHz反应20~60min,再在100~280℃下反应24~48h,反应结束,反应液经后处理制得所述的TiO2纳米管。
2.如权利要求1所述的超声-水热耦合制备TiO2纳米管的方法,其特征在于所述的步骤(2)中钛酸丁酯与无水乙醇、硝酸水溶液、NaOH水溶液体积比为1∶2.5~5.5∶1.5~6∶4~7,所述硝酸水溶液摩尔浓度为0.1~4mol/L、NaOH水溶液摩尔浓度为8~12mol/L,所述TiO2粉末与NaOH水溶液质量比为1∶40~60。
3.如权利要求1所述的超声-水热耦合制备TiO2纳米管的方法,其特征在于所述的步骤(3)中在10~20KHz反应20~40min。
4.如权利要求1所述的超声-水热耦合制备TiO2纳米管的方法,其特征在于所述的步骤(3)中所述的后处理方法为:反应结束,反应液自然冷却至室温,用摩尔浓度0.01~1mol/L盐酸溶液洗涤至pH值为3~5,再用蒸馏水洗涤至pH值为7.0,过滤,滤饼在60~80℃烘干,制得所述的TiO2纳米管。
5.如权利要求1所述的超声-水热耦合制备TiO2纳米管的方法,其特征在于所述的TiO2纳米管管长为50~200nm。
CN 201110241176 2011-08-22 2011-08-22 超声-水热耦合制备TiO2纳米管的方法 Active CN102350331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110241176 CN102350331B (zh) 2011-08-22 2011-08-22 超声-水热耦合制备TiO2纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110241176 CN102350331B (zh) 2011-08-22 2011-08-22 超声-水热耦合制备TiO2纳米管的方法

Publications (2)

Publication Number Publication Date
CN102350331A true CN102350331A (zh) 2012-02-15
CN102350331B CN102350331B (zh) 2013-04-17

Family

ID=45574039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110241176 Active CN102350331B (zh) 2011-08-22 2011-08-22 超声-水热耦合制备TiO2纳米管的方法

Country Status (1)

Country Link
CN (1) CN102350331B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674454A (zh) * 2012-06-18 2012-09-19 上海应用技术学院 一种利用离子液体一次焙烧制备TiO2纳米管的方法
CN103920452A (zh) * 2014-04-15 2014-07-16 盐城工学院 一种改性尖晶石型硫转移剂的制备方法
CN106824150A (zh) * 2017-03-08 2017-06-13 济南大学 小分子有机酸制备复相二氧化钛微球
CN109201037A (zh) * 2017-07-05 2019-01-15 中国石化扬子石油化工有限公司 一种钒钾掺杂的钛纳米管催化剂及其制备方法和应用
CN112156764A (zh) * 2020-09-15 2021-01-01 凯盛石墨碳材料有限公司 一种纳米TiO2/改性氧化石墨烯/有机膨润土复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528672A (zh) * 2003-09-26 2004-09-15 清华大学 一种钛氧化物纳米管及其制备方法
CN101633491A (zh) * 2009-08-13 2010-01-27 重庆大学 一种制备氧化钛纳米管的工艺
WO2010084645A1 (ja) * 2009-01-20 2010-07-29 財団法人神奈川科学技術アカデミー ナノチューブ構造を有する固体酸触媒
CN101857268A (zh) * 2010-06-29 2010-10-13 江苏大学 一种TiO2纳米管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528672A (zh) * 2003-09-26 2004-09-15 清华大学 一种钛氧化物纳米管及其制备方法
WO2010084645A1 (ja) * 2009-01-20 2010-07-29 財団法人神奈川科学技術アカデミー ナノチューブ構造を有する固体酸触媒
CN101633491A (zh) * 2009-08-13 2010-01-27 重庆大学 一种制备氧化钛纳米管的工艺
CN101857268A (zh) * 2010-06-29 2010-10-13 江苏大学 一种TiO2纳米管的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674454A (zh) * 2012-06-18 2012-09-19 上海应用技术学院 一种利用离子液体一次焙烧制备TiO2纳米管的方法
CN103920452A (zh) * 2014-04-15 2014-07-16 盐城工学院 一种改性尖晶石型硫转移剂的制备方法
CN103920452B (zh) * 2014-04-15 2016-04-20 盐城工学院 一种改性尖晶石型硫转移剂的制备方法
CN106824150A (zh) * 2017-03-08 2017-06-13 济南大学 小分子有机酸制备复相二氧化钛微球
CN109201037A (zh) * 2017-07-05 2019-01-15 中国石化扬子石油化工有限公司 一种钒钾掺杂的钛纳米管催化剂及其制备方法和应用
CN112156764A (zh) * 2020-09-15 2021-01-01 凯盛石墨碳材料有限公司 一种纳米TiO2/改性氧化石墨烯/有机膨润土复合材料及其制备方法

Also Published As

Publication number Publication date
CN102350331B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102350334B (zh) 一种石墨烯/介孔二氧化钛可见光催化剂及制备方法
Teh et al. Facile sonochemical synthesis of N, Cl-codoped TiO2: Synthesis effects, mechanism and photocatalytic performance
CN102350331B (zh) 超声-水热耦合制备TiO2纳米管的方法
CN105854863B (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
CN101138700A (zh) 三相超声光催化反应装置及其还原co2的方法
CN104707542B (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
CN105195131B (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催化剂的制备方法
CN105536824A (zh) 一种纳米介孔微球状Bi5O7I光催化剂及其水热-热分解制备方法
CN102489285A (zh) 石墨烯复合二氧化钛光催化剂的制备方法
Dong et al. Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment
CN100453167C (zh) 以植物皮、膜为模板制备介孔二氧化钛光催化剂的方法
Lu et al. Synthesis of mesoporous anatase TiO2 sphere with high surface area and enhanced photocatalytic activity
CN104525266A (zh) 一种金属有机骨架材料光催化剂的制备方法与应用
CN103626225B (zh) 一种含有束缚单电子氧空位且暴露{001}面锐钛矿二氧化钛纳米晶及其制备方法
CN102060330A (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN106423120A (zh) 一种纳米针状二氧化钛b光催化剂的制备方法
CN109078640A (zh) 一种有序介孔白钨矿负载的镍基生物油重整催化剂
CN102976401A (zh) 氮掺杂纳米二氧化钛晶体的超声化学制备方法
CN102350288B (zh) 超声-水热耦合制备纳米材料的装置
CN102631909A (zh) 表面氢化的二氧化钛纳米线微球光催化材料及其制备方法
CN101733139B (zh) 一种纳米态TiO2/SBA-15光催化剂的制备方法
CN108014779A (zh) 一种高效介孔氧化锌光催化剂的制备方法
CN105148945A (zh) 钼、硫共掺杂的介孔二氧化钛纳米可见光催化剂的水热合成方法
CN108640149A (zh) 二氧化钛纳米空心球及其制备方法
CN103331153A (zh) 一种高活性TiO2纳米盘光催化剂的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Chen Jinyuan

Inventor after: Wei Xiuzhen

Inventor after: Lai Shiqiang

Inventor after: Wang Huijuan

Inventor before: Chen Jinyuan

Inventor before: Lai Shiqiang

Inventor before: Wang Huijuan

Inventor before: Wei Xiuzhen

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: CHEN JINYUAN LAI SHIQIANG WANG HUIJUAN WEI XIUZHEN TO: CHEN JINYUAN WEI XIUZHEN LAI SHIQIANG WANG HUIJUAN

C14 Grant of patent or utility model
GR01 Patent grant