CN102333911B - 用于制备碳纳米纤维和/或碳纳米管的方法 - Google Patents

用于制备碳纳米纤维和/或碳纳米管的方法 Download PDF

Info

Publication number
CN102333911B
CN102333911B CN201080009705.XA CN201080009705A CN102333911B CN 102333911 B CN102333911 B CN 102333911B CN 201080009705 A CN201080009705 A CN 201080009705A CN 102333911 B CN102333911 B CN 102333911B
Authority
CN
China
Prior art keywords
carbon
compound
catalyst
substrate
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080009705.XA
Other languages
English (en)
Other versions
CN102333911A (zh
Inventor
J·霍克斯特拉
约翰·威廉·戈伊斯
L·W·延尼斯肯斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN102333911A publication Critical patent/CN102333911A/zh
Application granted granted Critical
Publication of CN102333911B publication Critical patent/CN102333911B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种用于制备碳纳米纤维和/或碳纳米管的方法,该方法包括热解已经浸渍有一种元素或多种元素的化合物的微粒纤维素和/或碳水化合物底物,其中金属或合金可选地在碳化合物存在下,分别能够在基本上无氧气、含有挥发性硅化合物的气氛中形成碳化物。

Description

用于制备碳纳米纤维和/或碳纳米管的方法
碳纳米纤维(CNF)、碳纳米管(CNT)以及包含它们的复合物(以下统称为CNF),由于其具有高强度、化学纯度和化学惰性的特征,使其非常适合用作催化剂载体,因此在过去几年中得到越来越多的关注。 
通过其在各种催化方法,如费托反应和选择性加氢,中作为载体的应用,可清晰地展望CNF材料的实用性。可通过改变载体的特征如表面基团的含氧量、载体的可接近性(accessibility)和碳有序化的程度,来调整碳(石墨、活性炭)载体催化剂的催化性能。载体对金属/CNF催化剂的性能也存在类似影响。 
良好的催化剂载体材料需要达到许多重要的先决条件,如高的堆密度,高强度和高孔隙率。高载体密度导致更加有效地利用反应器体积,因此比低密度载体经济上更加有利。另一方面,为避免质量传输限制,孔隙度即可接近性非常重要。 
CNF的性能可能超过传统的氧化性载体,如a.o.、二氧化硅和氧化铝。碳纳米纤维具有化学惰性、纯度及机械强度,从而适合作为催化载体材料。CNF体由缠绕的独立碳纤维组成,其在催化性生长过程中通过分解含碳气体,如CO/H2、CH4、C2H4、或其它挥发性化合物如甲苯等,在基于金属的生长催化剂表面上形成,如基于镍、钴、铁、钌、它们的组合物和/或合金等的那些。合适的载体为二氧化硅、氧化铝、氧化镁、碳、碳纤维等。 
两种最常见的CNF形式为鱼骨型和平行型(也称为多壁碳纳米管)。在鱼骨型纤维中,石墨平面与中心轴成一定角度取向,从而暴露了石墨边 缘位点。如果石墨平面平行于中心轴取向,如CNF的平行型,那么仅暴露底部的石墨平面。 
已提出通过碳纳米纤维或纳米管来生产这样的催化剂载体。在WO93/24214中提出使用石墨层基本上与纤维轴平行取向的碳纳米纤维或纳米管作为催化剂载体。使用相对长和直的碳纤维作为尺寸可控的主体是很困难的。事实上,尺寸和孔隙率对于催化剂是非常重要的。在固定的催化剂床层中,载体主体的尺寸决定压降以及反应物和反应产物通过催化剂主体的输送。对液态悬浮催化剂而言,反应物和反应产物的输送是很重要的。如上所述,催化剂主体的尺寸对于主体的输送以及例如通过离心过滤的主体的分离是非常重要的。 
另一个缺点是,碳纳米纤维或纳米管必需从施加于载体如二氧化硅或氧化铝上的金属微粒生长。这些载体在液相反应中可常常干扰获得的碳载体的应用。通过分别用碱或酸处理而除去二氧化硅或氧化铝是很困难的。 
在WO 2005/103348中,已提出制备密度非常高的CNF材料,其堆密度为至少800kg/m3。这通过使碳纳米纤维生长在制备金属催化剂如镍、钴、铁和钌催化剂的载体碳纤维的表面上,通过持续足够的时间段分解碳氢化合物来制备所需的堆密度,可选地随后除去生长催化剂来实现。 
到目前为止CNF材料并不是非常成功,主要由于制备具有足够强度以用作催化剂载体材料或用作催化剂的成型体是很困难的。 
因此,本发明的第一个目的是提供一种CNF/CNT材料,其能够适当地加工成用于催化剂应用的形式。另一目的是由相对丰富的天然存在的材料制备这些材料,在某些情况下甚至无需从外部供应碳化合物(通常来自不可再生资源)。 
本发明因此提供一种用于制备碳纳米纤维和/或碳纳米管的方法,该方法包括热解用一种元素或多种元素化合物浸渍的微粒纤维素和/或碳水化合物底物,其中金属或合金可选地在碳化合物的存在下,分别能够在基本上无氧气、含有挥发性硅化合物的气氛中形成碳化物。 
令人惊奇的是,发现在该方法中获得了CNF材料的非常有趣和合适的形式,如在实施例中提及的EM照片可看出的。 
该方法包括使用金属化合物或金属化合物的组合物对底物进行浸渍,然后干燥并热解浸渍的底物。金属化合物优选是这些金属化合物的盐,更具体的在水溶液中(的盐)。元素(金属)具有能够形成碳化物的特性。合适的元素的实例为镍、钴、铁和钼。优选是铁和镍。 
令人惊奇的是,进一步发现用可替代的纤维素和/或含有碳水化合物的材料如豆粉(soy meal)、糖、羟乙基纤维素、纤维素和衍生物等可制备球体,其在热分解后也可产生机械强度较高的碳球。考虑到豆粉与非常纯的微晶纤维素相比便宜很多,此为非常重要的优势。这些碳球形成CNF材料的核心,其制备方法过程中在球体的表面生长。 
另一种用于制备碳球的合适的起始材料是糖、或者糖与微晶纤维素或豆粉的混合物。根据优选的步骤,我们从由水热处理农业材料而产生的碳质体(carbonaceous bodies)开始,所述农业材料为诸如糖、淀粉、豆粉、(半)纤维素、以及上述化合物的脱水产物,如糠醛和2-羟基糠醛。优选地,如Bo Hu,Shu-Hong Yu,Kan Wang,Lei Liu和Xue-Wei Xu Dalton Trans.2008,5414-5423及其提及的参考文献所述,对上述化合物进行脱水。在浸渍经水热处理的主体后,根据本发明的步骤进行热处理。可选择地,也可将金属化合物的溶液与水热处理中所使用的水混合。在对主要或仅含有糖的球体进行热分解的过程中,应注意在加热过程中如果过快通过糖融化的温度,则糖会在融化过程进行之前分解。已发现在将温度升高至分解温度 之前对糖进行脱水也是有效的。由于糖和其它含有纤维素的材料价格低廉,本发明对于高机械强度的碳微粒的技术应用是很重要的。 
通常纤维素或碳水化合物起始材料会包括有机材料,通常为可再生来源,其具有在惰性条件下热解后,可获得具有还原性的气体的特性。 
令人惊奇的是,发现在含有挥发性硅的化合物的存在下,优选在无外部碳原子供给气体而惰性稳定的气氛下,可通过加热含有铁和/或镍化合物浸渍的纤维素和/或碳水化合物的球体而使碳纳米纤维和/或纳米管生长。热解纤维素时释放的气体可补充用于碳纳米管生长的碳的供给。 
由于CNF由碳组成,因此需要含碳气体用于合成这些材料。在一个优选实施方式中,通过碳球热解而生产该气体,而在另一可选择的实施方式中,可通过外部来源提供另外的气体。 
制备CNF的另外的含碳气体可以是任意合适的含碳气体,如本领域中所使用的。实例为CO,CO/H2混合物,CH4,C2H4和其它气体如低级烷烃,醇,烯烃,炔烃,芳香族化合物如苯和甲苯等。优选使用甲烷、甲苯或CO/H2。可采用甲醇代替高毒性的CO。可选地,可用惰性气体(如氮气)稀释气体。 
在合适的反应器中发生热解用以制备CNF,如流化床反应器,固定床反应器,提升管反应器。将反应器中的温度保持在适合热解及制备纤维的水平。温度依赖于催化剂的性质和含碳气体的性质。通常温度的下限为400℃。对于气体如甲烷和CO/H2,温度通常在400℃至925℃之间。通常温度的上限为1250℃。 
制备CNF复合物之后,其可用于各种应用场合,如聚合物添加剂、氢气储存、微电子、均相催化剂或酶的固定,更具体地,作为催化剂载体。与现有技术的方法相反,由于未使用单独的载体催化剂,因此没有必要除 去(通常是氧化性的)载体。根据本发明,还将铁或镍的载体材料热解并转化为碳。 
制备CNF之后,可能对其进行进一步改性(修饰),例如除去金属甚至进一步和/或在CNF表面引入含氧基团以制备氧化CNF。这些处理通常包括使用HCl和/或H2SO4/HNO3(比例不同),或根据工艺水平(技术发展水平,state ofthe art)使用气态氧化物质氧化。 
本发明还涉及CNF材料作为催化剂或催化剂载体的使用。复合物本身可用于由碳(可选地已接受通过氧化进行的表面改性(修饰))催化的反应中。然而,优选在CNF表面上施加合适的催化活性材料。合适的催化活性材料可以是金属性或氧化性贱金属,如镍、铜、钨、铁、锰、锌、钒、铬、钼、铑、铱、钌等,及其组合物。也可以使用CNF作为贵金属催化剂的载体,如基于铂、钯、金或银、及其组合物的那些催化剂。还可将有机金属或金属膦催化剂固定(锚定)在CNF的表面。 
当制备以CNF作为载体的催化剂时,优选使用氧化的CNF,因为这可提高活性前体在CNF上的分散,从而提高终末催化剂抗烧结的稳定性,更具体为镍催化剂。 
可通过传统方式将催化材料施加(涂敷)在CNF载体上,如初湿(含浸)法(incipient wetness)或均相沉积沉淀法。对于金属,优选使用均相沉积沉淀法,如在Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipitation Bitter,J.H.,M.K.van der Lee,A.G.T.Slotboom,A.J.van Dillen和K.P.de Jong,Cat.Lett.89(2003)139-142中所描述的。 
在液相和气相中均可使用CNF载体催化剂的合适的反应为费托反应过程,加氢反应,脱氢反应,加氢处理,如加氢脱硫,甲烷化反应,低温氧化反应等。 
实施例1 
用柠檬酸铁铵的水溶液对MCC球体进行湿浸渍。然后在真空下干燥MCC球体。借助硅橡胶粘附层将浸渍的MCC球体施加(涂敷)在铁网上。因此铁网包被(涂覆)有稀释的硅橡胶溶液。在硅橡胶被固化之前,将浸渍的MCC球体粘附在硅橡胶粘附层上。接下来,将具有浸渍球体的网置于惰性稳定的氮气气氛中并加热至800℃。这导致在碳球表面长出一层密集的短而直的碳纳米管。图1显示了所产生材料的EM照片。图2给出了图1的放大图。 
实施例2(对照) 
用硝酸镍的水溶液对MCC球体进行湿浸渍。然后在真空下干燥MCC球体。在流化床中的惰性氮气气氛(流体)下,将镍浸渍的球体加热至800℃。将具有小的元素镍微粒的热解的碳球冷却至500℃。接着,将气体成分改变为体积分数为90%的N2和10%的H2。借助饱和塔计量甲苯两小时。这导致在碳球的表面上生长出具有鱼骨结构的碳纳米纤维。图3显示了所产生材料的EM照片。图4给出了图3的放大图。 

Claims (26)

1.用于制备碳纳米纤维和/或碳纳米管的方法,该方法包括在基本上无氧气、含有挥发性硅化合物的气氛中,可选地在碳化合物的存在下,热解用一种金属或多种金属的化合物浸渍的微粒碳水化合物底物,其中金属或合金各自能够形成碳化物。
2.根据权利要求1所述的方法,其中所述底物选自微晶纤维素、糖、或者糖与微晶纤维素或豆粉的混合物。
3.根据权利要求1所述的方法,其中所述底物包括由水热处理农业材料而产生的碳质体。
4.根据权利要求1所述的方法,其中用镍、钴、铁和/或钼的化合物对底物进行浸渍,然后干燥并热解。
5.根据权利要求1-4中任一项所述的方法,其中在硅橡胶化合物存在下对所述底物进行热解。
6.根据权利要求1-4中任一项所述的方法,其中所述硅化合物为烷基硅氧烷。
7.根据权利要求6所述的方法,其中所述硅氧烷化合物为二甲基硅氧烷的三聚体。
8.根据权利要求1-4中任一项所述的方法,其中所述热解在温度为500至1000℃下持续5分钟至5小时的时间段。
9.根据权利要求1-4中任一项所述的方法,其中所述气氛基本上无碳化合物。
10.根据权利要求1-4中任一项所述的方法,其中所述气氛进一步包含至少一种碳化合物。
11.根据权利要求3所述的方法,其中所述农业材料为糖、淀粉、豆粉、纤维素、半纤维素、以及上述化合物的脱水产物。
12.根据权利要求11所述的方法,其中所述脱水产物为糠醛和2-羟基糠醛。
13.根据权利要求4所述的方法,其中用含水的镍和/或铁盐对底物进行浸渍,然后干燥并热解。
14.根据权利要求2-3中任一项所述的方法,其中用镍、钴、铁和/或钼的化合物对底物进行浸渍,然后干燥并热解。
15.根据权利要求1-4中任一项所述的方法,其中所述硅化合物为硅氧烷的气态三聚体。
16.根据权利要求10所述的方法,其中所述碳化合物选自甲苯,CO,CO/H2混合物,CH4,C2H4和其它气体。
17.根据权利要求10所述的方法,其中所述碳化合物选自低级烷烃,烯烃,醇,炔烃,芳香族化合物。
18.根据权利要求17所述的方法,其中所述芳香族化合物为苯和甲苯。
19.根据权利要求7所述的方法,其中所述热解在温度为500至1000℃下持续5分钟至5小时的时间段。
20.根据权利要求1所述的方法,其中所述微粒碳水化合物底物为微粒纤维素底物。
21.提供有碳纳米管和/或纳米纤维的碳微粒,通过权利要求1-20中任一项所述的方法获得。
22.催化剂或催化剂前体,包含载体材料和至少一种催化活性材料或其前体,所述载体材料为根据权利要求21所述的提供有碳纳米管和/或纳米纤维的碳微粒。
23.根据权利要求22所述的催化剂,所述催化活性材料选自贵金属、镍、铁、铜或它们的组合物组成的组。
24.用于在载体催化剂存在下进行至少一种化学反应的方法,所述载体催化剂包括根据权利要求22或23中任一项所述的催化剂。
25.根据权利要求24所述的方法,其中所述化学反应选自费托反应、加氢反应、脱氢反应、甲烷化反应、低温氧化反应组成的组。
26.根据权利要求23所述的催化剂,其中所述贵金属为铑。
CN201080009705.XA 2009-02-27 2010-03-01 用于制备碳纳米纤维和/或碳纳米管的方法 Expired - Fee Related CN102333911B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09153958.5 2009-02-27
EP09153958A EP2224045A1 (en) 2009-02-27 2009-02-27 Process for producing carbon nanofibres and/or carbon nanotubes
PCT/NL2010/050100 WO2010098669A1 (en) 2009-02-27 2010-03-01 Process for producing carbon nanofibres and/or carbon nanotubes

Publications (2)

Publication Number Publication Date
CN102333911A CN102333911A (zh) 2012-01-25
CN102333911B true CN102333911B (zh) 2014-07-02

Family

ID=40951571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080009705.XA Expired - Fee Related CN102333911B (zh) 2009-02-27 2010-03-01 用于制备碳纳米纤维和/或碳纳米管的方法

Country Status (16)

Country Link
US (1) US20120157298A1 (zh)
EP (3) EP2224045A1 (zh)
JP (1) JP5572642B2 (zh)
KR (1) KR101747977B1 (zh)
CN (1) CN102333911B (zh)
AR (1) AR075706A1 (zh)
BR (2) BRPI1011517B1 (zh)
CA (1) CA2753794C (zh)
DK (1) DK2401426T3 (zh)
ES (1) ES2509221T3 (zh)
HR (1) HRP20140941T1 (zh)
MX (1) MX2011009035A (zh)
PL (1) PL2401426T3 (zh)
RU (1) RU2538584C2 (zh)
TW (1) TWI573905B (zh)
WO (1) WO2010098669A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729117B2 (en) 2004-06-02 2014-05-20 Pharmacyclics, Inc. Factor VIIa inhibitor
US9212155B2 (en) 2008-03-19 2015-12-15 Aurimmed Pharma, Inc. Compounds advantageous in the treatment of central nervous system diseases and disorders
WO2009117515A2 (en) 2008-03-19 2009-09-24 Aurimmed Pharma, Inc. Novel compounds advantageous in the treatment of central nervous system diseases and disorders
US10793515B2 (en) 2008-03-19 2020-10-06 Aurimmed Pharma, Inc. Compounds advantageous in the treatment of central nervous system diseases and disorders
EP2767508B1 (en) 2011-10-12 2018-03-21 Asahi Kasei Kabushiki Kaisha Carbon nanofiber aggregate, thermoplastic resin composition, and method for producing thermoplastic resin composition
RU2490378C1 (ru) * 2012-03-23 2013-08-20 Общество с ограниченной ответственностью Научно-производственный центр "УВИКОМ" (ООО НПЦ "УВИКОМ") Способ получения углеродного волокнистого материала
RU2641124C2 (ru) 2012-12-13 2018-01-16 Басф Корпорейшн Углеродные тела и ферромагнитные углеродные тела
US10179959B2 (en) * 2013-07-22 2019-01-15 Murata Machinery, Ltd. Yarn manufacturing device
JP6663991B2 (ja) * 2015-11-20 2020-03-13 済南聖泉集団股▲ふん▼有限公司Jinan Shengquan Group Share Holding Co., Ltd 機能性再生セルロース繊維及びその調製方法と使用
US11370191B2 (en) * 2017-08-08 2022-06-28 Lintec Of America, Inc. Changing a density of a nanofiber sheet using an edged surface
KR102650036B1 (ko) * 2017-09-27 2024-03-20 에이전시 포 사이언스, 테크놀로지 앤드 리서치 천연 고무로부터 탄소 나노튜브를 제조하는 방법
CN114229833B (zh) * 2020-09-09 2023-04-07 哈尔滨金纳科技有限公司 一种易分散、高导电碳纳米管材料的制备方法
CN112604680A (zh) * 2020-12-14 2021-04-06 陕西科技大学 一种甲醛分解材料及其制备方法和应用
CN113332984B (zh) * 2021-05-20 2023-02-28 济南大学 一种聚合反应制备钴碳催化剂的制备方法及其应用
TWI794050B (zh) * 2022-03-14 2023-02-21 英業達股份有限公司 電子裝置的組裝方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1132782A (en) * 1965-02-26 1968-11-06 Fmc Corp Method of preparing shaped carbon or carbon-containing articles and articles prepared by such method
GB1398417A (en) * 1971-10-04 1975-06-18 Carborundum Co Process for carbonizing cellulosic material
CN101010259A (zh) * 2004-06-01 2007-08-01 奇梦达股份公司 硅烷化的碳纳米管及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256570B1 (ko) 1992-05-22 2000-05-15 로버트 다불류 허쓸레인 촉매 지지체, 지지된 촉매, 이의 제조방법 및 이를 사용하는 방법
RU2146648C1 (ru) * 1998-11-30 2000-03-20 Институт катализа им.Г.К.Борескова СО РАН Способ получения углеродных нанотрубок
JP3479687B2 (ja) * 2000-11-28 2003-12-15 独立行政法人産業技術総合研究所 炭化物の製造方法
JP2004075468A (ja) * 2002-08-20 2004-03-11 Kenichi Ota カーボンナノチューブの製造方法
JP4004973B2 (ja) * 2003-02-19 2007-11-07 双葉電子工業株式会社 炭素物質とその製造方法及び電子放出素子、複合材料
US7652098B2 (en) * 2004-02-04 2010-01-26 Osaka Gas Co., Ltd Resin composition for GHz-band electronic component and GHz-band electronic component
EP1589131A1 (en) 2004-04-21 2005-10-26 Stichting Voor De Technische Wetenschappen Carbon nanofibre composites, preparation and use
WO2006085479A1 (ja) * 2005-02-08 2006-08-17 National University Corporation Gunma University 炭化ケイ素系ナノ繊維の製造方法
RU2307068C2 (ru) * 2005-03-11 2007-09-27 Закрытое акционерное общество "Инновации ленинградских институтов и предприятий" (ЗАО ИЛИП) Способ получения наноуглеродного материала
JP2007070166A (ja) * 2005-09-07 2007-03-22 Kinugawa Mura カーボンナノ材料製造用の原料ガス製造方法およびその装置
KR100716037B1 (ko) * 2005-11-03 2007-05-11 부산대학교 산학협력단 카본 나노 파이버를 이용한 연료전지용 니켈-백금 담지촉매 제조 장치 및 방법
DE102006022866A1 (de) * 2006-05-16 2007-11-22 Glatt Systemtechnik Gmbh Kohlenstoff-Granulat, Verfahren zu dessen Herstellung und dessen Verwendung
EP1878783A1 (en) * 2006-07-14 2008-01-16 BIOeCON International Holding N.V. Modified biomass comprising synthetically grown carbon fibers
JP2008185495A (ja) * 2007-01-31 2008-08-14 National Institute Of Advanced Industrial & Technology ガスセンサー
KR100901846B1 (ko) * 2007-09-11 2009-06-09 한국에너지기술연구원 탄소나노튜브 직접성장법과 백금 나노촉매의 담지를 위한화학기상증착법을 적용한 연료전지용 셀룰로스 전극의제조방법, 셀룰로스 전극 및 셀룰로스 섬유의 연료전지용전극으로서의 용도
KR100878751B1 (ko) * 2008-01-03 2009-01-14 한국에너지기술연구원 셀룰로스 섬유를 이용한 촉매지지체, 이의 제조방법,촉매지지체 표면에 직접성장된 탄소나노튜브 및탄소나노튜브 표면에 나노금속 촉매가 담지된 담지촉매 및이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1132782A (en) * 1965-02-26 1968-11-06 Fmc Corp Method of preparing shaped carbon or carbon-containing articles and articles prepared by such method
GB1398417A (en) * 1971-10-04 1975-06-18 Carborundum Co Process for carbonizing cellulosic material
CN101010259A (zh) * 2004-06-01 2007-08-01 奇梦达股份公司 硅烷化的碳纳米管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Structural Effects of Iron Oxide Nanoparticles and Iron Ions on the Hydrothermal Carbonization of Starch and Rice Carbohydrates";Xianjin Cui et al;《Small》;20060630;第2卷(第6期);756-759 *
Xianjin Cui et al."Structural Effects of Iron Oxide Nanoparticles and Iron Ions on the Hydrothermal Carbonization of Starch and Rice Carbohydrates".《Small》.2006,第2卷(第6期),756-759.

Also Published As

Publication number Publication date
MX2011009035A (es) 2011-09-15
TWI573905B (zh) 2017-03-11
CN102333911A (zh) 2012-01-25
EP2401426B1 (en) 2014-07-23
ES2509221T3 (es) 2014-10-17
JP5572642B2 (ja) 2014-08-13
BRPI1011517B1 (pt) 2019-09-10
CA2753794A1 (en) 2010-09-02
BRPI1011517A2 (pt) 2016-03-29
TW201038784A (en) 2010-11-01
EP2224045A1 (en) 2010-09-01
EP2754740B1 (en) 2015-10-21
KR20110122862A (ko) 2011-11-11
US20120157298A1 (en) 2012-06-21
EP2754740A1 (en) 2014-07-16
DK2401426T3 (da) 2014-10-06
HRP20140941T1 (en) 2015-01-30
RU2538584C2 (ru) 2015-01-10
JP2012519241A (ja) 2012-08-23
RU2011139333A (ru) 2013-04-10
WO2010098669A1 (en) 2010-09-02
BR122019000151B1 (pt) 2020-01-07
PL2401426T3 (pl) 2015-01-30
AR075706A1 (es) 2011-04-20
KR101747977B1 (ko) 2017-06-27
EP2401426A1 (en) 2012-01-04
CA2753794C (en) 2017-04-18

Similar Documents

Publication Publication Date Title
CN102333911B (zh) 用于制备碳纳米纤维和/或碳纳米管的方法
US10010867B2 (en) Process for producing carbon nanofibers and/or carbon nanotubes
van der Lee et al. Catalytic growth of macroscopic carbon nanofiber bodies with high bulk density and high mechanical strength
Cunha et al. Methane decomposition on Ni–Cu alloyed Raney-type catalysts
Mahata et al. Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon
US10232355B2 (en) Carbon nanotube-coated catalyst particle
EP1745168A1 (en) Carbon nanofibre composites, preparation and use
RU2520874C2 (ru) Способ изготовления металл-углерод содержащих тел
JP2008520413A (ja) 金属担持カーボンナノチューブからの担持触媒調製方法
JP2008519679A (ja) 不均一触媒でガス状炭素化合物を分解することによりカーボンナノチューブを製造するための触媒
JP2008517863A (ja) カーボンナノチューブの改善されたオゾン分解
WO2010055341A2 (en) Improvements in catalytic processes
Panic et al. Diversity of Pd-Cu active sites supported on pristine carbon nanotubes in terms of water denitration structure sensitivity
Hernadi et al. Catalytic production of carbon nanofibers over iron carbide doped with Sn2+
Ma et al. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method
Jiménez et al. Pilot plant scale study of the influence of the operating conditions in the production of carbon nanofibers
DK2719660T3 (en) Method for synthesizing carbon nanowires at high density on surface of pores or gaps in structure, and hierarchical structure synthesized by the method
CN102548896A (zh) 形成单壁碳纳米管的方法
Louis et al. Advances in the use of carbon nanomaterials in catalysis
JP2005097101A (ja) 炭素繊維集合体およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

CF01 Termination of patent right due to non-payment of annual fee