CN102326262B - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN102326262B
CN102326262B CN201080008716.6A CN201080008716A CN102326262B CN 102326262 B CN102326262 B CN 102326262B CN 201080008716 A CN201080008716 A CN 201080008716A CN 102326262 B CN102326262 B CN 102326262B
Authority
CN
China
Prior art keywords
layer
solar cell
nitride semiconductor
type nitride
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080008716.6A
Other languages
English (en)
Other versions
CN102326262A (zh
Inventor
长尾宣明
滨田贵裕
伊藤彰宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102326262A publication Critical patent/CN102326262A/zh
Application granted granted Critical
Publication of CN102326262B publication Critical patent/CN102326262B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种太阳能电池及其制造方法。在石墨基板上设置无定形碳层,在无定形碳层上通过MOCVD法使AlN的c轴取向膜生长之后,在AlN层上形成GaN的低温生长缓冲层,在低温生长缓冲层上形成n型GaN层,在n型GaN层上形成由InxGa1-xN构成的光吸收层,在光吸收层上形成p型GaN层,在p型GaN层上形成p型GaN接触层。

Description

太阳能电池及其制造方法
技术领域
本发明涉及由氮化物半导体构成的太阳能电池。
背景技术
近年来,由以氮化镓(GaN)为代表的氮化物半导体构成的半导体元件的研究开发正在盛行。包括氮化铝(AlN)、GaN、氮化铟(InN)以及它们的混合晶体(mixed crystal)的氮化物半导体,通过控制其膜的组成,能够在从紫外或蓝色至红外线区域为止的范围广泛的波长区域中吸收光。这些氮化物半导体具有直接跃迁的特性,并且其光吸收系数较高,具体而言为104至105。进而,与作为太阳能电池用半导体材料而广泛使用的硅(Si)相比,这些氮化物半导体的光吸收系数高两位以上。因此,作为其应用例,提案有使用氮化物半导体的太阳能电池(例如非专利文献1)。
图11表示现有例涉及的由氮化物半导体构成的太阳能电池的截面结构。如图11所示,现有的太阳能电池,包括:由GaN构成的低温生长缓冲层102、n型GaN层103、由InxGa1-xN构成的光吸收层104、p型GaN层105和由p型GaN构成的p型接触层106,它们在主面的面方位为(0001)面的蓝宝石基板101的主面上依次生长。在p型接触层106上形成有p侧电极107,在n型GaN层103的选择性露出的区域上形成有n侧电极108。
根据该现有例,为了抑制由起因于晶格缺陷或穿透位错(threadingdislocation)的非发光跃迁引起的载流子再结合,必须制作结晶中的缺陷非常少的氮化物半导体薄膜。因此,由于使用蓝宝石基板等单晶基板,所以存在成本高的问题。
为了解决这个问题,提案有如下方法:使用石墨作为基板,通过脉冲溅射法在石墨上制作多晶的氮化物半导体薄膜(例如专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2009-200207号公报
非专利文献
非专利文献1:Omkar Jani et.al.,Appl.Phys.Lett.Vol.91(2007)132117
发明内容
发明要解决的问题
然而,通过脉冲溅射法在石墨上制作的GaN薄膜为多晶体,因此缺陷较多,不适合太阳能电池和发光二极管等。此外,众所周知通过脉冲溅射法制作的氮化物半导体薄膜在成膜时因放电等离子体而受到较大的损伤,因此在薄膜的结晶内含有非常多的缺陷。因此,上述专利文献1的利用脉冲溅射法制作氮化物半导体的方法,具有难以制作在制作太阳能电池时不可缺少的p型GaN的较大的课题。
本发明是为了解决该课题而完成的,其目的在于以作为非单晶基板的石墨为基板,通过最适于半导体元件的制造的有机金属化学气相沉积(Metal Organic Chemical Vapor Deposition:MOCVD)法,提供低成本且高性能的氮化物太阳能电池。
用于解决课题的方法
本发明的方法是一种制造发光太阳能电池的方法,包括下述的工序(a)~工序(e):通过对石墨基板的表面进行氧灰化,在上述石墨基板的表面形成具有20nm以上60nm以下的厚度的无定形碳层的工序(a);在上述无定形碳层上通过MOCVD(有机金属化学气相沉积法)形成AlN层的工序(b);在上述AlN层上形成n型氮化物半导体层的工序(c);在上述n型氮化物半导体层上形成由氮化物半导体构成的光吸收层的工序(d);和在上述光吸收层上形成p型氮化物半导体层的工序(e)。
根据某个实施方式,还具有:在形成n型氮化物半导体层之前,在上述AlN层上形成由氮化物半导体构成的缓冲层的工序。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,上述光吸收层包括多重量子阱层。
根据某个实施方式,上述光吸收层包括多重量子阱层。
本发明的太阳能电池,包括:石墨基板;在上述石墨基板上形成的无定形碳层;在上述无定形碳层上形成的AlN层;在上述AlN层上形成的n型氮化物半导体层;在上述n型氮化物半导体层上形成的由氮化物半导体构成的光吸收层;在上述光吸收层上形成的p型氮化物半导体层;与上述p型氮化物半导体层电连接的p侧电极;和与上述n型氮化物半导体层电连接的n侧电极,其中,上述无定形碳层具有20nm以上60nm以下的厚度。
根据某个实施方式,还具有:夹在上述AlN层与上述n型氮化物半导体层之间的由氮化物半导体构成的缓冲层。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,上述光吸收层包括多重量子阱层。
根据某个实施方式,上述光吸收层包括多重量子阱层。
本发明的另一方法是一种使用太阳能电池产生电力的方法,包括下述的工序(a)和工序(b):准备太阳能电池的工序(a),其中,上述太阳能电池,包括:石墨基板;在上述石墨基板上形成的无定形碳层;在上述无定形碳层上形成的AlN层;在上述AlN层上形成的n型氮化物半导体层;在上述n型氮化物半导体层上形成的由氮化物半导体构成的光吸收层;在上述光吸收层上形成的p型氮化物半导体层;与上述p型氮化物半导体层电连接的p侧电极;和与上述n型氮化物半导体层电连接的n侧电极,其中,上述无定形碳层具有20nm以上60nm以下的厚度;以及通过向上述太阳能电池照射太阳光,在上述p侧电极与上述n侧电极之间产生电动势的工序(b)。
根据某个实施方式,还具有:在形成n型氮化物半导体层之前,在上述AlN层上形成由氮化物半导体构成的缓冲层的工序。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,p侧电极是透明的。
根据某个实施方式,上述光吸收层包括多重量子阱层。
根据某个实施方式,上述光吸收层包括多重量子阱层。
发明效果
根据本发明的太阳能电池,在石墨基板上设置无定形碳层,在上述无定形碳层上通过MOCVD法使AlN的c轴取向膜生长,由此能够在石墨基板上通过MOCVD法直接制作太阳能电池,能够实现低成本且具有优良特性的太阳能电池。
附图说明
图1是本发明的实施方式1的太阳能电池的截面结构图。
图2是本发明的实施方式1的太阳能电池的制造方法的工序顺序的截面结构图。
图3(a)是表示在本发明的实施方式1的未进行表面处理的石墨基板上通过MOCVD堆积了AlN时的表面SEM观察图像的显微镜照片,(b)是表示在设置有无定形碳层的石墨基板上通过MOCVD堆积了AlN时的表面SEM观察图像的显微镜照片。
图4(a)是表示本发明的实施方式1的石墨基板和AlN层界面附近的截面TEM观察图像的显微镜照片,(b)是表示高分辨率TEM的晶格图像的显微镜照片。
图5是表示在本发明的实施方式1的石墨基板上制作的GaN薄膜的光致发光测定结果的图表。
图6是表示在本发明的实施方式1的石墨基板上制作的太阳能电池的I-V特性的图表。
图7是表示在本发明的实施方式1的石墨基板上制作的太阳能电池的光谱灵敏度特性的图表。
图8是本发明的实施方式2的太阳能电池的截面结构图。
图9是表示在本发明的实施方式2的p型GaN薄膜上通过液相合成而生长的ZnO薄膜的表面SEM观察图像的显微镜照片。
图10是表示在本发明的实施方式2的p型GaN薄膜上通过液相合成而生长的ZnO薄膜的利用XRD的(0006)峰的摇摆曲线的图表。
图11是表示本发明的实施方式2的太阳能电池的I-V特性的图表。
图12表示现有的太阳能电池的截面结构图。
具体实施方式
以下,参照附图说明本发明的实施方式。
(实施方式1)
图1是本发明的实施方式1的太阳能电池的截面结构图。对与图12相同的结构要素使用相同的附图标记,省略说明。
在图1中,1为石墨基板,2为通过氧灰化(oxygen ashing)处理使石墨基板1的表面无定形化而得到的无定形碳层。3为在无定形碳层上通过MOCVD制作而成的AlN层。
在p型接触层106上,形成有例如叠层了ITO(铟锡氧化物)或镍(Ni)和金(Au)的作为透明电极的p侧电极107。在n型GaN层103的n型基板1的相反一侧的面上,例如形成有包括钛(Ti)和铝(Al)的叠层膜的n侧电极108。
以下,参照附图,对这样构成的太阳能电池的制造方法进行说明。
图2(a)~图2(d)表示本发明的第一实施方式涉及的太阳能电池的制造方法的工序顺序的截面结构。
在第一实施方式中,作为III族氮化物半导体的结晶生长法,使用MOCVD法。作为镓源,例如列举三甲基镓(TMG)。作为铝源,例如列举三甲基铝(TMA)。作为铟源,例如列举三甲基铟(TMI)。作为V族源(氮源),例如列举氨(NH3)。作为n型掺杂物的原料,例如列举含有硅(Si)的硅烷(Silane)(SiH4)。作为p型掺杂物的原料,例如列举含有镁的二茂镁(CP2Mg)。
首先,如图2(a)所示,通过氧灰化法将石墨基板1的表面改质,即使其无定形化,形成无定形碳层2。接着,如图2(b)所示,使用MOCVD法,在石墨基板1的无定形碳层2上,在960℃左右的高温下,使AlN层3生长。接着,如图2(c)所示,例如在500℃左右的温度下通过低温生长使由GaN构成的低温生长缓冲层103生长。进而,如图2(d)所示,在900℃左右的高温下依次使由n型GaN构成的n型包覆层103、由InxGa1-xN构成的光吸收层104、由p型GaN构成的p型包覆层105以及由p型GaN构成的p型接触层106生长。
由此,在石墨基板1的表面通过氧灰化处理设置无定形化的无定形碳层2,并在其上通过MOCVD形成AlN层3,由此能够制作非常致密的c轴取向的AlN层。因此,尽管使用并非单晶基板的石墨作为基板,也能够制作穿透位错较少的高品质的GaN薄膜,由此能够在石墨基板上直接制作GaN太阳能电池。
(实施例1)
图3(a)表示在未通过氧灰化进行表面处理的石墨基板上,通过MOCVD堆积了AlN时的表面SEM观察图像。图3(b)表示在通过氧灰化进行表面处理而设置了20nm的无定形碳层2的石墨基板上,通过MOCVD形成具有20nm厚度的AlN层3时的表面SEM观察图像。
如图3(a)明确所示,在未通过氧灰化进行表面处理的石墨基板上,不形成AlN薄膜,而仅堆积树状结晶的形态的微晶。另一方面,如图3(b)明确所示,在表面设置有无定形碳层2的石墨基板上,形成有致密的AlN薄膜。
图4(a)表示在表面设置有无定形碳层的石墨基板1上,通过MOCVD使具有20nm厚度的AlN层3、具有1μm厚度的GaN低温生长缓冲层102和具有200nm厚度的n型GaN层生长之后的截面TEM观察图像。图4(b)表示高分辨率TEM的石墨界面附近的晶格图像观察结果。
从图4(a)和图4(b)可知,在无定形碳表面形成有AlN的致密的结晶,并且GaN的良好的结晶在其上生长。从TEM观察图像求出的位错密度较低,具体而言为2×109cm-2。该位错密度是与在石墨基板上使用GaN低温生长缓冲层而生长的GaN薄膜相同的程度的位错密度,即使在作为非单晶基板的石墨上,通过在表面设置无定形碳层2,也能够形成结晶性非常好的氮化物薄膜。
图5表示在设置有厚度为20nm的无定形碳层2的石墨基板1上,通过MOCVD使具有20nm厚度的AlN层3、具有1μm厚度的GaN低温生长缓冲层102和具有200nm厚度的n型GaN包覆层103生长之后的光致发光(PL)测定结果。作为PL测定时的激励光源,使用He-Cd激光器。
从图5可以明确,在3.4eV附近观察到来自n型GaN包覆层103的发光峰,其半值宽度为42meV,非常陡峭。
表1表示在设置有厚度为20nm的无定形碳层2的石墨基板1上,和未设置无定形碳层的石墨基板上,分别使具有20nm厚度的AlN层3、具有1μm厚度的GaN低温生长缓冲层102和具有200nm厚度的n型GaN包覆层103生长之后的PL发光峰的半值宽度。
[表1]
从表1可以明确,未设置无定形碳层的石墨基板上的GaN层的PL发光峰的半值宽度为62meV。另一方面,设置有无定形碳层2的石墨基板上的GaN层的PL发光峰的半值宽度减少至42meV。根据这些半值宽度,能够认为:通过在石墨基板1上设置无定形碳层2,AlN层3及其上的GaN层的结晶性提高,由晶格缺陷等引起的非发光跃迁减少。
这样,通过氧灰化处理对石墨基板1的表面进行表面处理来设置无定形碳层2,使得致密的AlN薄膜生长的原因被考虑如下。在通常的石墨表面,电子由于石墨烯(Graphene)的sp2杂化轨道构成的π键合(pi bonds)而移位(delocalize)。另一方面,认为在通过氧灰化处理使表面被无定形化的表面改质层,π键合在所至范围断裂,因此在其表面不仅存在sp2轨道,而且也存在sp3轨道。
表2表示通过第一性原理计算求出的Al原子和N原子相对于碳的sp2轨道和sp3轨道的吸附能量。
[表2]
  吸附原子   sp2   sp3
  N   447   -49
  Al   227   -138
(单位:kcal/mol)
从表2可以明确,Al原子和N原子相对于sp2轨道的吸附能量是正值,而相对于sp3轨道的吸附能量均为负值。这表示Al和N容易自发地吸附到sp3轨道。
由此,能够认为:对石墨基板1的表面进行氧灰化处理来设置无定形碳层2,由此形成大量的碳的sp3轨道、促进AlN的生长初期的核生成,因此,良好的薄膜结晶生长。
对石墨基板1的表面进行氧灰化处理,来形成无定形碳层2。或许,这能够形成碳的大量的sp3轨道、促进AlN生长初期的核生成。其结果是,良好的薄膜结晶生长。
表3表示通过使用各种膜厚的无定形碳层时的GaN的XRD的摇摆曲线得到的(0002)峰的半值宽度。
[表3]
  膜厚(nm)   半值宽度(arcsec)
  0   -
  20   2700
  40   2500
  60   3200
  80   10500
在无定形碳层为20nm以上60nm以下的范围中,GaN薄膜c轴取向,能够得到良好的半值宽度的薄膜。其理由被认为是:当无定形碳层超过80nm时,在进行氧灰化处理时进入石墨薄膜中的氧增加,之后通过MOCVD使AlN和GaN生长时进入石墨基板中的氧与Al或Ga反应,阻碍陡峭的界面的形成。因此,优选无定形碳层2的膜厚(厚度)为20nm以上60nm以下。
图6表示在p型GaN接触层106上设置具有100nm厚度的ITO电极作为p侧电极107之后,通过切块机(dicer)将各元件分离而得到的太阳能电池的I-V特性。元件尺寸为10mm×10mm。
从图6可以明确,在本实施例1的石墨上制作的太阳能电池显示出良好的特性,在开路电压Voc为约2.4V,填充因数FF为约0.8。
图7表示本发明的实施方式1的太阳能电池的光谱灵敏度特性。外部量子效率的测定,是使用分光计株式会社制光谱灵敏度测定装置CEP-25ML在直流模式下进行的。从图7可以明确,在起因于作为光吸收层104的In0.08Ga0.92N的吸收峰的390nm附近,量子效率为最大值。
这样,在本实施方式1中,通过对石墨基板1的表面进行氧灰化处理来设置无定形碳层2,进而通过MOCVD设置AlN层3。由此,能够与蓝宝石基板上同样制作结晶性良好的GaN薄膜。进而,实现低成本且高性能的太阳能电池。
(实施方式2)
图8是本发明的实施方式2的太阳能电池的截面结构图。与图1不同之处在于,p侧电极109是通过液相合成制作而成的氧化锌(ZnO)薄膜。
(实施例2)
以下所示为ZnO薄膜的液相合成法。
向0.1mol/L的硝酸锌(ZnNO3)溶液中滴入0.1mol/L的六次甲基四胺((CH2)6N4),将ph值从5调整至7。之后,将涂布抗蚀剂并通过光刻制作出仅使p型GaN接触层106露出的太阳能电池的单元结构的基板浸渍在溶液中,使溶液温度保持为70℃,静置2~6小时。由此,使ZnO薄膜在p型GaN接触层上生长。膜厚通过生长时间进行控制。生长速度大约为2.7nm/min。在使ZnO薄膜生长之后,使用丙酮将抗蚀剂剥离,并使其干燥。
图9表示使ZnO生长500nm时的表面SEM观察图像。图10表示使ZnO生长500nm时的XRD的摇摆曲线。
从图9和图10可知,在GaN上通过液相合成法而生长的ZnO薄膜,其表面平坦且结晶性良好。UV-可视透过率测定的结果是,该ZnO薄膜的透过率在波长为350nm~2.5μm的宽广范围中为95%以下,较高。此外,利用四端子法的电阻率测定的结果是,电阻率为1.2×10-2Ωcm,比较低,能够作为透明电极充分使用。
图11表示通过切块机将各元件分离后的本实施例2的太阳能电池的I-V特性。从图11可以明确,在本实施例2的石墨上制作的太阳能电池与实施例1同样显示出良好的I-V特性,开路电压Voc大约为2.4V,填充因数FF为大约0.8,是与实施例1同等的值。
以上,根据这些结果,对石墨基板1的表面进行氧灰化处理来设置无定形碳层2,进而通过MOCVD来设置AlN层3,由此能够与蓝宝石基板上同样地制作结晶性良好的GaN薄膜。从而,能够得到低成本且高性能的太阳能电池。
上述光吸收层104,通过将InxGa1-xN(x=0.12)和GaN交替叠层5个周期而得到。然而,本发明并不限于此,可以为0.01≤x≤0.20,叠层次数也可以为1周期(1次)以上至10周期(10次以下)。
产业上的可利用性
本发明涉及的太阳能电池的技术,能够提供在石墨基板1上具有无定形碳层2、并具有通过MOCVD法形成的结晶性良好的AlN层3和GaN层的低成本且高性能的太阳能电池,因此是有用的。本发明涉及的太阳能电池的技术也能够应用于发光二极管、高频、功率器件用FET等电子设备等的用途。
附图标记说明
1    石墨基板
2    无定形碳层
3    AlN层
101  蓝宝石基板
102  低温生长缓冲层
103  n型GaN层
104  光吸收层
105  p型GaN层
106  p型GaN接触层
107  P侧电极
108  n侧电极
109  ZnO透明电极

Claims (18)

1.一种制造太阳能电池的方法,其特征在于:
包括下述的工序(a)~工序(e):
通过对石墨基板的表面进行氧灰化,在所述石墨基板的表面形成具有20nm以上60nm以下的厚度的无定形碳层的工序(a);
在所述无定形碳层上通过MOCVD(有机金属化学气相沉积法)形成AlN层的工序(b);
在所述AlN层上形成n型氮化物半导体层的工序(c);
在所述n型氮化物半导体层上形成由氮化物半导体构成的光吸收层的工序(d);和
在所述光吸收层上形成p型氮化物半导体层的工序(e)。
2.如权利要求1所述的制造太阳能电池的方法,其特征在于,还具有:
在形成n型氮化物半导体层之前,在所述AlN层上形成由氮化物半导体构成的缓冲层的工序。
3.如权利要求1所述的制造太阳能电池的方法,其特征在于:
还包括形成与所述p型氮化物半导体层电连接的p侧电极的工序,所述p侧电极是透明的。
4.如权利要求2所述的制造太阳能电池的方法,其特征在于:
还包括形成与所述p型氮化物半导体层电连接的p侧电极的工序,所述p侧电极是透明的。
5.如权利要求1所述的制造太阳能电池的方法,其特征在于:
所述光吸收层包括多重量子阱层。
6.如权利要求4所述的制造太阳能电池的方法,其特征在于:
所述光吸收层包括多重量子阱层。
7.一种太阳能电池,其特征在于,包括:
石墨基板;
对所述石墨基板的表面进行氧灰化而在所述石墨基板上形成的无定形碳层;
在所述无定形碳层上形成的AlN层;
在所述AlN层上形成的n型氮化物半导体层;
在所述n型氮化物半导体层上形成的由氮化物半导体构成的光吸收层;
在所述光吸收层上形成的p型氮化物半导体层;
与所述p型氮化物半导体层电连接的p侧电极;和
与所述n型氮化物半导体层电连接的n侧电极,
其中,所述无定形碳层具有20nm以上60nm以下的厚度。
8.如权利要求7所述的太阳能电池,其特征在于,还具有:
夹在所述AlN层与所述n型氮化物半导体层之间的由氮化物半导体构成的缓冲层。
9.如权利要求7所述的太阳能电池,其特征在于:
p侧电极是透明的。
10.如权利要求8所述的太阳能电池,其特征在于:
p侧电极是透明的。
11.如权利要求7所述的太阳能电池,其特征在于:
所述光吸收层包括多重量子阱层。
12.如权利要求10所述的太阳能电池,其特征在于:
所述光吸收层包括多重量子阱层。
13.一种使用太阳能电池产生电力的方法,其特征在于:
包括下述的工序(a)和工序(b):
准备太阳能电池的工序(a),其中,
所述太阳能电池,包括:
石墨基板;
对所述石墨基板的表面进行氧灰化而在所述石墨基板上形成的无定形碳层;
在所述无定形碳层上形成的AlN层;
在所述AlN层上形成的n型氮化物半导体层;
在所述n型氮化物半导体层上形成的由氮化物半导体构成的光吸收层;
在所述光吸收层上形成的p型氮化物半导体层;
与所述p型氮化物半导体层电连接的p侧电极;和
与所述n型氮化物半导体层电连接的n侧电极,
其中,所述无定形碳层具有20nm以上60nm以下的厚度;以及
通过向所述太阳能电池照射太阳光,在所述p侧电极与所述n侧电极之间产生电动势的工序(b)。
14.如权利要求13所述的方法,其特征在于,还具有:
在形成n型氮化物半导体层之前,在所述AlN层上形成由氮化物半导体构成的缓冲层的工序。
15.如权利要求13所述的方法,其特征在于:
p侧电极是透明的。
16.如权利要求14所述的方法,其特征在于:
p侧电极是透明的。
17.如权利要求13所述的方法,其特征在于:
所述光吸收层包括多重量子阱层。
18.如权利要求16所述的方法,其特征在于:
所述光吸收层包括多重量子阱层。
CN201080008716.6A 2009-10-21 2010-10-20 太阳能电池及其制造方法 Expired - Fee Related CN102326262B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-242006 2009-10-21
JP2009242006 2009-10-21
PCT/JP2010/006224 WO2011048809A1 (ja) 2009-10-21 2010-10-20 太陽電池およびその製造方法

Publications (2)

Publication Number Publication Date
CN102326262A CN102326262A (zh) 2012-01-18
CN102326262B true CN102326262B (zh) 2015-02-25

Family

ID=43900053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080008716.6A Expired - Fee Related CN102326262B (zh) 2009-10-21 2010-10-20 太阳能电池及其制造方法

Country Status (4)

Country Link
US (2) US8247684B2 (zh)
JP (1) JP4718652B2 (zh)
CN (1) CN102326262B (zh)
WO (1) WO2011048809A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
JP5903818B2 (ja) * 2011-09-26 2016-04-13 富士通株式会社 化合物半導体装置及びその製造方法
CN102315291A (zh) * 2011-09-29 2012-01-11 西安电子科技大学 含有超晶格结构的p-i-n型InGaN太阳电池
CN102339891A (zh) * 2011-09-29 2012-02-01 西安电子科技大学 一种p-i-n夹层结构InGaN太阳电池
CN102544138A (zh) * 2012-02-08 2012-07-04 南开大学 一种设置AlN薄膜层的铜铟镓硒薄膜太阳电池
CN103378224B (zh) * 2012-04-25 2016-06-29 清华大学 外延结构的制备方法
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
CN105684166A (zh) * 2013-09-20 2016-06-15 并木精密宝石株式会社 基板及其制造方法、发光元件及其制造方法、以及具有该基板或发光元件的装置
CN104124312B (zh) * 2014-08-14 2017-04-12 天津三安光电有限公司 自给式发光二极管组件
CN104821344B (zh) * 2015-02-13 2016-09-28 湖南共创光伏科技有限公司 具有量子阱结构的铜铟镓硒薄膜太阳能电池及其制造方法
CN104821343B (zh) * 2015-02-13 2016-08-17 湖南共创光伏科技有限公司 具有量子阱结构的碲化镉薄膜太阳能电池及其制造方法
JP2018110137A (ja) * 2015-03-19 2018-07-12 アダマンド並木精密宝石株式会社 基板とその製造方法、及び発光素子とその製造方法、及びその基板又は発光素子を有する装置
BR112018000612A2 (pt) 2015-07-13 2018-09-18 Crayonano As nanofios ou nanopirâmides cultivados sobre um substrato grafítico
EA201890167A1 (ru) 2015-07-13 2018-07-31 Крайонано Ас Светодиоды и фотодетекторы, сформированные из нанопроводников/нанопирамид
EP3329509A1 (en) 2015-07-31 2018-06-06 Crayonano AS Process for growing nanowires or nanopyramids on graphitic substrates
CN106098818A (zh) * 2016-08-26 2016-11-09 扬州乾照光电有限公司 一种锗基砷化镓多结柔性薄膜太阳电池及其制备方法
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
EP3754721A1 (en) * 2019-06-17 2020-12-23 Infineon Technologies AG Semiconductor device and method for fabricating a wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993802A (zh) * 2004-05-13 2007-07-04 宋健民 钻石底半导体装置及形成方法
CN101267007A (zh) * 2008-04-28 2008-09-17 四川大学 超薄石墨片作衬底的碲化镉太阳电池
JP2009200207A (ja) * 2008-02-21 2009-09-03 Kanagawa Acad Of Sci & Technol 半導体基板、半導体素子、発光素子及び電子素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497763B2 (en) * 2001-01-19 2002-12-24 The United States Of America As Represented By The Secretary Of The Navy Electronic device with composite substrate
JP4209097B2 (ja) * 2001-05-24 2009-01-14 日本碍子株式会社 半導体受光素子
GB0118150D0 (en) * 2001-07-25 2001-09-19 Imperial College Thermophotovoltaic device
JP2008235878A (ja) * 2007-02-19 2008-10-02 Showa Denko Kk 太陽電池及びその製造方法
US7638750B2 (en) * 2007-12-26 2009-12-29 Simmonds Precision Products, Inc. Optical power for electronic circuits using a single photovoltaic component
JP4724256B2 (ja) * 2009-10-20 2011-07-13 パナソニック株式会社 発光ダイオード素子およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993802A (zh) * 2004-05-13 2007-07-04 宋健民 钻石底半导体装置及形成方法
JP2009200207A (ja) * 2008-02-21 2009-09-03 Kanagawa Acad Of Sci & Technol 半導体基板、半導体素子、発光素子及び電子素子
CN101267007A (zh) * 2008-04-28 2008-09-17 四川大学 超薄石墨片作衬底的碲化镉太阳电池

Also Published As

Publication number Publication date
US8247684B2 (en) 2012-08-21
WO2011048809A1 (ja) 2011-04-28
JP4718652B2 (ja) 2011-07-06
US8735716B2 (en) 2014-05-27
US20120273038A1 (en) 2012-11-01
JPWO2011048809A1 (ja) 2013-03-07
CN102326262A (zh) 2012-01-18
US20110203651A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
CN102326262B (zh) 太阳能电池及其制造方法
CN102326266B (zh) 发光二极管元件及其制造方法
JP5364782B2 (ja) 太陽電池の製造方法
JP5520496B2 (ja) 太陽電池の製造方法
TWI491064B (zh) Iii族氮化物半導體發光元件及該製造方法、以及燈
US8663802B2 (en) Substrate and method for fabricating the same
TW200901513A (en) Method for producing group III nitride semiconductor light emitting device, group III nitride semiconductor light emitting device, and lamp
JPH05343741A (ja) 窒化ガリウム系半導体素子及びその製造方法
CN102742024B (zh) 太阳能电池及其制造方法
KR20090057453A (ko) Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프
CN103999232A (zh) 多量子阱太阳能电池及多量子阱太阳能电池的制造方法
CN213150800U (zh) 一种具有纳米夹层的氮化铝成核层结构
CN104037282A (zh) 生长在Si衬底上的AlGaN薄膜及其制备方法和应用
JP2011108962A (ja) フォトダイオードおよびその製造方法
JP2011108963A (ja) 半導体基板およびその製造方法
Huang et al. Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array
CN101542756A (zh) Ⅲ族氮化物半导体发光元件的制造方法、ⅲ族氮化物半导体发光元件和灯
Wang et al. GaN films fabricated by ammoniating electrodeposited layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150225

Termination date: 20191020