CN102245717B - 可变形颗粒的生产 - Google Patents

可变形颗粒的生产 Download PDF

Info

Publication number
CN102245717B
CN102245717B CN200980150244.5A CN200980150244A CN102245717B CN 102245717 B CN102245717 B CN 102245717B CN 200980150244 A CN200980150244 A CN 200980150244A CN 102245717 B CN102245717 B CN 102245717B
Authority
CN
China
Prior art keywords
additive
particle
suspension
powder
nanometer powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980150244.5A
Other languages
English (en)
Other versions
CN102245717A (zh
Inventor
A·科萨拉姆
B·韦德亚纳桑
B·P·C·拉加帕希
J·G·P·宾纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEFORMABLE GRANULE PRODUCTION
Original Assignee
DEFORMABLE GRANULE PRODUCTION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEFORMABLE GRANULE PRODUCTION filed Critical DEFORMABLE GRANULE PRODUCTION
Publication of CN102245717A publication Critical patent/CN102245717A/zh
Application granted granted Critical
Publication of CN102245717B publication Critical patent/CN102245717B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/045Agglomeration, granulation, pelleting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种形成颗粒的方法,该方法包括形成纳米粉末如包含氧化钇的纳米氧化锆粉末的悬浮液。由悬浮液形成粉末,并将氟利昂直接添加到悬浮液作为添加剂。然后,通过喷雾冷冻干燥使悬浮液粒化,并随后通过热处理除去氟利昂。由去除的氟利昂遗留的空隙在颗粒中提供中等、微观和宏观缺陷或结构瑕疵。

Description

可变形颗粒的生产
技术领域
本发明涉及由纳米粉末(特别地是但不仅仅是陶瓷纳米粉末)形成颗粒的方法,也涉及生产元件的方法。
背景技术
几种纳米材料已被证明产生适合各种应用的理想的特性。例如,纳米颗粒大小的氧化铝已经制造成独特的透明形式。纳米氧化锆已被证明比传统的氧化锆陶瓷材料具有更高的水热稳定性(hydrothermal stability)和断裂韧性。然而,纳米陶瓷元件的大量生产仍然是大的挑战。
模压是优选的元件制造路线。但是非凝聚的陶瓷纳米粉末是凝聚性的且具有差的流动性,并因而具有差的装模特性。克服这个问题的一种方法来使其粒化。然而,纳米粉末在造粒过程中具有形成硬团块的倾向,导致纳米元件可能具有不良的材料性能。
随着颗粒密度的增加,初级微粒(primary particle)(纳米粉末)紧密堆积在颗粒内。由于微粒间的距离减小,如此形成的团块是坚硬的,即当向它们施加压力时,它们抵抗变形,并且这导致在烧结阶段过度的晶粒生长,从而丧失了有利的纳米结构。低密度颗粒一般是软质的并因此被粉碎成很细的微粒,因而在固结时产生均质的纳米结构。但后者具有流动性和填充特性差的问题。
发明内容
根据本发明的第一方面,提供了形成颗粒的方法,该方法包括形成纳米粉末的悬浮液,向悬浮液加入添加剂,干燥悬浮液从而形成颗粒,和从颗粒除去至少大部分添加剂以在颗粒中形成缺陷(flaw)。
可以产生纳米微粒的浓缩悬浮液,且可以通过本申请人的专利申请PCT/GB06/002081的方法产生浓缩悬浮液。
添加剂可以是发泡剂或成孔剂(pore former)。添加剂可以具有低于100℃的沸点或升华温度。添加剂可以是流体或固体。
添加剂可以是氟利昂、辛基苯基聚氧乙烯醚(octylphenoxypolyethoyethanol)(如从Atlanta,USA的NationalDiagnostics Inc购得的Triton X)、C6-10醇乙氧基硫酸铵(ammoniumC6-10 alcohol ethoxysulfate)(如从Ontario,Canda的Stepan Canada Inc购得的α发泡剂)或莰烯中的任何一种。
添加剂可以直接加入到悬浮液中,或可以以溶液加入。
悬浮液可以进行干燥从而形成一般球形的颗粒,且可以使用喷雾设备干燥。悬浮液可以使用喷雾冷冻干燥或喷雾干燥来进行干燥。
作为替代方案,可以通过流化或使用剪切造粒机形成颗粒。
除去添加剂可以包括加热颗粒和/或使颗粒经受减压。加热可以包括微波加热。
至少部分添加剂可以以受控的方式除去,以使得通过除去添加剂在颗粒中提供缺陷。
至少部分添加剂可以快速除去,以使得在颗粒中产生裂缝或其他构造而提供缺陷。
可以向悬浮液添加额外的添加剂,该添加剂可以作为粘合剂、增塑剂或润滑剂发挥作用。
纳米粉末可以是陶瓷粉末,可以是氧化锆粉末,且可以是包含最高达10摩尔%氧化钇的氧化钇稳定的氧化锆。纳米粉末可以具有基本上20nm的粒度。
悬浮液可以是水性的或非水性的。
根据本发明的第二方面,提供了元件的制造方法,所述方法包括通过前面十三段的任何一段中的方法形成颗粒,将颗粒置于模压机中,并模压颗粒以使得颗粒在挤压过程中粉碎以形成生压坯(green compact)。
随后可以烧制生压坯。
附图说明
下面只是为了举例并参考附图描述本发明的实施方式,其中:
图1是非本发明的模压压坯的断裂面的显微图像;
图2是图1的类似视图,但是是根据本发明的模压压坯的视图;
图3是按照本发明产生的类似于图2的模压压坯的孔体积相对于孔径的水银孔率法(Mercury Porosimetry)曲线图;和
图4是经霍尔流量计(Hall flowmeter)测试的根据本发明和其他方法制造的颗粒的质量流率相对于孔直径(orifice diameter)的曲线图。
具体实施方式
根据本申请人的专利申请PCT/GB06/002081的方法,将具有基本上20nm粒度、包含3摩尔%氧化钇的氧化钇稳定的氧化锆纳米粉末形成60重量%的固体浓缩悬浮液。直接向该悬浮液中添加氟利昂作为添加剂,并完全地混合。
通过喷雾冷冻干燥使悬浮液成粒,其包括将悬浮液喷雾到冷冻机(cryogent)中,然后在真空状态下在低温下驱出液体。然后通过70℃的热处理一小时除去氟利昂。由去除的氟利昂遗留的空隙在颗粒中提供中等(meso)、微观(micro)和宏观(macro)缺陷或结构瑕疵。
然后将颗粒置于模压机中,并模压以形成生压坯。颗粒的模压导致颗粒被压碎并碎裂成其初级微粒。随后可以烧制生压坯。
如此产生的颗粒具有如图4中所示的使用霍尔流量计测量的良好流动性,图4比较了由菱形标记所示的上述颗粒化纳米粉末、由三角标记所示的类似的但没有氟利昂添加剂的颗粒和由正方形标记所示的Tosoh(从日本的Tosoh Corporation购买的亚微米氧化锆粉末,并在这种情况下用作基准标准物)。
通过上述方法制造的颗粒比在无氟利昂添加剂的情况下制造的颗粒强度弱,且通过所述方法制造的模压生压坯的如图2所示的断裂面显示均匀的微观结构,因此其可以被烧结成为致密的纳米晶粒陶瓷。这与其中没有使用添加剂且可以看到未压碎的硬团块的图1形成对比。由本发明的颗粒制造的压坯的水银孔率数据也证实获得了缺乏大孔的微结构(图3)。这证明通过颗粒被模压压碎。
因此,本发明提供形成具有良好流动性也具有高的可压碎性的软质可变形的纳米颗粒的方法。这意味着颗粒可以在模压过程中被粉碎成其初级微粒,以提供由上述纳米微粒提供的优势。
需要理解的是,可以在不背离本发明范围的情况下进行相对于上面描述的实例的许多改变。例如,可以使用不同的添加剂,且可能的例子包括聚乙二醇辛基苯基醚(如从Atlanta,USA的National Diagnostics Inc购得的Triton X)、C6-10醇乙氧基硫酸铵(如从Ontario,Canda的StepanCanada Inc购得的α发泡剂)或莰烯。添加剂一般为发泡剂或成孔剂,且如果添加剂具有低于100℃的沸点或者是在低于100℃的温度下升华的可升华固体是有利的。添加剂可以直接加入到悬浮液中,或可以作为溶液的部分加入。
颗粒可以通过喷雾干燥、流化或使用剪切造粒机形成。可以使用加热和/或使颗粒经受减压除去添加剂。加热可以包括微波加热。可以缓慢地和以受控的方式除去添加剂以在添加剂所在的位置产生空隙,该空隙在颗粒中提供缺陷。或者,可以快速地除去添加剂,以产生裂缝或其他构造而提供缺陷。
可以向悬浮液添加额外的添加剂以作为粘合剂、增塑剂或润滑剂发挥作用。可以使用不同的纳米粉末,其可以是不同的氧化锆或其他陶瓷,或者其他材料,包括例如药品。悬浮液可以是水性的或非水性的。
虽然在上述说明书中试图关注被认为特别重要的本发明的那些特征,但是应该理解:本申请人要求保护本文提及的和/或图中所示的任何可专利的特征或特征的组合,不论其是否被特别强调。

Claims (25)

1.一种形成颗粒的方法,所述方法包括形成纳米粉末的悬浮液,向悬浮液加入添加剂,干燥悬浮液从而形成颗粒,并从颗粒除去至少大部分添加剂而在颗粒中形成缺陷,其中所述添加剂具有低于100℃的沸点或升华温度。
2.根据权利要求1的方法,其中,在加入所述添加剂之前产生纳米微粒的浓缩悬浮液。
3.根据权利要求1的方法,其中,所述添加剂是发泡剂或成孔剂。
4.根据权利要求1-3任一项的方法,其中,所述添加剂是流体或固体。
5.根据权利要求1-3任一项的方法,其中,所述添加剂是氟利昂、辛基苯基聚氧乙烯醚、C6-10醇乙氧基硫酸铵或莰烯中的任何一种。
6.根据权利要求5的方法,其中所述辛基苯基聚氧乙烯醚是从Atlanta,USA的National Diagnostics Inc购得的Triton X,和所述C6-10醇乙氧基硫酸铵是从Ontario,Canda的Stepan Canada Inc购得的α发泡剂。
7.根据权利要求1-3任一项的方法,其中,所述添加剂被直接添加到悬浮液中。
8.根据权利要求1-3的任一项的方法,其中,所述添加剂以溶液添加到悬浮液中。
9.根据权利要求1-3任一项的方法,其中,所述悬浮液经干燥,从而形成一般球形的颗粒。
10.根据权利要求9的方法,其中,使用喷雾设备干燥所述悬浮液。
11.根据权利要求10的方法,其中,使用喷雾冷冻干燥来干燥所述悬浮液。
12.根据权利要求10的方法,其中所述悬浮液使用喷雾干燥进行干燥。
13.根据权利要求1-3的任一项的方法,其中,所述颗粒通过流化或使用剪切造粒机形成。
14.根据权利要求1-3任一项的方法,其中,除去添加剂包括加热颗粒和/或使颗粒经受减压。
15.根据权利要求14的方法,其中,所述加热包括微波加热。
16.根据权利要求1-3任一项的方法,其中,至少部分添加剂以受控的方式除去,以使得通过除去添加剂在颗粒中提供缺陷。
17.根据权利要求1-3任一项的方法,其中,向悬浮液添加额外的添加剂,该添加剂可以作为粘合剂、增塑剂或润滑剂发挥作用。
18.根据权利要求1-3任一项的方法,其中,所述纳米粉末是陶瓷粉末。
19.根据权利要求18的方法,其中,所述纳米粉末是氧化锆粉末。
20.根据权利要求19的方法,其中,所述纳米粉末是包含最高达10摩尔%氧化钇的氧化钇稳定的氧化锆。
21.根据权利要求1-3任一项的方法,其中,所述纳米粉末具有20nm的粒度。
22.根据权利要求1-3任一项的方法,其中,所述悬浮液是水性的。
23.根据权利要求1-3的任一项的方法,其中,所述悬浮液是非水性的。
24.一种制造元件的方法,所述方法包括通过前述任一项权利要求的方法形成颗粒,将颗粒置于模压机中,并模压颗粒以使得颗粒在模压过程中粉碎以形成生压坯。
25.根据权利要求24的方法,其中,随后烧制所述生压坯。
CN200980150244.5A 2008-10-15 2009-10-14 可变形颗粒的生产 Expired - Fee Related CN102245717B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0818851A GB2464473B (en) 2008-10-15 2008-10-15 Deformable granule production
GB0818851.8 2008-10-15
PCT/GB2009/002463 WO2010043864A2 (en) 2008-10-15 2009-10-14 Deformable granule production

Publications (2)

Publication Number Publication Date
CN102245717A CN102245717A (zh) 2011-11-16
CN102245717B true CN102245717B (zh) 2014-07-09

Family

ID=40084027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980150244.5A Expired - Fee Related CN102245717B (zh) 2008-10-15 2009-10-14 可变形颗粒的生产

Country Status (6)

Country Link
US (1) US8425809B2 (zh)
EP (1) EP2346951B1 (zh)
JP (1) JP5977027B2 (zh)
CN (1) CN102245717B (zh)
GB (1) GB2464473B (zh)
WO (1) WO2010043864A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3013306B1 (en) 2013-06-27 2020-07-22 Ivoclar Vivadent, Inc. Nanocrystalline zirconia and methods of processing thereof
US9822039B1 (en) 2016-08-18 2017-11-21 Ivoclar Vivadent Ag Metal oxide ceramic nanomaterials and methods of making and using same
CN112125663B (zh) * 2020-08-14 2022-06-28 广东省科学院稀有金属研究所 一种单分散的氧化钇稳定氧化锆纳米粉体的制备方法
CN113087524B (zh) * 2021-04-14 2022-06-07 上海交通大学 一种纳米氧化锆球形粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1377857A (zh) * 2002-03-08 2002-11-06 湖南百富瑞材料有限责任公司 大颗粒球形纳米陶瓷粉末的生产方法和应用方法
CN1384511A (zh) * 2001-04-27 2002-12-11 Tdk株式会社 生产用于模压铁氧体的颗粒的方法,用于模压铁氧体的颗粒,生坯和烧结体
CN1793058A (zh) * 2005-11-10 2006-06-28 上海交通大学 大颗粒球形金属陶瓷纳米复合喷涂粉体的制备方法
CN101200375A (zh) * 2007-11-16 2008-06-18 北京矿冶研究总院 纳米含锆系列热障涂层材料制备方法
CN101223107A (zh) * 2005-06-22 2008-07-16 拉夫伯勒大学企业有限公司 浓缩纳米悬浮液的方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004710A (en) 1987-06-08 1991-04-02 Exxon Research And Engineering Company Method for the chemical preparation of zirconia alloy powders and article
US4853353A (en) 1988-01-25 1989-08-01 Allied-Signal Inc. Method for preventing low-temperature degradation of tetragonal zirconia containing materials
JP2762495B2 (ja) 1988-12-12 1998-06-04 東ソー株式会社 耐食性および耐熱水性に優れたジルコニア焼結体
KR0165869B1 (ko) 1995-10-17 1998-12-15 김은영 내 저온열화 지르코니아 재료 및 그것의 제조방법
DE19614136A1 (de) 1996-04-10 1997-10-16 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung agglomeratfreier nanoskaliger Eisenoxidteilchen mit hydrolysebeständigem Überzug
US5996528A (en) 1996-07-02 1999-12-07 Novellus Systems, Inc. Method and apparatus for flowing gases into a manifold at high potential
US6069103A (en) 1996-07-11 2000-05-30 Saint-Gobain/Norton Industrial Ceramics Corporation LTD resistant, high strength zirconia ceramic
US5932507A (en) 1998-02-19 1999-08-03 Van Weeren; Remco Method for preventing low-temperature degradation of tetragonal zirconia containing materials
JPH11278833A (ja) * 1998-03-31 1999-10-12 Kyocera Corp セラミックス粉末及びその合成方法
IL125855A (en) * 1998-04-06 2007-06-03 Technion R & D Foundation Ltd Method for the production of foamed ceramic materials
CA2340836A1 (en) * 2000-03-18 2001-09-18 Degussa Ag Granular product
WO2002094716A1 (en) * 2001-05-23 2002-11-28 Svenska Rymdaktiebolaget Sintering resistant catalyst material and a method for the preparation thereof
SE0101852D0 (sv) * 2001-05-23 2001-05-23 Svenska Rymdaktiebolaget Method of preparing granules
KR100439738B1 (ko) * 2002-03-11 2004-07-12 한국과학기술연구원 액상 응결법에 의한 분말 과립 제조 및 그 성형 방법
DE10225125A1 (de) 2002-06-06 2003-12-18 Goldschmidt Ag Th Wässerige Dispersion enthaltend pyrogen hergestellte Metalloxidpartikel und Dispergierhilfsmittel
WO2005017226A1 (en) 2003-01-10 2005-02-24 University Of Connecticut Coatings, materials, articles, and methods of making thereof
JP4470378B2 (ja) 2003-02-28 2010-06-02 住友化学株式会社 ジルコニア焼結体およびその製造方法
US7519419B2 (en) 2003-03-10 2009-04-14 Alfred E. Mann Foundation For Scientific Research Material and method of forming yttria-stabilized zirconia to minimize low-temperature degradation
JP4465173B2 (ja) 2003-09-10 2010-05-19 京セラ株式会社 複合セラミックスおよびその製法
US7618731B2 (en) 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
US7037603B2 (en) 2004-05-25 2006-05-02 Alfred E. Mann Foundation For Scientific Research Material and method to prevent low temperature degradation of zirconia in biomedical implants
US7297420B2 (en) 2004-08-27 2007-11-20 Alfred E. Mann Foundation For Scientific Research Material to prevent low temperature degradation of zirconia
JP2006248858A (ja) 2005-02-10 2006-09-21 Daiichi Kigensokagaku Kogyo Co Ltd イットリア安定化ジルコニア質焼結体及びその製造方法
JP4210267B2 (ja) * 2005-03-22 2009-01-14 日本特殊陶業株式会社 仮焼粉末の製造方法
US20100041542A1 (en) 2006-12-29 2010-02-18 Rolf Jacqueline C Zirconia body and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384511A (zh) * 2001-04-27 2002-12-11 Tdk株式会社 生产用于模压铁氧体的颗粒的方法,用于模压铁氧体的颗粒,生坯和烧结体
CN1377857A (zh) * 2002-03-08 2002-11-06 湖南百富瑞材料有限责任公司 大颗粒球形纳米陶瓷粉末的生产方法和应用方法
CN101223107A (zh) * 2005-06-22 2008-07-16 拉夫伯勒大学企业有限公司 浓缩纳米悬浮液的方法
CN1793058A (zh) * 2005-11-10 2006-06-28 上海交通大学 大颗粒球形金属陶瓷纳米复合喷涂粉体的制备方法
CN101200375A (zh) * 2007-11-16 2008-06-18 北京矿冶研究总院 纳米含锆系列热障涂层材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Changsing Hwang,Chia-ho Yu.Formation of nanostructured YSZ/Ni anode with pore channels by plasma spraying.《Surface & Coatings Technology》.2007,第201卷(第12期),5955-5956.
Changsing Hwang,Chia-ho Yu.Formation of nanostructured YSZ/Ni anode with pore channels by plasma spraying.《Surface &amp *
Coatings Technology》.2007,第201卷(第12期),5955-5956. *

Also Published As

Publication number Publication date
EP2346951B1 (en) 2016-12-07
JP5977027B2 (ja) 2016-08-24
GB2464473B (en) 2012-09-12
US20110241236A1 (en) 2011-10-06
WO2010043864A3 (en) 2010-06-17
GB0818851D0 (en) 2008-11-19
CN102245717A (zh) 2011-11-16
EP2346951A2 (en) 2011-07-27
US8425809B2 (en) 2013-04-23
WO2010043864A2 (en) 2010-04-22
GB2464473A (en) 2010-04-21
JP2012505818A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
Chang et al. Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 microfiltration membrane supports
Liu et al. Porous Al2O3–ZrO2 composites fabricated by an ice template method
JP5658294B2 (ja) 耐火セラミック複合材およびその製造方法
WO2011125797A1 (ja) セラミックハニカムフィルタ及びその製造方法
CN109173748A (zh) 一种粉煤灰陶瓷膜的制备方法
CN101553445A (zh) 钛酸铝质陶瓷蜂窝状结构体的制造方法
CN102245717B (zh) 可变形颗粒的生产
US8303889B2 (en) Method for making a SiC based ceramic porous body
US20130109788A1 (en) Spherical alpha silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
US7998381B2 (en) Process for manufacturing a masterbatch for injection moulding or for extrusion
Kwon et al. Optimization of inorganic powder properties for manufacturing ceramic filter using binder jetting process
JP5102306B2 (ja) パイロジェニックSiO2からのバインダー無添加の成形体の製造方法
Santacruz et al. Preparation of cordierite materials with tailored porosity by gelcasting with polysaccharides
CN114057477B (zh) 一种干法制备得到的多孔硅酸锆及其制备方法
CN105645941B (zh) 一种超细多孔硅酸钙陶瓷膜的制备方法
JP4713214B2 (ja) 多孔質セラミックスの製造方法
CN107459272A (zh) 多孔质陶瓷结构体及其制造方法
JP2005336539A (ja) 多孔質焼結体及びその製造方法
JPH02279553A (ja) セラミックス成形物およびその製造方法
JPH038779A (ja) 多孔質セラミックス成形物の製造方法
Maitra A Brief Description of the Processing of Ceramics
JP2002255658A (ja) セラミックス成形体製造用顆粒、それを用いた成形体及び焼結体
JPH09286658A (ja) セラミックス球状中空体の製造方法およびセラミックス球状中空体を構成要素とするセラミックスパネルの製造方法
JPH0482083B2 (zh)
JPH061673A (ja) 多孔質セラミックの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709

Termination date: 20151014

EXPY Termination of patent right or utility model