CN105645941B - 一种超细多孔硅酸钙陶瓷膜的制备方法 - Google Patents

一种超细多孔硅酸钙陶瓷膜的制备方法 Download PDF

Info

Publication number
CN105645941B
CN105645941B CN201610014543.8A CN201610014543A CN105645941B CN 105645941 B CN105645941 B CN 105645941B CN 201610014543 A CN201610014543 A CN 201610014543A CN 105645941 B CN105645941 B CN 105645941B
Authority
CN
China
Prior art keywords
calcium silicate
small
powder
ceramic membrane
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610014543.8A
Other languages
English (en)
Other versions
CN105645941A (zh
Inventor
李明辉
陈航宇
张宁月
王焕平
徐时清
雷若姗
李银艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610014543.8A priority Critical patent/CN105645941B/zh
Publication of CN105645941A publication Critical patent/CN105645941A/zh
Application granted granted Critical
Publication of CN105645941B publication Critical patent/CN105645941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0605Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by sublimating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开的超细多孔硅酸钙陶瓷膜的制备方法,步骤如下:先以CaCO3和SiO2为原料,在1270~1290℃的温度下合成硅酸钙粉体,然后进行对辊粉碎,过325目筛;将过筛的硅酸钙粉体加到去离子水或加到溶解有葡萄糖的去离子水中,搅拌混合,喷雾干燥后,放入模具中模压成型,经保温挥发出水分,冷却后再放入等静压机中进行等静压,再经过烧结,得到超细多孔硅酸钙陶瓷膜。本发明制备的硅酸钙陶瓷膜具有孔径细小、孔隙分布均匀的特点,在过滤、净化分离、化工催化载体等领域具有重要的应用前景。

Description

一种超细多孔硅酸钙陶瓷膜的制备方法
技术领域
本发明涉及一种多孔陶瓷膜的制备方法,具体涉及一种超细多孔硅酸钙陶瓷膜的制备方法,属于材料科学技术领域。
背景技术
多孔陶瓷又称为气孔功能陶瓷,是指具有一定尺寸和数量孔隙结构的新型陶瓷材料。由于多孔陶瓷具有均匀分布的微孔或孔洞,孔隙率较高、体积密度小、比表面较大和独特的物理表面特性,对液体和气体介质有选择的透过性、能量吸收或阻尼特性,而且作为陶瓷材料还具有耐高温、耐腐蚀、高的化学稳定性和尺寸稳定性;因此,多孔陶瓷这一绿色材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、高级保温材料、生物植入材料、特种墙体材料和传感器材料等多方面得到广泛应用。高孔隙率的多孔陶瓷已经用于废水、废气的处理,其优点是能够保证更好和更可靠的水质,不用化学物质,特别适合于高附加值产品。无机陶瓷膜在废水处理中的应用主要包括处理含油废水、纺织废水、化工废水、放射性废水、含重金属废水、城市生活污水和造纸废水等。
目前,多孔陶瓷的最小孔径一般在3~5 μm左右,很难再做得更细小。然而,如果要保证更优秀的过滤性能,其孔径尺寸应该更小或达到纳米级。硅酸钙是一种潜在的、具有广阔应用前景的生物活性材料,其可以被制备成多孔陶瓷并用于骨骼替代等,如林开利等(无机材料学报, 2005, 20: 962)采用聚乙二醇为造孔剂,制备出了大孔径200~500 μm的多孔硅酸钙陶瓷,并对其体外活性及降解性展开了研究。但所见报道的多孔硅酸钙陶瓷的孔径一般在几百微米左右,很难做到纳米级。
发明内容
本发明的目的是提供一种能制备出孔径细小、并可以达到纳米级的多孔硅酸钙陶瓷膜的制备方法。
本发明提出的超细多孔硅酸钙陶瓷膜的制备方法,包括以下步骤:
(1)称取相同摩尔数的CaCO3与SiO2放入球磨机中,以氧化锆球为磨介,球磨混合6~24小时,然后将混合物烘干并在1270~1290℃煅烧1~5小时;
(2)将上述经过煅烧的产物进行对辊粉碎,对辊机中两辊筒的间距控制在40~50 μm,然后过325目的筛子,获得粒度小于325目的硅酸钙粉体;
(3)按上述硅酸钙粉体质量的0~10%称取葡萄糖,溶解于去离子水中,然后加入上述硅酸钙粉体,在搅拌机中搅拌混合0.5~2小时;
(4)将上述搅拌混合后的物质进行喷雾干燥,除掉去离子水,获得粉体;
(5)将喷雾干燥后获得的粉体放入模具中,在30~40 MPa的压力下成型,然后升温到380~420℃保温1~3小时,冷却后再放入等静压机中,在100~200 MPa下进行等静压;
(6)将等静压后的产物放在高温炉中,在850~950℃保温2~6小时,接着继续升温到1290~1320℃保温2~4小时,然后随炉冷却至室温。
本发明制备过程中,步骤(1)的煅烧温度一定要进行严格控制,如果低于1270℃,所合成的硅酸钙粉体颗粒偏小,不利于后继孔隙的形成;但如果煅烧温度超过1290℃,可能会造成硅酸钙趋于陶瓷化,产物变得坚硬不易粉碎,而且粉体颗粒尺寸过大,后继的孔隙率会下降。所以,本发明将煅烧温度控制在1270~1290℃之间,一方面使硅酸钙粉体颗粒有所增大并发生相互粘连,另一方面不会出现烧成结块的现象。
步骤(2)的对辊机中两辊筒的间距应控制在40~50 μm。上述经过1270~1290℃煅烧获得的硅酸钙粉体,其一次粒径大小一般在2~10 μm左右,相邻的颗粒间会同时出现粘连现象;对辊机中两辊筒的间距决定了最后粉体的粒径大小,若辊筒的间距过小,将导致硅酸钙粉体的粒径太小,不利于后继孔隙的形成;但若辊筒的间距过大,相互粘连的硅酸钙粉体颗粒难以分开,导致硅酸钙粉体的粒径过大,后继的孔隙率会下降、且孔径会大幅度增大。
通过步骤(3)和步骤(4),实现了葡萄糖以分子级水平在硅酸钙粉体表面的包覆,这为后继制备出超细的孔径奠定了基础。
步骤(5)先使表面包覆葡萄糖的硅酸钙粉体在较低压力下成型,再在380~420℃使葡萄糖(C6H12O6)发生分解、挥发出水分;这样低的成型压力(30~40 MPa)有利于水分的挥发并有效防止素坯发生开裂。葡萄糖分解后将残留碳,这样在硅酸钙粉体颗粒间隙出现细小的碳颗粒;再在100~200 MPa下进行等静压,即可使硅酸钙坯体较为致密。
步骤(6)在850~950℃保温2~6小时,可使硅酸钙坯体中残留的碳挥发,留下气孔;接着继续升温到1290~1320℃保温2~4小时实现硅酸钙陶瓷的烧结,得到超细多孔硅酸钙陶瓷膜。
本发明具有以下有益效果:通过严格控制煅烧温度1270~1290℃与两辊筒间距40~50 μm,获得粒径大小合适的硅酸钙粉体,然后在硅酸钙粉体表面进行葡萄糖的包覆,并通过低压(30~40 MPa)成型、低温(380~420℃)燃烧排水、高压(100~200 MPa)成型、高温(850~950℃)排碳、高温(1290~1320℃)烧结等环环相扣的工艺,可以获得具有细小孔径的硅酸钙陶瓷,其孔径可以小于100 nm;且孔隙分布均匀,本发明制备的硅酸钙陶瓷膜在过滤、净化分离、化工催化载体等领域具有重要的应用前景。
附图说明
图1是实施例1制备的超细多孔硅酸钙陶瓷膜的扫描电镜照片;
图2是实施例2制备的超细多孔硅酸钙陶瓷膜的扫描电镜照片;
图3是实施例3制备的超细多孔硅酸钙陶瓷膜的扫描电镜照片。
具体实施方式
下面结合实例对本发明作进一步描述。
实施例1:
称取1摩尔的CaCO3与1摩尔的SiO2放入球磨机中,以氧化锆球为磨介,球磨混合12小时,然后将混合物烘干并在1290℃煅烧5小时;将上述经过高温煅烧的产物进行对辊粉碎,对辊机中两辊筒的间距调节至50 μm,然后过325目的筛子,获得粒度小于325目的硅酸钙粉体。将上述硅酸钙粉体放入去离子水中,并在搅拌机中搅拌混合0.5小时,然后进行喷雾干燥,除掉去离子水,获得粉体。将喷雾干燥后获得的粉体放入模具中,在40 MPa的压力下成型,然后升温到420℃保温1小时,冷却后再放入等静压机中,在200 MPa下进行等静压。将等静压后的产物放在高温炉中,升温到850℃保温2小时,接着继续升温到1320℃保温4小时,然后随炉冷却至室温,得到超细多孔硅酸钙陶瓷膜,其扫描电镜照片见图1,可见孔隙分布均匀,孔径在1~2 μm。
实施例2:
称取1摩尔的CaCO3与1摩尔的SiO2放入球磨机中,以氧化锆球为磨介,球磨混合6小时,然后将混合物烘干并在1280℃煅烧2小时;将上述经过高温煅烧的产物进行对辊粉碎,对辊机中两辊筒的间距调节至45 μm,然后过325目的筛子,获得粒度小于325目的硅酸钙粉体。按上述硅酸钙粉体质量的5%称取葡萄糖,溶解于去离子水中,然后将上述硅酸钙粉体加入,在搅拌机中搅拌混合1小时,然后进行喷雾干燥,除掉去离子水,获得粉体。将喷雾干燥后获得的粉体放入模具中,在30 MPa的压力下成型,然后升温到380℃保温3小时,冷却后再放入等静压机中,在150 MPa下进行等静压。将等静压后的产物放在高温炉中,升温到950℃保温6小时,接着继续升温到1300℃保温3小时,然后随炉冷却至室温,得到超细多孔硅酸钙陶瓷膜,其扫描电镜照片见图2,孔径在100~500 nm。
实施例3:
称取1摩尔的CaCO3与1摩尔的SiO2放入球磨机中,以氧化锆球为磨介,球磨混合24小时,然后将混合物烘干并在1270℃煅烧1小时;将上述经过高温煅烧的产物进行对辊粉碎,对辊机中两辊筒的间距调节至40 μm,然后过325目的筛子,获得粒度小于325目的硅酸钙粉体。按上述硅酸钙粉体质量的10%称取葡萄糖,溶解于去离子水中,然后将上述硅酸钙粉体加入,在搅拌机中搅拌混合2小时,然后进行喷雾干燥,除掉去离子水,获得粉体。将喷雾干燥后获得的粉体放入模具中,在35 MPa的压力下成型,然后升温到400℃保温2小时,冷却后再放入等静压机中,在100 MPa下进行等静压。将等静压后的产物放在高温炉中,升温到900℃保温4小时,接着继续升温到1290℃保温2小时,然后随炉冷却至室温,得到超细多孔硅酸钙陶瓷膜,其扫描电镜照片见图3,孔径在50~100 nm。

Claims (1)

1.一种超细多孔硅酸钙陶瓷膜的制备方法,其特征在于包括以下步骤:
(1)称取相同摩尔数的CaCO3与SiO2放入球磨机中,以氧化锆球为磨介,球磨混合6~24小时,然后将混合物烘干并在1270~1290℃煅烧1~5小时;
(2)将上述经过煅烧的产物进行对辊粉碎,对辊机中两辊筒的间距控制在40~50 μm,然后过325目的筛子,获得粒度小于325目的硅酸钙粉体;
(3)按上述硅酸钙粉体质量的0~10%称取葡萄糖,溶解于去离子水中,然后加入上述硅酸钙粉体,在搅拌机中搅拌混合0.5~2小时;
(4)将上述搅拌混合后的物质进行喷雾干燥,除掉去离子水,获得粉体;
(5)将喷雾干燥后获得的粉体放入模具中,在30~40 MPa的压力下成型,然后升温到380~420℃保温1~3小时,冷却后再放入等静压机中,在100~200 MPa下进行等静压;
(6)将等静压后的产物放在高温炉中,在850~950℃保温2~6小时,接着继续升温到1290~1320℃保温2~4小时,然后随炉冷却至室温。
CN201610014543.8A 2016-01-11 2016-01-11 一种超细多孔硅酸钙陶瓷膜的制备方法 Active CN105645941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610014543.8A CN105645941B (zh) 2016-01-11 2016-01-11 一种超细多孔硅酸钙陶瓷膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610014543.8A CN105645941B (zh) 2016-01-11 2016-01-11 一种超细多孔硅酸钙陶瓷膜的制备方法

Publications (2)

Publication Number Publication Date
CN105645941A CN105645941A (zh) 2016-06-08
CN105645941B true CN105645941B (zh) 2018-04-20

Family

ID=56486600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610014543.8A Active CN105645941B (zh) 2016-01-11 2016-01-11 一种超细多孔硅酸钙陶瓷膜的制备方法

Country Status (1)

Country Link
CN (1) CN105645941B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626979B (zh) * 2019-02-15 2022-03-22 中国计量大学 一种孔形可调的硅酸钙多孔陶瓷膜的制备方法
CN109650935B (zh) * 2019-02-15 2022-03-22 中国计量大学 一种孔形可调的氧化铝多孔陶瓷膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031415A (ja) * 1999-07-19 2001-02-06 Kagawaken Sangyo Gijutsu Shinko Zaidan 珪酸カルシウム系あるいはシリカ系多孔質成形体
CN1569736A (zh) * 2002-09-28 2005-01-26 中国科学院上海硅酸盐研究所 可降解多孔硅酸钙陶瓷生物活性材料的制备方法
CN102701778B (zh) * 2012-06-01 2013-10-16 清华大学 一种多级孔结构陶瓷膜的制备方法
CN104311117B (zh) * 2014-10-21 2016-01-13 武汉科技大学 一种莫来石泡沫陶瓷及其制备方法

Also Published As

Publication number Publication date
CN105645941A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
Ishizaki et al. Porous Materials: Process technology and applications
CN101759430B (zh) 一种制备多孔莫来石的方法
CN103739306B (zh) 一种定向多孔水泥的制备方法
CN102311268B (zh) 一种高致密碳化硅陶瓷球及其制备方法
CN101591177B (zh) 一种硅酸镁多孔陶瓷的制备方法
Fukushima et al. Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders
CN104446384B (zh) 一次共烧制备高强度陶瓷膜的方法
CN101830729B (zh) 多孔陶瓷过滤器及制备方法
Yuan et al. Preparation of calcium hexaluminate porous ceramics by novel pectin based gelcasting freeze-drying method
CN105645941B (zh) 一种超细多孔硅酸钙陶瓷膜的制备方法
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
CN103030419B (zh) 紫砂泡沫滤水陶瓷的制备方法
Wang et al. Recent progress in the pore size control of silicon carbide ceramic membranes
Zawrah et al. Effect of CTAB as a foaming agent on the properties of alumina ceramic membranes
CN108101544A (zh) 一种层片状梯度多孔碳化硅陶瓷及其制备方法
CN106007687B (zh) 一种采用高压相变法制备纳米多晶柯石英的方法
Li et al. Microstructures and properties of solid-state-sintered silicon carbide membrane supports
RU2076851C1 (ru) Формованное пористое изделие, полученное из пирогенного диоксида титана, и способ его изготовления
JP5102306B2 (ja) パイロジェニックSiO2からのバインダー無添加の成形体の製造方法
JP2002346321A (ja) 浄水フィルター
CN108147837A (zh) 一种轻质多孔陶瓷滤材及其制备方法
CN105693265B (zh) 一种制备氧化铝基多孔陶瓷膜的方法
Sczancoski et al. A versatile approach for the preparation of ceramics with porosity gradient: by using manganese and tin oxides as a model
CN102245717B (zh) 可变形颗粒的生产
Khattab et al. Fabrication of Porous TiO 2 Ceramics Using Corn Starch and Graphite as Pore Forming Agents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant