CN102212266A - 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法 - Google Patents

功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法 Download PDF

Info

Publication number
CN102212266A
CN102212266A CN 201110116428 CN201110116428A CN102212266A CN 102212266 A CN102212266 A CN 102212266A CN 201110116428 CN201110116428 CN 201110116428 CN 201110116428 A CN201110116428 A CN 201110116428A CN 102212266 A CN102212266 A CN 102212266A
Authority
CN
China
Prior art keywords
coupling agent
glass fiber
hour
acid
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110116428
Other languages
English (en)
Other versions
CN102212266B (zh
Inventor
邱军
王宗明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN 201110116428 priority Critical patent/CN102212266B/zh
Publication of CN102212266A publication Critical patent/CN102212266A/zh
Application granted granted Critical
Publication of CN102212266B publication Critical patent/CN102212266B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明属于纳米技术领域,具体涉及一种功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法。本发明将碳纳米管经过纯化,再进行羧基化,酰化后,将酰化的碳纳米管与带有活性氨基的偶联剂反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;最后将得到的增强体和双马来酰亚胺树脂复合,得到玻璃纤维增强双马来酰亚胺复合材料。本发明反应步骤简单,利用碳纳米管的强度和韧性改性玻璃纤维,制备的增强体可以强韧化树脂基体,显著提高复合材料的界面粘结强度以及复合材料的各项力学性能。本发明制备的复合材料可以广泛应用于航空航天、汽车船舶、交通运输、机械电子以及民用等技术领域。

Description

功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法
技术领域
本发明属于纳米技术领域,具体涉及一种功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法。
背景技术
双马来酰亚胺树脂是以BMI为活性端基的双官能团化合物。其树脂具有与典型热固性树脂相似的流动性和可模塑性,在加热或催化剂作用下可以交联固化,具有 优异的耐热性、电绝缘性、阻燃性、良好的力学性能、尺寸稳定性,机械性能,耐潮湿、耐化学品和耐宇宙射线等;而且加工性能良好、成型工艺灵活、原材料来源广泛以及成本低廉等,是一类理想的先进复合材料基体树脂;已广泛应用于航天航空、机械电子和交通运输等部门,如制作机械零件、内饰结构和耐高温胶黏剂等。
玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具玻璃纤维有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维是一种性能优异的无机非金属材料,种类繁多,具有绝缘性好、耐热性强、抗腐蚀性好,机械强度高等优点。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
发明内容
本发明的目的在于提供一种功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法。
本发明提出的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法是经过纯化,再进行羧基化,酰化后,将酰化的碳纳米管与带有活性氨基的偶联剂反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;最后将得到的增强体和双马来酰亚胺树脂复合,得到玻璃纤维增强双马来酰亚胺复合材料。具体步骤如下:
(1)称取0.1~1×10g干燥的碳纳米管和10~1×104mL无机酸混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~24小时,然后加热至20~150℃,反应1~48小时,经去离子水稀释洗涤,微孔滤膜抽滤,洗涤至滤液呈中性,在温度为25~150℃下真空干燥1~48小时,得到纯化的碳纳米管;
(2)将步骤(1)中得到的纯化碳纳米管0.1~1×10g和强氧化性酸1~1×103mL混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时,然后加热到25~120℃,搅拌并回流反应1~80小时,经去离子水稀释洗涤,超微孔滤膜抽滤,洗涤至滤液呈中性,在25~200℃温度下真空干燥1~48小时,得到酸化的碳纳米管;
(3)将步骤(2)所得酸化的碳纳米管0.1~1×10g与酰化试剂1~1×104g混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,加热到25~220℃,搅拌并回流反应0.5~100小时,抽滤并洗涤除去酰化试剂及副产物,得到酰化的碳纳米管;
(4)将步骤(3)所得酰化的碳纳米管0.1~1×10g与1~1×103mL的偶联剂混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,在5~200℃温度下反应0.5~48小时,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到碳纳米管表面接枝有偶联剂。
(5)将步骤(4)所得表面接枝有偶联剂的碳纳米管0.1~1×10g和1~1×103mL有机溶剂混合,以1~120kHz超声波或搅拌处理1分钟~24小时,使表面接枝有偶联剂的碳纳米管均匀分散在有机溶剂中,在5~150℃温度下,加入干燥的玻璃纤维1~1×103g,反应1分钟~96小时后,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到功能化玻璃纤维增强体。
(6)将步骤(5)得到的表面接枝有碳纳米管的玻璃纤维增强体1~1×102g、双马来酰亚胺树脂1~1×103g和共聚改性体1~1×103g经模压复合成型,在温度为90~280℃下真空除泡反应0.5~48小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
本发明中,步骤(1)中所述碳纳米管为电弧放电、化学气相沉淀、模板法、太阳能法或激光蒸发法中的任一种制备的单壁或多壁碳纳米管或以其任意比例混合的混合物。
本发明中,步骤(1)中所述无机酸为1~35%重量酸浓度的硝酸、1~55%重量酸浓度的硫酸或1~50%重量酸浓度的盐酸中任一种或其多种混合液。
本发明中,步骤(2)中所述强氧化性酸均为0.1~70%重量酸浓度硝酸、1~100%重量酸浓度硫酸、1∕100~100∕1摩尔比高锰酸钾和硫酸混合溶液、1∕100~100∕1摩尔比硝酸和硫酸混合溶液、1∕100~100∕1摩尔比高锰酸钾和硝酸混合溶液、1∕100~100∕1摩尔比过氧化氢和硫酸混合液、1∕100~100∕1摩尔比过氧化氢和盐酸混合液或1∕100~100∕1摩尔比过氧化氢和硝酸混合液中任一种或其多种组合。
本发明中,步骤(3)中所述酰化试剂为二氯亚砜、三氯化磷、五氯化磷、亚硫酰氯、三溴化磷、五溴化磷或亚硫酰溴中任一种或其多种组合。
本发明中,步骤(4)中所述偶联剂为铬络合物偶联剂、锆类偶联剂、硅烷类偶联剂、钛酸脂类偶联剂、铝酸酯类偶联剂、马来酸酐及其接枝共聚物类偶联剂、聚氨酯类偶联剂或嵌段聚合物类偶联剂中至少有一端带有活性氨基的偶联剂中任一种或其多种组合。
本发明中,步骤(5)中所述玻璃纤维为长纤维、短纤维或编织纤维中任一种或其多种组合。
本发明中,步骤(5)中所述有机溶剂为苯、甲苯、二甲苯、苯乙烯、丁基甲苯、全氯乙烯、三氯乙烯、乙烯基甲苯、乙烯乙二醇醚、二氯甲烷、二硫化碳、磷酸三邻甲酚、甲醇、乙醇、异丙醇、环己烷、环己酮、甲苯环己酮、乙醚、环氧丙烷、丙酮、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、氯苯、二氯苯、二氯甲烷、三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三氯丙烷、二氯乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环或四氢呋喃中的任一种或其多种组合。
本发明中,步骤(6)中所述双马来酰亚胺为二苯甲烷型双马来酰亚胺、二苯醚型双马来酰亚胺、烷基型双马来酰亚胺、对苯撑型双马来酰亚胺、间苯撑型双马来酰亚胺、邻苯撑型双马来酰亚胺或二苯砜型双马来酰亚胺中的任一中或其多种组合。
本发明中,步骤(6)中所述的共聚改性体可以为烯丙基化合物,包括二烯丙基双酚A、二烯丙基双酚S;可以为二元胺或多元胺,包括乙二胺、聚乙二胺、1,2-丙二胺、1,3-丙二胺、1,2-丁二胺、1,3-丁二胺、1,6-己二胺、对苯二胺、环己二胺、间苯二胺、间苯二甲胺、二胺基二苯基甲烷、孟烷二胺、二乙烯基丙胺、二胺基二苯基甲烷、氯化己二胺、氯化壬二胺、氯化癸二胺、十二碳二元胺、十三碳二元胺、三乙胺、丁三胺、N-胺乙基哌嗪、双氰胺、己二酸二酰肼、N,N-二甲基二丙基三胺、五甲基二乙烯三胺、N,N,N,N,N-五甲基二亚乙基三胺、四乙烯五胺、二乙烯三胺、三乙烯四胺、五乙烯六胺或六乙烯七胺、间苯二甲胺;可以为环氧,包括酚醛环氧树脂如F-44、F-51、F-48、F-46、JF-45、JF-43和双酚A环氧树脂如E-20、E-33、E-42、E-44、E-51、E-55。
本发明反应步骤简单,利用碳纳米管的强度和韧性改性偶联剂,制备的功能化玻璃纤维可以强韧化树脂基体的粘结性能,可以显著提高复合材料的界面粘结强度以及复合材料的各项力学性能。
附图说明
图1为实施例1中给出的功能化玻璃纤维增强双马来酰亚胺复合材料的描电镜图。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1:以化学气相沉积法制备的单壁碳纳米管(OD<8nm)和玻璃纤维为最初原料,单壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与γ-氨丙基三甲氧基硅烷偶联剂反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入5g经干燥的多壁碳纳米管原料和100mL、20%硝酸溶液,在40kHz超声波下处理1小时,然后加热至60℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,60℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料4g和100mL、60%重量浓度浓硝酸,经100kHz超声波处理1小时后加热到25℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管4g与酰化试剂60g混合,以40kHz超声波处理2小时后,加热到55℃,搅拌并回流反应48小时,抽滤并洗涤除去酰化试剂及副产物,在80℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管4.0g与300mL的偶联剂混合,在45℃下反应24小时,过滤并洗涤,在80℃真空干燥48小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管4.0g和300mL乙醇混合,以20kHz超声波处理1小时,使表面接枝有偶联剂的碳纳米管均匀分散在乙醇中,在50℃温度下,加入干燥的玻璃纤维500g,反应3小时后,过滤并洗涤,在70℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到的功能化玻璃纤维增强体500g、双马来酰亚胺树脂500g和450g二烯丙基双酚S经模压复合成型,在温度为280℃下真空除泡反应5小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为8.9%。
图1给出了功能化玻璃纤维增强双马来酰亚胺树脂复合材料描电镜图。
实施例2:以激光蒸发法制备的单壁碳纳米管(OD<1nm)和玻璃纤维为最初原料,单壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基三甲氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入2.1g经干燥的多壁碳纳米管原料和100mL、20%硝酸溶液,在50kHz超声波下处理1小时,然后加热至60℃,反应24小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤8次至滤液呈中性,70℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料2g和100mL、60%重量浓度浓硝酸,经100kHz超声波处理1小时后加热到25℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水反复洗涤10次至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管2g与酰化试剂20g混合,以40kHz超声波处理2小时后,加热到50℃,搅拌并回流反应48小时,抽滤并反复洗涤除去酰化试剂及副产物,在70℃下真空干燥40小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管2.0g与150mL的偶联剂混合,以1kHz超声波处理80小时后,在5℃温度下反应48小时,过滤并反复洗涤,在25℃温度下真空干燥48小时,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管2.0g和200mL甲醇混合,以40kHz超声波处理1.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在甲醇中,在55℃温度下,加入干燥的玻璃纤维150g,反应2小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到的功能化玻璃纤维增强体150g、双马来酰亚胺树脂150和50g双酚A环氧树脂E-51经模压复合成型,在温度为200℃下真空除泡反应12小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
XPS分析结果表明单壁碳纳米管表面酰基含量为8.6%。
实施例3:以激光蒸发法制备的多壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,多壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.1g经干燥的多壁碳纳米管原料和100mL、20%盐酸溶液,在40kHz超声波下处理1小时,然后加热至60℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤7次至滤液呈中性,65℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料1g和100mL、65%重量浓度浓硝酸,经70kHz超声波处理1小时后加热到65℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管1g与酰化试剂11g混合,以20kHz超声波处理4小时后,加热到65℃,搅拌并回流反应38小时,抽滤并洗涤除去酰化试剂及副产物,在70℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管1.0g与120mL的偶联剂混合,以30kHz超声波处理1小时后,在60℃温度下反应12小时,过滤并洗涤,在70℃温度下真空干燥12小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管1.0g和120mL丙酮混合,以20kHz超声波处理1.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在50℃温度下,加入干燥的玻璃纤维130g,反应1.5小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到的功能化玻璃纤维增强体130g、双马来酰亚胺树脂120g和40g双酚A环氧树脂E-42经模压复合成型,在温度为150℃下真空除泡反应48小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为7.8%。
实施例4:以激光蒸发法制备的单壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,单壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与γ-氨乙基氨丙基三甲氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.1g经干燥的多壁碳纳米管原料和100mL、30%硫酸溶液,在40kHz超声波下处理1小时,然后加热至50℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,60℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料1g和100mL、70%重量浓度浓硫酸,经100kHz超声波处理1小时后加热到120℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管1.0g与酰化试剂10g混合,以40kHz超声波处理3小时后,加热到55℃,搅拌并回流反应48小时,抽滤并洗涤除去酰化试剂及副产物,在80℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管1.0g与100mL的偶联剂混合,在50℃下反应24小时,过滤并洗涤,在80℃温度下真空干燥24小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管1.0g和100mL丙酮混合,以20kHz超声波处理0.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在55℃温度下,加入干燥的玻璃纤维120g,反应2小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到的功能化玻璃纤维增强体120g、双马来酰亚胺树脂100g和45g双酚A环氧树脂E-44经模压复合成型,在温度为90~280℃下真空除泡反应0.5~48小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为8.4%。
实施例5:以激光蒸发法制备的多壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,多壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.0g经干燥的多壁碳纳米管原料和100mL、20%盐酸溶液,在40kHz超声波下处理1小时,然后加热至60℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤6次至滤液呈中性,65℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料0.9g和100mL、65%重量浓度浓硝酸,经70kHz超声波处理1小时后加热到65℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管0.8g与酰化试剂10g混合,以30kHz超声波处理4小时后,加热到65℃,搅拌并回流反应38小时,抽滤并洗涤除去酰化试剂及副产物,在70℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管0.7g与90mL的偶联剂混合,以20kHz超声波处理2小时后,在60℃温度下反应12小时,过滤并洗涤,在70℃温度下真空干燥12小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管0.6g和80mL丙酮混合,以30kHz超声波处理3小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在50℃温度下,加入干燥的玻璃纤维20g,反应1.5小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到的功能化玻璃纤维增强体20g、双马来酰亚胺树脂20g和8g双酚A环氧树脂E-42经模压复合成型,在温度为150℃下真空除泡反应48小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为8.8%。
上述对实施例的描述是为了便于该技术领域的普通技术人员理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于具体步骤如下:
(1)称取0.1~1×10g干燥的碳纳米管和10~1×104mL无机酸混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~24小时,然后加热至20~150℃,反应1~48小时,经去离子水稀释洗涤,微孔滤膜抽滤,洗涤至滤液呈中性,在温度为25~150℃下真空干燥1~48小时,得到纯化的碳纳米管;
(2)将步骤(1)中得到的纯化碳纳米管0.1~1×10g和强氧化性酸1~1×103mL混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时,然后加热到25~120℃,搅拌并回流反应1~80小时,经去离子水稀释洗涤,超微孔滤膜抽滤,洗涤至滤液呈中性,在25~200℃温度下真空干燥1~48小时,得到酸化的碳纳米管;
(3)将步骤(2)所得酸化的碳纳米管0.1~1×10g与酰化试剂1~1×104g混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,加热到25~220℃,搅拌并回流反应0.5~100小时,抽滤并洗涤除去酰化试剂及副产物,得到酰化的碳纳米管;
(4)将步骤(3)所得酰化的碳纳米管0.1~1×10g与1~1×103mL的偶联剂混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,在5~200℃温度下反应0.5~48小时,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到碳纳米管表面接枝有偶联剂;
(5)将步骤(4)所得表面接枝有偶联剂的碳纳米管0.1~1×10g和1~1×103mL有机溶剂混合,以1~120kHz超声波或搅拌处理1分钟~24小时,使表面接枝有偶联剂的碳纳米管均匀分散在有机溶剂中,在5~150℃温度下,加入干燥的玻璃纤维1~1×103g,反应1分钟~96小时后,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到功能化玻璃纤维增强体;
(6)将步骤(5)得到的表面接枝有碳纳米管的玻璃纤维增强体1~1×102g、双马来酰亚胺树脂1~1×103g和共聚改性体1~1×103g经模压复合成型,在温度为90~280℃下真空除泡反应0.5~48小时,得到功能化玻璃纤维增强双马来酰亚胺树脂复合材料。
2.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(1)中所述碳纳米管包括化学气相沉积法、电弧放电法、太阳能法、模板法或激光蒸发法中的任一种制备的单壁或多壁碳纳米管或以其任意比例混合的混合物。
3.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(1)中所述无机酸为1~35%重量酸浓度的硝酸、1~55%重量酸浓度的硫酸或1~50%重量酸浓度的盐酸中任一种或其多种混合液。
4.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(2)中所述强氧化性酸为0.1~70%重量酸浓度硝酸、1~100%重量酸浓度硫酸、1∕100~100∕1摩尔比高锰酸钾和硫酸混合溶液、1∕100~100∕1摩尔比硝酸和硫酸混合溶液、1∕100~100∕1摩尔比高锰酸钾和硝酸混合溶液、1∕100~100∕1摩尔比过氧化氢和硫酸混合液、1∕100~100∕1摩尔比过氧化氢和盐酸混合液或1∕100~100∕1摩尔比过氧化氢和硝酸混合液中任一种或其多种组合。
5.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(3)中所述酰化试剂为二氯亚砜、三氯化磷、五氯化磷、亚硫酰氯、三溴化磷、五溴化磷或亚硫酰溴中任一种或其多种组合。
6.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(4)中所述偶联剂为铬络合物偶联剂、锆类偶联剂、硅烷类偶联剂、钛酸脂类偶联剂、铝酸酯类偶联剂、马来酸酐及其接枝共聚物类偶联剂、聚氨酯类偶联剂或嵌段聚合物类偶联剂中至少有一端带有活性氨基的偶联剂中任一种或其多种组合。
7.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(5)中所述玻璃纤维为长纤维、短纤维或编织纤维中任一种或其多种组合。
8.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(5)中所述有机溶剂为苯、甲苯、二甲苯、苯乙烯、丁基甲苯、全氯乙烯、三氯乙烯、乙烯基甲苯、乙烯乙二醇醚、二氯甲烷、二硫化碳、磷酸三邻甲酚、甲醇、乙醇、异丙醇、环己烷、环己酮、甲苯环己酮、乙醚、环氧丙烷、丙酮、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、氯苯、二氯苯、二氯甲烷、三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三氯丙烷、二氯乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环或四氢呋喃中的任一种或其多种组合。
9.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(6)中所述双马来酰亚胺为二苯甲烷型双马来酰亚胺、二苯醚型双马来酰亚胺、烷基型双马来酰亚胺、对苯撑型双马来酰亚胺、间苯撑型双马来酰亚胺、邻苯撑型双马来酰亚胺或二苯砜型双马来酰亚胺中的任一种或其多种组合。
10.根据权利要求1所述的功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法,其特征在于步骤(6)中所述的共聚改性体为烯丙基化合物、二元胺、酚醛环氧树脂或双酚A环氧树脂中任一种。
CN 201110116428 2011-05-06 2011-05-06 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法 Expired - Fee Related CN102212266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110116428 CN102212266B (zh) 2011-05-06 2011-05-06 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110116428 CN102212266B (zh) 2011-05-06 2011-05-06 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN102212266A true CN102212266A (zh) 2011-10-12
CN102212266B CN102212266B (zh) 2012-12-05

Family

ID=44743817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110116428 Expired - Fee Related CN102212266B (zh) 2011-05-06 2011-05-06 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN102212266B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875973A (zh) * 2012-09-28 2013-01-16 苏州大学 一种改性碳纳米管/热固性树脂复合材料及其制备方法
CN102875976A (zh) * 2012-10-15 2013-01-16 苏州大学 超支化聚苯胺改性碳纳米管/热固性树脂复合材料及其制备方法
CN104231624A (zh) * 2014-08-22 2014-12-24 南京信息职业技术学院 一种改性氰酸酯树脂导热复合材料及其制备方法
CN107445142A (zh) * 2017-08-14 2017-12-08 河海大学 一种碳纳米管‑蒙脱土自组装纳米粉的制备方法
CN107523015A (zh) * 2017-08-14 2017-12-29 河海大学 碳纳米管‑蒙脱土自组装纳米粉接枝玻璃纤维增强树脂复合材料的制备方法
CN107541015A (zh) * 2017-08-14 2018-01-05 河海大学 一种碳纳米管‑蒙脱土自组装纳米粉增韧环氧复合材料的制备方法
CN115403277A (zh) * 2022-07-15 2022-11-29 张文文 一种透明防紫外线玻璃砖及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844176A (zh) * 2006-03-14 2006-10-11 同济大学 原位合成两亲性聚合物修饰碳纳米管的制备方法
CN101709112A (zh) * 2009-12-18 2010-05-19 同济大学 一种含碳纳米管的双马来酰亚胺嵌段聚合物的制备方法
WO2010099487A1 (en) * 2009-02-27 2010-09-02 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844176A (zh) * 2006-03-14 2006-10-11 同济大学 原位合成两亲性聚合物修饰碳纳米管的制备方法
WO2010099487A1 (en) * 2009-02-27 2010-09-02 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
CN101709112A (zh) * 2009-12-18 2010-05-19 同济大学 一种含碳纳米管的双马来酰亚胺嵌段聚合物的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875973A (zh) * 2012-09-28 2013-01-16 苏州大学 一种改性碳纳米管/热固性树脂复合材料及其制备方法
CN102875973B (zh) * 2012-09-28 2014-09-17 苏州大学 一种改性碳纳米管/热固性树脂复合材料及其制备方法
CN102875976A (zh) * 2012-10-15 2013-01-16 苏州大学 超支化聚苯胺改性碳纳米管/热固性树脂复合材料及其制备方法
CN104231624A (zh) * 2014-08-22 2014-12-24 南京信息职业技术学院 一种改性氰酸酯树脂导热复合材料及其制备方法
CN107445142A (zh) * 2017-08-14 2017-12-08 河海大学 一种碳纳米管‑蒙脱土自组装纳米粉的制备方法
CN107523015A (zh) * 2017-08-14 2017-12-29 河海大学 碳纳米管‑蒙脱土自组装纳米粉接枝玻璃纤维增强树脂复合材料的制备方法
CN107541015A (zh) * 2017-08-14 2018-01-05 河海大学 一种碳纳米管‑蒙脱土自组装纳米粉增韧环氧复合材料的制备方法
CN115403277A (zh) * 2022-07-15 2022-11-29 张文文 一种透明防紫外线玻璃砖及其制备方法
CN115403277B (zh) * 2022-07-15 2024-09-13 浦江县晶湛水晶工艺品有限公司 一种透明防紫外线玻璃砖及其制备方法

Also Published As

Publication number Publication date
CN102212266B (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
CN102212248B (zh) 功能化玻璃纤维增强环氧树脂复合材料的制备方法
CN102212266B (zh) 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法
CN101787128B (zh) 碳纤维/碳纳米管/双马来酰亚胺树脂混杂复合材料的制备方法
CN102140230A (zh) 碳纳米管及功能化碳纤维增强环氧树脂复合材料的制备方法
CN102382319B (zh) 一种碳纳米管接枝玻璃纤维多尺度增强体增强聚酰亚胺复合材料的制备方法
CN102120882B (zh) 碳纳米管及功能化碳纤维增强双马来酰亚胺树脂复合材料的制备方法
Hou et al. Recent advances and future perspectives for graphene oxide reinforced epoxy resins
CN102181155B (zh) 聚四氟乙烯及功能化碳纤维改性聚酰亚胺树脂复合材料的制备方法
CN102120866B (zh) 石墨及功能化碳纤维改性环氧树脂复合材料的制备方法
CN102181153B (zh) 碳纳米管及功能化碳纤维增强聚酰亚胺复合材料的制备方法
CN102352038B (zh) 石墨烯改性双马来酰亚胺树脂纳米复合材料的制备方法
CN102220000B (zh) 功能化玻璃纤维增强聚酰亚胺复合材料的制备方法
CN102108634B (zh) 一种功能化碳纤维的制备方法
CN102120883B (zh) 石墨及功能化碳纤维改性双马来酰亚胺树脂复合材料的制备方法
CN102304274A (zh) 玻璃纤维/石墨烯-碳纳米管/环氧树脂多维混杂复合材料的制备方法
CN102276795A (zh) 玻璃纤维/碳纳米管/环氧树脂多维混杂复合材料的制备方法
CN102382320B (zh) 一种碳纳米管接枝玻璃纤维多尺度增强体增强环氧树脂复合材料的制备方法
CN101979436A (zh) 纳米碳纤维和碳纳米管改性碳纤维∕环氧树脂多维混杂复合材料的制备方法
CN107459771A (zh) 纳米金刚石及功能化碳纤维增强环氧树脂复合材料的制备方法
CN101709112B (zh) 一种含碳纳米管的双马来酰亚胺嵌段聚合物的制备方法
CN101787127B (zh) 接有环氧基团的碳纳米管强韧化双马来酰亚胺树脂复合材料的制备方法
CN102010595A (zh) 纳米碳纤维和碳纳米管改性碳纤维∕双马来酰亚胺树脂多维混杂复合材料的制备方法
CN102229473B (zh) 一种功能化玻璃纤维多尺度增强体的制备方法
CN102286160A (zh) 一种碳纳米管接枝玻璃纤维多尺度增强体的制备方法
CN102181154B (zh) 石墨及功能化碳纤维增强聚酰亚胺复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20150506

EXPY Termination of patent right or utility model