CN102212248B - 功能化玻璃纤维增强环氧树脂复合材料的制备方法 - Google Patents
功能化玻璃纤维增强环氧树脂复合材料的制备方法 Download PDFInfo
- Publication number
- CN102212248B CN102212248B CN2011101163318A CN201110116331A CN102212248B CN 102212248 B CN102212248 B CN 102212248B CN 2011101163318 A CN2011101163318 A CN 2011101163318A CN 201110116331 A CN201110116331 A CN 201110116331A CN 102212248 B CN102212248 B CN 102212248B
- Authority
- CN
- China
- Prior art keywords
- coupling agent
- epoxy resin
- preparation
- hour
- glass fibre
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
本发明属于纳米技术领域,具体涉及一种功能化玻璃纤维增强环氧树脂复合材料的制备方法。本发明将碳纳米管经过纯化,再进行羧基化,酰化后,将酰化的碳纳米管与带有活性氨基的偶联剂反应,得到表面接枝有偶联剂的碳纳米管与玻璃纤维反应,制得功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到功能化玻璃纤维增强环氧树脂复合材料。本发明反应步骤简单,利用碳纳米管的强度和韧性改性玻璃纤维,制备的增强体可以强韧化树脂基体,显著提高复合材料的界面粘结强度以及复合材料的各项力学性能。本发明制备的复合材料可以广泛应用于航空航天、汽车船舶、交通运输、机械电子以及民用等技术领域。
Description
技术领域
本发明属于纳米技术领域,具体涉及一种功能化玻璃纤维增强环氧树脂复合材料的制备方法。
背景技术
碳纳米管(CNTs)具有超高的强度、极大的韧性、独特的导电、导热等优异性能,用作增强剂可极大地改善复合材料的力学性能。实验测得单根碳纳米管的杨氏模量和拉伸强度达1TPa和150GPa,比杨氏模量和比强度分别是钢的20倍和1000多倍。并且碳纳米管具有超高得韧性(理论最大延伸率可达20%)和长径比,是制备高性能复合材料理想增强体。既可作为高性能复合材料的增强剂(增强橡胶、塑料、陶瓷、金属等),又可作为高附加值的功能性材料(催化剂载体、电子元件、电磁屏蔽材料、储能材料、吸附材料等),被认为是极有发展前途的高性能、高附加值的“超级纤维”。
玻璃纤维是一种性能优异的无机非金属材料,种类繁多,具有绝缘性好、耐热性强、抗腐蚀性好,机械强度高等优点。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。玻璃纤维增强树脂基复合材料,是目前技术比较成熟且应用广泛的一类复合材料,具有良好的易成型性、绝缘性能好、抗腐蚀和疲劳损伤等优异性能和低廉的成本。由于玻璃纤维与树脂基体之间的模量相差很大,且二者间不易润湿,所以其复合材料界面结合较弱。为了充分发挥其承载作用,应提高玻璃纤维与树脂基体的相容性、浸润性和反应性,在纤维和基体间制备性能优异的界面层。
发明内容
本发明的目的在于提供一种功能化玻璃纤维增强环氧树脂复合材料的制备方法。
本发明提出的功能化玻璃纤维增强环氧树脂复合材料的制备方法是经过纯化,羧基化,酰化后,将酰化的碳纳米管与带有活性氨基的偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维多尺度增强体。具体步骤如下:
(1)称取0.1~1×10g干燥的碳纳米管和10~1×104mL无机酸混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~24小时,然后加热至20~150℃,反应1~48小时,经去离子水稀释洗涤,微孔滤膜抽滤,洗涤至滤液呈中性,在温度为25~150℃下真空干燥1~48小时,得到纯化的碳纳米管;
(2)将步骤(1)中得到的纯化碳纳米管0.1~1×10g和强氧化性酸1~1×103mL混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时,然后加热到25~120℃,搅拌并回流反应1~80小时,经去离子水稀释洗涤,超微孔滤膜抽滤,洗涤至滤液呈中性,在25~200℃温度下真空干燥1~48小时,得到酸化的碳纳米管;
(3)将步骤(2)所得酸化的碳纳米管0.1~1×10g与酰化试剂1~1×104g混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,加热到25~220℃,搅拌并回流反应0.5~100小时,抽滤并洗涤除去酰化试剂及副产物,得到酰化的碳纳米管;
(4)将步骤(3)所得酰化的碳纳米管0.1~1×10g与1~1×103mL的偶联剂混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,在5~200℃温度下反应0.5~48小时,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到碳纳米管表面接枝有偶联剂;
(5)将步骤(4)所得表面接枝有偶联剂的碳纳米管0.1~1×10g和1~1×103mL有机溶剂混合,以1~120kHz超声波或搅拌处理1分钟~24小时,使表面接枝有偶联剂的碳纳米管均匀分散在有机溶剂中,在5~150℃温度下,加入干燥的玻璃纤维1~1×103g,反应1分钟~96小时后,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到功能化玻璃纤维增强体;
(6)将步骤(5)得到功能化玻璃纤维增强体1~1×103g、环氧树脂1~1×103g和固化剂1~1×103g复合,在温度为25~200℃下真空除泡并反应0.5~72小时,得到功能化玻璃纤维增强环氧树脂复合材料。
本发明中,步骤(1)中所述碳纳米管为电弧放电、化学气相沉淀、模板法、太阳能法或激光蒸发法中的任一种制备的单壁或多壁碳纳米管或以其任意比例混合的混合物。
本发明中,步骤(1)中所述无机酸为1~35%重量酸浓度的硝酸、1~55%重量酸浓度的硫酸或1~50%重量酸浓度的盐酸中任一种或其多种混合液。
本发明中,步骤(2)中所述强氧化性酸均为0.1~70%重量酸浓度硝酸、1~100%重量酸浓度硫酸、1∕100~100∕1摩尔比高锰酸钾和硫酸混合溶液、1∕100~100∕1摩尔比硝酸和硫酸混合溶液、1∕100~100∕1摩尔比高锰酸钾和硝酸混合溶液、1∕100~100∕1摩尔比过氧化氢和硫酸混合液、1∕100~100∕1摩尔比过氧化氢和盐酸混合液或1∕100~100∕1摩尔比过氧化氢和硝酸混合液中任一种或其多种组合。
本发明中,步骤(3)中所述酰化试剂为二氯亚砜、三氯化磷、五氯化磷、亚硫酰氯、三溴化磷、五溴化磷或亚硫酰溴中任一种或其多种组合。
本发明中,步骤(4)中所述偶联剂为铬络合物偶联剂、锆类偶联剂、硅烷类偶联剂、钛酸脂类偶联剂、铝酸酯类偶联剂、马来酸酐及其接枝共聚物类偶联剂、聚氨酯类偶联剂或嵌段聚合物类偶联剂中至少有一端带有活性氨基的偶联剂中任一种或其多种组合。
本发明中,步骤(5)中所述玻璃纤维为长纤维、短纤维或编织纤维中任一种或其多种组合。
本发明中,步骤(5)中所述有机溶剂为苯、甲苯、二甲苯、苯乙烯、丁基甲苯、全氯乙烯、三氯乙烯、乙烯基甲苯、乙烯乙二醇醚、二氯甲烷、二硫化碳、磷酸三邻甲酚、甲醇、乙醇、异丙醇、环己烷、环己酮、甲苯环己酮、乙醚、环氧丙烷、丙酮、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、氯苯、二氯苯、二氯甲烷、三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三氯丙烷、二氯乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环或四氢呋喃中的任一种或其多种组合。
本发明中,步骤(6)中所述的环氧树脂为缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、脂环族、环氧化烯烃类、酰亚胺环氧树脂或海因环氧树脂中的任一种或其多种组合。
本发明中,步骤(6)中所述的固化剂为乙二胺、聚乙二胺、1,2-丙二胺、1,3-丙二胺、1,2-丁二胺、1,3-丁二胺、1,6-己二胺、对苯二胺、环己二胺、间苯二胺、间苯二甲胺、二胺基二苯基甲烷、孟烷二胺、氯化己二胺、氯化壬二胺、氯化癸二胺、十二碳二元胺、十三碳二元胺、三乙胺、丁三胺、N-胺乙基哌嗪、双氰胺、己二酸二酰肼、N,N-二甲基二丙基三胺、五甲基二乙烯三胺、N,N,N,N,N-五甲基二亚乙基三胺、四乙烯五胺、二乙烯三胺、三乙烯四胺、五乙烯六胺、六乙烯七胺、间苯二甲胺、4,4’-二胺基二苯基砜、甲基四氢苯酐、甲基四氢邻苯二甲酸酐、均苯四甲酸二酐、均苯四甲酸二酐与己内酯的加成物、苯酮四酸二酐、苯酮四酸二酐与己内酯的加成物、二苯基砜-3,3’,4,4’-四酸二酐、二苯基砜-3,3’,4,4’-四酸二酐的加成物、N,N’-二酸酐二苯基甲烷或苯六甲酸三酐中的任一种或其多种组合。
本发明利用碳纳米管的强度和韧性改性玻璃纤维,制备的增强体可以强韧化树脂基体,提高玻璃纤维与树脂基体的粘结性能,可以显著提高复合材料的界面粘结强度以及复合材料的各项力学性能。
附图说明
图1为实施例4中给出的碳纳米管表面接枝有偶联剂的描电镜图。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例l:以电弧放电法制备的多壁碳纳米管(OD<8nm)和玻璃纤维为最初原料,多壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与γ-氨丙基三乙氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到玻璃纤维增强环氧树脂复合材料。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.1g经干燥的多壁碳纳米管原料和100mL、20%硝酸溶液,在1kHz超声波下处理24小时,然后加热至20℃,反应48小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,65℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料1.0g和100mL、60%重量浓度浓硝酸,经120kHz超声波处理1小时后加热到25℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管1.0g与酰化试剂10g混合,以40kHz超声波处理0.5小时后,加热到55℃,搅拌并回流反应24小时,抽滤并洗涤除去酰化试剂及副产物,在80℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管1.0g与100mL的偶联剂混合,以20kHz超声波处理5小时后,在200℃下反应0.5小时,过滤并洗涤,80℃真空干燥48小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管1.0g和100mL丙酮混合,以20kHz超声波处理0.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在50℃温度下,加入干燥的玻璃纤维100g,反应1小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维增强体;
步骤(6):将步骤(5)得到功能化玻璃纤维增强体100g、环氧树脂100g和固化剂间苯二胺25g复合,在温度为125℃下真空除泡并反应12小时,得到功能化玻璃纤维增强环氧树脂复合材料。
XPS分析结果表明多壁碳纳米管表面酰基含量为8.4%。
实施例2:以激光蒸发法制备的单壁碳纳米管(OD<1nm)和玻璃纤维为最初原料,单壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基三甲氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到玻璃纤维增强环氧树脂复合材料。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入2.1g经干燥的多壁碳纳米管原料和100mL、20%硝酸溶液,在50kHz超声波下处理1小时,然后加热至60℃,反应24小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤8次至滤液呈中性,70℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料2g和100mL、60%重量浓度浓硝酸,经100kHz超声波处理1小时后加热到25℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水反复洗涤10次至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管2g与酰化试剂20g混合,以40kHz超声波处理2小时后,加热到50℃,搅拌并回流反应48小时,抽滤并反复洗涤除去酰化试剂及副产物,在70℃下真空干燥40小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管2.0g与150mL的偶联剂混合,以1kHz超声波处理80小时后,在5℃温度下反应48小时,过滤并反复洗涤,在25℃温度下真空干燥48小时,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管2.0g和200mL甲醇混合,以40kHz超声波处理1.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在甲醇中,在55℃温度下,加入干燥的玻璃纤维150g,反应2小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维多尺度增强体;
步骤(6):将步骤(5)得到功能化玻璃纤维增强体150g、环氧树脂100g和固化剂间苯二胺25g复合,在温度为150℃下真空除泡并反应8小时,得到功能化玻璃纤维增强环氧树脂复合材料。
XPS分析结果表明单壁碳纳米管表面酰基含量为8.6%。
实施例3:以激光蒸发法制备的单壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,单壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与γ-氨乙基氨丙基三甲氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到玻璃纤维增强环氧树脂复合材料。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.1g经干燥的多壁碳纳米管原料和100mL、30%硫酸溶液,在40kHz超声波下处理1小时,然后加热至50℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,60℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料1g和100mL、70%重量浓度浓硫酸,经100kHz超声波处理1小时后加热到120℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管1.0g与酰化试剂10g混合,以40kHz超声波处理3小时后,加热到55℃,搅拌并回流反应48小时,抽滤并洗涤除去酰化试剂及副产物,在80℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管1.0g与100mL的偶联剂混合,在50℃下反应24小时,过滤并洗涤,在80℃温度下真空干燥24小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管1.0g和100mL丙酮混合,以20kHz超声波处理0.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在55℃温度下,加入干燥的玻璃纤维120g,反应2小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维多尺度增强体;
步骤(6):将步骤(5)得到功能化玻璃纤维增强体120g、环氧树脂150g和固化剂N,N-二甲基二丙基三胺35g复合,在温度为155℃下真空除泡并反应8小时,得到功能化玻璃纤维增强环氧树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为8.4%。
实施例4:以激光蒸发法制备的多壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,多壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到玻璃纤维增强环氧树脂复合材料。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.1g经干燥的多壁碳纳米管原料和100mL、20%盐酸溶液,在40kHz超声波下处理1小时,然后加热至60℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤7次至滤液呈中性,65℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料1g和100mL、65%重量浓度浓硝酸,经70kHz超声波处理1小时后加热到65℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,80℃真空干燥48小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管1g与酰化试剂11g混合,以20kHz超声波处理4小时后,加热到65℃,搅拌并回流反应38小时,抽滤并洗涤除去酰化试剂及副产物,在70℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管1.0g与120mL的偶联剂混合,以30kHz超声波处理1小时后,在60℃温度下反应12小时,过滤并洗涤,在70℃温度下真空干燥12小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管1.0g和120mL丙酮混合,以20kHz超声波处理1.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在50℃温度下,加入干燥的玻璃纤维130g,反应1.5小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维多尺度增强体;
步骤(6):将步骤(5)得到功能化玻璃纤维增强体130g、环氧树脂100g和固化剂1,6-己二胺25g复合,在温度为125℃下真空除泡并反应8小时,得到功能化玻璃纤维增强环氧树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为7.8%。
图1给出了碳纳米管表面接枝有偶联剂的描电镜图。
实施例5:以激光蒸发法制备的多壁碳纳米管(OD<10nm)和玻璃纤维为最初原料,多壁碳纳米管经过纯化、酸化和酰化后,得到酰化的碳纳米管,再将酰化的碳纳米管与N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷偶联剂溶液反应,得到碳纳米管表面接枝有偶联剂,再将表面接枝有偶联剂的碳纳米管与玻璃纤维反应,得到功能化玻璃纤维增强体;将得到的功能化玻璃纤维增强体和环氧树脂基体复合,得到玻璃纤维增强环氧树脂复合材料。
步骤(1):在已装有搅拌器的250mL单颈圆底烧瓶中,加入1.0g经干燥的多壁碳纳米管原料和100mL、20%盐酸溶液,在40kHz超声波下处理1小时,然后加热至60℃,反应18小时,用ψ0.45μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤7次至滤液呈中性,65℃下真空干燥24小时后,得到纯化的多壁碳纳米管;
步骤(2):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(1)中得到的纯化的多壁碳纳米管原料0.9g和100mL、66%重量浓度浓硝酸,经50kHz超声波处理1小时后加热到65℃,搅拌并回流下反应48小时,用ψ0.22μm聚偏四氟乙烯微孔滤膜抽滤,用去离子水洗涤至滤液呈中性,70℃真空干燥24小时后,得到酸化的多壁碳纳米管;
步骤(3):在已装有搅拌器的250mL单颈圆底烧瓶中,加入步骤(2)所得酸化的碳纳米管0.9g与酰化试剂10g混合,以40kHz超声波处理1小时后,加热到65℃,搅拌并回流反应48小时,抽滤并洗涤除去酰化试剂及副产物,在70℃下真空干燥48小时后,得到酰化的碳纳米管;
步骤(4):将步骤(3)所得酰化的碳纳米管0.9g与100mL的偶联剂混合,以30kHz超声波处理1小时后,在60℃温度下反应24小时,过滤并洗涤,在70℃温度下真空干燥24小时后,得到碳纳米管表面接枝有偶联剂;
步骤(5):将步骤(4)所得表面接枝有偶联剂的碳纳米管0.9g和100mL丙酮混合,以40kHz超声波处理1.5小时,使表面接枝有偶联剂的碳纳米管均匀分散在丙酮中,在50℃温度下,加入干燥的玻璃纤维100g,反应3.5小时后,过滤并洗涤,在60℃温度下真空干燥24小时,得到功能化玻璃纤维多尺度增强体;
步骤(6):将步骤(5)得到功能化玻璃纤维增强体100g、环氧树脂100g和固化剂乙二胺25g复合,在温度为125℃下真空除泡并反应8小时,得到功能化玻璃纤维增强环氧树脂复合材料。
XPS结果表明单壁碳纳米管表面酰基含量为8.3%。
上述对实施例的描述是为了便于该技术领域的普通技术人员理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对本发明做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
1.功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于具体步骤如下:
(1)称取0.1~1×10g干燥的碳纳米管和10~1×104mL无机酸混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~24小时,然后加热至20~150℃,反应1~48小时,经去离子水稀释洗涤,微孔滤膜抽滤,洗涤至滤液呈中性,在温度为25~150℃下真空干燥1~48小时,得到纯化的碳纳米管;
(2)将步骤(1)中得到的纯化碳纳米管0.1~1×10g和强氧化性酸1~1×103mL混合,在1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时,然后加热到25~120℃,搅拌并回流反应1~80小时,经去离子水稀释洗涤,超微孔滤膜抽滤,洗涤至滤液呈中性,在25~200℃温度下真空干燥1~48小时,得到酸化的碳纳米管;
(3)将步骤(2)所得酸化的碳纳米管0.1~1×10g与酰化试剂1~1×104g混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,加热到25~220℃,搅拌并回流反应0.5~100小时,抽滤并洗涤除去酰化试剂及副产物,得到酰化的碳纳米管;
(4)将步骤(3)所得酰化的碳纳米管0.1~1×10g与1~1×103mL的偶联剂混合,以1~120kHz超声波或10 r/min~106 r/min的离心速度搅拌下处理0.1~80小时后,在5~200℃温度下反应0.5~48小时,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到碳纳米管表面接枝有偶联剂;
(5)将步骤(4)所得表面接枝有偶联剂的碳纳米管0.1~1×10g和1~1×103mL有机溶剂混合,以1~120kHz超声波或搅拌处理1分钟~24小时,使表面接枝有偶联剂的碳纳米管均匀分散在有机溶剂中,在5~150℃温度下,加入干燥的玻璃纤维1~1×103g,反应1分钟~96小时后,过滤并洗涤,在25~200℃温度下真空干燥0.1~48小时,得到功能化玻璃纤维增强体;
(6)将步骤(5)得到功能化玻璃纤维增强体1~1×103g、环氧树脂1~1×103g和固化剂1~1×103g复合,在温度为25~200℃下真空除泡并反应0.5~72小时,得到功能化玻璃纤维增强环氧树脂复合材料。
2.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(1)中所述碳纳米管包括化学气相沉积法、电弧放电法、太阳能法、模板法或激光蒸发法中的任一种制备的单壁或多壁碳纳米管或以其任意比例混合的混合物。
3.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(1)中所述无机酸为1~35%重量酸浓度的硝酸或1~55%重量酸浓度的硫酸中任一种或其多种混合液。
4.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(2)中所述强氧化性酸为0.1~70%重量酸浓度硝酸、1∕100~100∕1摩尔比高锰酸钾和硫酸混合溶液、1∕100~100∕1摩尔比硝酸和硫酸混合溶液、1∕100~100∕1摩尔比高锰酸钾和硝酸混合溶液、1∕100~100∕1摩尔比过氧化氢和硫酸混合液、1∕100~100∕1摩尔比过氧化氢和盐酸混合液或1∕100~100∕1摩尔比过氧化氢和硝酸混合液中任一种或其多种组合。
5.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(3)中所述酰化试剂为二氯亚砜、三氯化磷、五氯化磷、亚硫酰氯、三溴化磷、五溴化磷或亚硫酰溴中任一种或其多种组合。
6.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(4)中所述偶联剂为铬络合物偶联剂、锆类偶联剂、硅烷类偶联剂、钛酸酯类偶联剂、铝酸酯类偶联剂、马来酸酐及其接枝共聚物类偶联剂、聚氨酯类偶联剂或嵌段聚合物类偶联剂中至少有一端带有活性氨基的偶联剂中任一种或其多种组合。
7.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(5)中所述玻璃纤维为长纤维、短纤维或编织纤维中任一种或其多种组合。
8.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(5)中所述有机溶剂为苯、甲苯、二甲苯、苯乙烯、丁基甲苯、乙烯基甲苯、乙烯乙二醇醚、二氯甲烷、二硫化碳、磷酸三邻甲酚、甲醇、乙醇、异丙醇、环己烷、环己酮、甲苯环己酮、乙醚、环氧丙烷、丙酮、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、氯苯、二氯苯、三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三氯丙烷、二氯乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环或四氢呋喃中的任一种或其多种组合。
9.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(6)中所述环氧树脂为缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、脂环族、环氧化烯烃类、酰亚胺环氧树脂或海因环氧树脂中的任一种或其多种组合。
10.根据权利要求1所述的功能化玻璃纤维增强环氧树脂复合材料的制备方法,其特征在于步骤(6)中所述固化剂为乙二胺、聚乙二胺、1,2-丙二胺、1,3-丙二胺、1,2-丁二胺、1,3-丁二胺、1,6-己二胺、对苯二胺、环己二胺、间苯二胺、二胺基二苯基甲烷、孟烷二胺、氯化己二胺、氯化壬二胺、氯化癸二胺、十二碳二元胺、十三碳二元胺、三乙胺、丁三胺、N-胺乙基哌嗪、双氰胺、己二酸二酰肼、五甲基二乙烯三胺、四乙烯五胺、二乙烯三胺、三乙烯四胺、五乙烯六胺、六乙烯七胺、间苯二甲胺、4,4’-二胺基二苯基砜、甲基四氢苯酐、甲基四氢邻苯二甲酸酐、均苯四甲酸二酐、均苯四甲酸二酐与己内酯的加成物、苯酮四酸二酐、苯酮四酸二酐与己内酯的加成物、二苯基砜-3,3’,4,4’-四酸二酐或苯六甲酸三酐中的任一种或其多种组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101163318A CN102212248B (zh) | 2011-05-06 | 2011-05-06 | 功能化玻璃纤维增强环氧树脂复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101163318A CN102212248B (zh) | 2011-05-06 | 2011-05-06 | 功能化玻璃纤维增强环氧树脂复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102212248A CN102212248A (zh) | 2011-10-12 |
CN102212248B true CN102212248B (zh) | 2012-08-22 |
Family
ID=44743802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101163318A Expired - Fee Related CN102212248B (zh) | 2011-05-06 | 2011-05-06 | 功能化玻璃纤维增强环氧树脂复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102212248B (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102215548B (zh) * | 2011-06-15 | 2017-10-03 | 南京中兴软件有限责任公司 | 负荷信息的发送方法及装置、终端接入扇区的方法及装置 |
CN102718432B (zh) * | 2012-06-08 | 2013-09-25 | 河海大学 | 碳纳米管改性树脂/玻璃纤维复合筋材及其制备方法 |
CN103665769B (zh) * | 2013-11-26 | 2016-02-24 | 上海复合材料科技有限公司 | 纳米-微米多尺度纤维预浸料的制备方法 |
CN104088136A (zh) * | 2014-07-03 | 2014-10-08 | 河海大学 | 碳纳米管接枝玻璃纤维织物增强体的制备方法 |
CN104212053A (zh) * | 2014-09-18 | 2014-12-17 | 福州大学 | 一种防水隔氧密封膜及其制备和应用 |
CN104527176B (zh) * | 2015-01-23 | 2016-09-21 | 哈尔滨工业大学 | 一种高柔韧性碳纳米管纸/玻璃纤维阻燃复合材料的物理制备方法 |
CN105820508A (zh) * | 2016-04-25 | 2016-08-03 | 东莞市联洲知识产权运营管理有限公司 | 一种新型改性多壁碳纳米管-环氧树脂复合材料及其制备方法 |
RU2637227C1 (ru) * | 2016-09-30 | 2017-12-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") | Способ получения полимерных композиционных материалов |
CN107177165A (zh) * | 2017-06-09 | 2017-09-19 | 华南理工大学 | 一种导热型碳纳米管/环氧树脂复合材料及其制备方法 |
CN107265898A (zh) * | 2017-06-22 | 2017-10-20 | 合肥易美特建材有限公司 | 一种复合保温材料及制备方法 |
CN107445142A (zh) * | 2017-08-14 | 2017-12-08 | 河海大学 | 一种碳纳米管‑蒙脱土自组装纳米粉的制备方法 |
CN107541015A (zh) * | 2017-08-14 | 2018-01-05 | 河海大学 | 一种碳纳米管‑蒙脱土自组装纳米粉增韧环氧复合材料的制备方法 |
CN107523015B (zh) * | 2017-08-14 | 2020-02-18 | 河海大学 | 碳纳米管-蒙脱土自组装纳米粉接枝玻璃纤维增强树脂复合材料的制备方法 |
CN108623999A (zh) * | 2018-03-12 | 2018-10-09 | 合肥尚强电气科技有限公司 | 一种风力发电机叶片用复合材料及其制备方法 |
CN109517343B (zh) * | 2018-11-23 | 2021-09-21 | 上海固瑞泰复合材料科技有限公司 | 一种建筑填缝用环氧树脂胶泥及其制备方法 |
CN118388144A (zh) * | 2022-07-15 | 2024-07-26 | 张文文 | 一种透明防紫外线玻璃砖的制备方法 |
CN118185244B (zh) * | 2024-04-15 | 2024-08-30 | 东莞市钬柒凌五金塑胶有限公司 | 一种改性玻纤材料及其在绿篱机刀片总成压条上的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100357346C (zh) * | 2006-03-14 | 2007-12-26 | 同济大学 | 环氧树脂纳米复合材料用多功能碳纳米管的制备方法 |
CN101811661B (zh) * | 2010-03-11 | 2012-12-05 | 同济大学 | 碳纤维/碳纳米管/环氧树脂多维混杂复合材料的制备方法 |
-
2011
- 2011-05-06 CN CN2011101163318A patent/CN102212248B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102212248A (zh) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102212248B (zh) | 功能化玻璃纤维增强环氧树脂复合材料的制备方法 | |
CN102120866B (zh) | 石墨及功能化碳纤维改性环氧树脂复合材料的制备方法 | |
CN102140230A (zh) | 碳纳米管及功能化碳纤维增强环氧树脂复合材料的制备方法 | |
CN102352038B (zh) | 石墨烯改性双马来酰亚胺树脂纳米复合材料的制备方法 | |
CN101787128B (zh) | 碳纤维/碳纳米管/双马来酰亚胺树脂混杂复合材料的制备方法 | |
CN102212266B (zh) | 功能化玻璃纤维增强双马来酰亚胺复合材料的制备方法 | |
CN102181155B (zh) | 聚四氟乙烯及功能化碳纤维改性聚酰亚胺树脂复合材料的制备方法 | |
CN101407620B (zh) | 高性能环氧树脂复合材料及制备方法 | |
CN102382319B (zh) | 一种碳纳米管接枝玻璃纤维多尺度增强体增强聚酰亚胺复合材料的制备方法 | |
CN102120883B (zh) | 石墨及功能化碳纤维改性双马来酰亚胺树脂复合材料的制备方法 | |
CN102304274A (zh) | 玻璃纤维/石墨烯-碳纳米管/环氧树脂多维混杂复合材料的制备方法 | |
CN101811661B (zh) | 碳纤维/碳纳米管/环氧树脂多维混杂复合材料的制备方法 | |
CN101343425B (zh) | 用作环氧树脂固化剂的功能化碳纳米管及制备方法 | |
CN102181153B (zh) | 碳纳米管及功能化碳纤维增强聚酰亚胺复合材料的制备方法 | |
CN102220000B (zh) | 功能化玻璃纤维增强聚酰亚胺复合材料的制备方法 | |
CN101979436A (zh) | 纳米碳纤维和碳纳米管改性碳纤维∕环氧树脂多维混杂复合材料的制备方法 | |
CN102276795A (zh) | 玻璃纤维/碳纳米管/环氧树脂多维混杂复合材料的制备方法 | |
CN102120882A (zh) | 碳纳米管及功能化碳纤维增强双马来酰亚胺树脂复合材料的制备方法 | |
CN102382320B (zh) | 一种碳纳米管接枝玻璃纤维多尺度增强体增强环氧树脂复合材料的制备方法 | |
CN107459771A (zh) | 纳米金刚石及功能化碳纤维增强环氧树脂复合材料的制备方法 | |
CN101787127B (zh) | 接有环氧基团的碳纳米管强韧化双马来酰亚胺树脂复合材料的制备方法 | |
CN101709112B (zh) | 一种含碳纳米管的双马来酰亚胺嵌段聚合物的制备方法 | |
CN102010595A (zh) | 纳米碳纤维和碳纳米管改性碳纤维∕双马来酰亚胺树脂多维混杂复合材料的制备方法 | |
CN102229473B (zh) | 一种功能化玻璃纤维多尺度增强体的制备方法 | |
CN102286160A (zh) | 一种碳纳米管接枝玻璃纤维多尺度增强体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20150506 |
|
EXPY | Termination of patent right or utility model |