CN102203884B - 阀门致动器 - Google Patents

阀门致动器 Download PDF

Info

Publication number
CN102203884B
CN102203884B CN200980143848.7A CN200980143848A CN102203884B CN 102203884 B CN102203884 B CN 102203884B CN 200980143848 A CN200980143848 A CN 200980143848A CN 102203884 B CN102203884 B CN 102203884B
Authority
CN
China
Prior art keywords
magnetic
magnetic flux
valve actuator
valve
field generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980143848.7A
Other languages
English (en)
Other versions
CN102203884A (zh
Inventor
W·H·S·瑞普恩
N·J·卡尔德维尔
U·B·P·斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss Power Solutions ApS
Artemis Intelligent Power Ltd
Original Assignee
Danfoss Power Solutions ApS
Artemis Intelligent Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Power Solutions ApS, Artemis Intelligent Power Ltd filed Critical Danfoss Power Solutions ApS
Publication of CN102203884A publication Critical patent/CN102203884A/zh
Application granted granted Critical
Publication of CN102203884B publication Critical patent/CN102203884B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • F04B49/246Bypassing by keeping open the outlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/082Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet using a electromagnet and a permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

本发明涉及一种阀门致动器(2),该阀门致动器包括:带有一个空隙(8)以及至少一个双叉分支件(7)的一个磁芯(6)、至少一个可变磁场产生装置(16)、至少一个永磁场产生装置(13)以及至少一个可移动的磁性部件(12),其中该双叉分支件(7)限定所述磁芯(6)的一个第一区域(4)和一个第二区域(5)。所述可移动的磁性部件(12)被可移动地安排在所述磁芯(6)的所述空隙(8)内的方式为使得在所述可移动的磁性部件(12)的一个第一表面(23)与所述磁芯(6)的所述空隙(8)的一个第一表面(22)之间形成了一个第一间隙(19),在所述可移动的磁性部件(12)的一个第二表面(24)与所述磁芯(6)的所述空隙(8)的一个第二表面(25)之间形成了一个第二间隙(20)、并且在所述可移动的磁性部件(12)的一个第三表面(27)与所述磁芯(6)的所述双叉分支件(7)的一个第三表面(26)之间形成了一个第三间隙(21)。所述可变磁场产生装置(16)中的至少一个是与所述磁芯(6)的所述第一区域(4)相关联的,并且所述永磁场产生装置(13)中的至少一个是与所述磁芯(6)的所述第二区域(5)相关联的。所述阀门致动器(2)进行设计和安排的方式为使得由所述可变磁场产生装置(16)中的至少一个所产生的磁通量能够在所述至少一个可移动的磁性部件(12)上施加一个力,并且能够抵消由所述永磁场产生装置(13)中的至少一个所产生的磁通量(48,49)。在此提供了至少一个磁通量限制装置(7,12),其磁通量限度是可以达到或者超过的。

Description

阀门致动器
本发明涉及一种阀门致动器,该阀门致动器包括:带有一个空隙以及至少一个双叉分支件的一个磁芯、至少一个可变磁场产生装置、至少一个永磁场产生装置、至少一个可移动的磁性部件以及至少一个磁场密度限制装置。本发明还涉及包括一个阀门致动器的一个被致动的阀门,并且同样涉及包括至少一个阀门致动器和/或一个被致动的阀门的一种流体工作机器。此外,本发明涉及一种操作阀门致动器的方法,该阀门致动器包括:带有一个空隙的一个磁芯、至少一个可变磁场产生装置、至少一个永磁场产生装置、至少一个可移动的磁性部件以及至少一个磁场密度限制装置。
当今阀门被用于众多的技术应用。例如,它们被用于打开或关闭两点之间的流体连接、或者用于选择性地将进入该阀门一侧的流体分布到该阀门的多个流体出口中的一个或几个中。不但流动的液体受到此类阀门的影响,而且气体、液体、气体与液体的混合物、气体与固体颗粒的混合物(烟雾)、液体与固体颗粒的混合物(悬浮物)或者甚至气体、液体以及固体颗粒的混合物也受到此类阀门的影响。
总而言之,存在着两种不同种类的阀门:被动式阀门和主动式阀门。
被动式阀门总体上在流体自身的影响下改变其位置。一个实例如下:弹簧加载的提升阀,它们在阀门的流体入口与流体出口之间的压力差的影响下在一个方向上打开。然而,在相反的方向上无论压力差如何它们仍保持关闭。
主动式阀门在一个外部施加的致动信号的影响下改变其位置。原则上,这种致动信号可以是操作者手动输入的。然而,如果阀门的致动必须以某种方式自动化,则要求一种自动化方式来致动该阀门。在现有技术中,已知对被致动的阀门进行致动的几种方法。例如,可以由机械装置来对被致动的阀门进行致动。对此的一个实例是机动车辆的内燃发动机阀门的致动,此处这些阀门通常是由安装于一个凸轮轴上的多个凸轮来机械致动的。
向一个被致动的阀门施加一个致动信号的另一种常见方法是使用电流。当这些阀的制动是由一个电的或电子控制单元来控制时,这是特别有用的。在此,该控制单元将总是在初始时产生一个电输出信号。如果所使用的阀门需要一个不同于电流的致动信号,则需要一个额外的装置用于将该电致动信号转换成一种不同形式的致动信号。当然,这不是令人希望的。
此外,阀门的电致动实际上常常是首选的,因为此类被致动的阀门一般是相对迅速和准确的。还有,可以容易地将电信号放大。
在现有技术中,已知用于对阀进行致动的多种阀门致动器,这些阀门致动器使用电流作为一种致动信号。
例如,在GB2213650A中说明了一种燃料喷射阀,该燃料喷射阀可以由外部施加的电信号来致动。在GB2213650A中披露的这种燃料喷射阀包括一个外部本体以及在该本体内延伸的一个内芯构件。该本体及内芯构件是由可磁化的材料形成的、并且限定了朝向一个阀门构件的多个极面,该阀门构件被弹簧偏置为与一个座产生接触。在该本体与该内芯构件之间插入了一个永磁铁,该永磁体驱动磁通量经过该内芯构件及本体。由该磁体产生的通量足以使该阀门构件保持与多个极面的接触,但是不足以将阀门构件从座上提起。当激励一个第一线圈以便提升该阀门构件时,由磁体产生的通量被增强。当激励一个第二线圈时,由磁体产生的通量是相反的以便允许弹簧使阀返回到座上。
在WO2007/128977A2中披露了另一种电磁致动器。这种电磁致动器包括一个内芯、在该内芯内的一个间隙中的一个可移动铁磁性部件以及用于将该部件吸引至该间隙的一侧上的一个永磁体。一个通量聚集器将磁通量聚集在该间隙的一侧上,并且一个主螺线管在该间隙内产生磁通量。该螺线管的磁路是由该内芯的一部分、该间隙的一部分以及在铁磁性部件与该内芯之间的另一个间隙来限定的。一个退磁线圈具有一个磁路,它是由该内芯的另一部分、该间隙的另一部分以及该进一步的间隙限定的。该退磁线圈被安排为将该永磁体退磁到至少以下程度,即:由该主螺线管产生的磁通量是从该通量聚集器转向至该另一个间隙并且该可移动的部件在该主螺线管的磁力作用下从该永磁体上是可移动离开的。该主螺线管中的电流(并且因此由它得到的磁力)相对缓慢地上升。这是由于该主螺线管的大小必须具有大的尺寸以便产生足够的力来迅速地移动这个可移动的铁磁性部件。当该主螺线管已经达到高的电流之后该退磁线圈被激活,这样使得该主螺线管能够迅速地移动该可移动的铁磁性部件。
在这些致动器中,使用了两种不同的线圈。存在两种不同的线圈增加了这些致动器的大小及重量。此外,这些致动器变得更复杂并且更昂贵。另一个问题是产生和施加这些不同的致动信号可能是难以实现的。如果将这些阀门致动器用于特殊的技术领域,则会引发另一个问题。例如,在液压流体工作机器的领域内、更确切的是在综合换向液压流体工作机器的领域内,对于这些阀门致动器的要求是非常严苛的。第一,这些阀门致动器在打开或关闭时必须是非常快速的。第二,对致动信号(打开和关闭)的响应必须是非常准确并且可再现的。第三,这些阀门致动器必须能够产生相对较强的力。具体地讲,在该打开位置的保持力必须是比较大的(在80N的级别)以便避免阀门由于作用在阀头上的流动力(尤其是在高转动速度以及高油粘度的情况下)而自行关闭。当然,该阀门致动器的功耗应当是尽可能的低。
在US7,077,378B2中披露了一种阀门组件,它是可操作的以便允许或防止去往或来自一种流体工作机器的工作室的流体流动,该阀门组件包括径向间隔开的多个内部以及外部环形阀座从而限定其间的一个环形通道;一个包括密封圈的阀门构件;以及用于在一个第一位置(其中该密封圈与多个环形阀座处于密封接合以便关闭流体从中流过的该环形通道)与一个第二位置(其中该密封圈与多个阀座间隔开这样使得该环形通道打开以便流体从中流过)之间轴向地移动该阀门构件的装置。该阀门组件包括一个铁磁材料的本体。一个可移动的磁极构件(通常称之为电枢)被可移动地安排在所述本体的一个间隙内。所述可移动的磁极构件可以被一个永磁体被锁止在所述第二位置上。通过向一个线圈施加电流,可以将所述可移动的磁极构件解锁并将其移动到所述第一位置上。该本体的中间“桥”部分(侧向连通到该可移动的磁极构件上)的尺寸被确定为使得它也无法被驱动进入饱和(即便对该线圈施加了最大可允许通过的电流)。然而,由于在该磁芯的桥部分与该本体之间的有限的间隙,呈现了对于磁通量穿透的一个特定的恒定电阻率。因此,由该电线圈产生的磁通量的一个恒定的分量(只要该可移动的磁极构件尚未被移动)将通过该磁芯的永磁体部分。
借助流体工作机器的概念,它包括了液压泵、液压马达、以及可以用作泵并用作马达的机器。综合换向液压机器也被称作“数字排量式泵”。从EP0361927B1、EP0494236B1和EP1537333中已知多种综合换向液压机器。它们是可变排量流体工作机器的一个特殊的子集。
虽然此类流体工作机器和/或此类综合换向液压机器在理论上和实际应用中都工作良好,但仍然存在很多改进的空间,特别是对于在阀门致动器领域中的改进。
因此,本发明的目的是建议多种改进的阀门致动器。本发明的另一个目的是提供改进的被致动的阀门、改进的流体工作机器、以及一种操作阀门致动器的方法。
因此,在此建议设计一种阀门致动器,该阀门致动器包括:带有一个空隙以及至少一个双叉分支件的一个磁芯、至少一个可变磁场产生装置、至少一个永磁场产生装置、以及至少一个可移动的磁性部件。其中所述双叉分支件限定了所述磁芯的一个第一区域和一个第二区域,其中所述可移动的磁性部件被可移动地安排在所述磁芯的所述空隙内的方式为使得在所述可移动的磁性部件的一个第一表面与所述磁芯的所述空隙的一个第一表面之间形成了一个第一间隙,在所述可移动的磁性部件的一个第二表面与所述磁芯的所述空隙的一个第二表面之间形成了一个第二间隙,并且在所述可移动的磁性部件的一个第三表面与所述磁芯的所述双叉分支件的一个第三表面之间形成了一个第三间隙,其中所述可变磁场产生装置中的至少一个是与所述磁芯的所述第一区域相关联的,并且所述永磁场产生装置中的至少一个是与所述磁芯的所述第二区域相关联的,其中所述阀门致动器进行设计和安排的方式为使得由所述可变磁场产生装置中的至少一个所产生的磁通量能够以提供至少一个磁通量限制装置(其磁通量限度至少是可以达到的)的方式在所述至少一个可移动的磁性部件上施加一个力并且能够抵消由所述永磁场产生装置中的至少一个所产生的磁通量。通常,该第一间隙将是与该第一区域相关联的,而该第二间隙将通常是与该第二区域相关联的。然而,不同的设计可以证明同样是合理的。同样,该第三间隙和/或该双叉分支件通常可以被认为是与两个区域相关联的。该永磁场产生装置将通常将提供用于将该可移动的磁性部件锁止在至少一个位置上。该可变磁场产生装置将通常不仅用于抵消由该永磁场产生装置产生的磁场,而且用于在该永磁场产生装置所产生的力的方向上产生一个额外的力和/或用于在不同的、具体是与该永磁场产生装置所产生的力的方向相反的方向上产生一个力。可以使用标准的永磁体作为一个永磁场产生装置。出于体积的原因,优选使用显示该永磁体的每单位体积的高磁场的永磁体。对于这种可变磁场产生装置,一般将使用电线圈。这种电线圈的实际设计取决于有待产生的磁场的强度、连同可供使用的空间和/或外部参数(如可供使用的电流或电压)。这种可移动的磁性部件可以优选的是一个阀门提升头的一部分或者可以是随后被连接到一个阀门提升头上。当然,这种可移动的磁性部件不必全部由磁性材料制造。相反,一般只有这种可移动的磁性部件的一部分将是由磁性材料制成的。这种可移动的磁性部件的尺寸(至少考虑其被安排在该空隙内的一部分)可以被选择为使得其对应的尺寸小于该空隙的长度。例如,该空隙的长度可以与所述阀门致动器的轴线对齐。因此这种可移动的磁性部件可以沿着该空隙的“方向”移动。总体上,这种可移动的磁部件的长度与该空隙的长度之差将确定这种可移动的磁性部件的移动距离。
由这个或者这些可变磁场产生装置产生的磁通量的分布(以及由这个或者这些永磁场产生装置产生的磁通量的分布)被分布在该磁芯的两个区域之间,其中该磁通量(具体是由这个或者这些可变磁场产生装置所产生的磁通量)是取决于该磁通量、具体是由这个或者这些可变磁场产生装置产生的磁通量而分布在这两个区域之间的。具体地讲,在低磁通量(例如,以低电流通过一个电线圈)时由这个或者这些可变磁场产生装置产生的磁通量将被实质上限制到该磁芯的第一区域上,而由这个或者这些永磁场产生装置产生的磁通量将被实质上限制在该磁芯的第二区域上。然而,如果由该可变磁场产生装置产生的磁通量将超出该磁通量限制装置的磁通量限度,则该磁通量的超出部分、具体是由该可变磁场产生装置产生的磁通量将经过该磁芯的第二区域(至少如果由该可变磁场产生装置产生的磁场指向一个特定方向)而穿行。因此,由于该磁通量限制装置,由这些不同的磁场产生装置产生的磁通量的分布将以一种非线性的方式被分布在该磁芯的不同区域上。该磁通量限制装置可以首选被安排为与所述双叉分支件相连接、具体是与所述第三间隙相连接。它甚至可以形成所述双叉分支件和/或所述第三间隙的一个部分。当然,当达到该磁通量限制装置的磁通量限度时,该磁通量限制装置不必显示出对该磁通量的一种急剧切断行为。取而代之,该磁通量限制装置的一种“软”切断行为、或者甚至简单的一种非线性切断行为对于这一目的可以证明是足够的。例如,如果该磁通量限制装置被安排为与该双叉分支件相连接,则由该永磁场产生装置以及由该可变磁场产生装置所产生的磁通量将累加直到超出该磁通量限制装置的磁通量限度的一个磁通量,超出这个磁通量限度的超出的磁通量必须寻找不同于该双叉分支件的一个循行路径。然而,已经以该磁芯的第二区域的形式存在一个优选的替代路径。
如所建议的使用一个磁通量限制装置,它就有可能使用多个可变磁场产生装置,这些装置显示它们产生的磁通量的缓慢变化。然而,磁通量中的这样一种缓慢变化是典型的可变磁场产生装置(如电线圈)的标准行为。然而,使用所提出的设计,该可变磁场产生装置可以慢慢地积累通过该阀门致动器的第一区域的磁通量。这样可以跨越该阀门致动器的第一间隙积累起一种显著的吸引力。然而,因为通过该阀门致动器的第二区域的磁通量(仍)是不受由该可变磁场产生装置所产生的磁通量的影响(只要尚未达到该磁通量限制装置的磁通量限度),由永磁性通量产生装置所产生的磁通量可以将这种可移动的磁性部件保持在其锁止位置上而无论作用在这种可移动的磁性部件上的这些外力以及由该可变磁场产生装置所产生的磁通量如何。当达到该磁通量限度时,将快速地发生对由该永磁场产生装置所产生的磁通量的抵消并且该可移动的磁性部件将被快速地加速,因为跨越该第一间隙已经存在一个显著的吸引力。因此,与先前已知的多种阀门致动器相比,有可能实现这种可移动的磁性部件的更高的初始加速,并且因此实现该阀门致动器的更快的致动时间。此外,与先前已知的多种阀门致动器相比,该阀门致动器的致动时间通常是远为更加精确的。在谈到由永磁场产生装置产生的磁通量抵消时,不是必须发生完全抵消。取而代之,将开始很有可能的是该可移动的磁性部件的移动而无论(例如)跨越该第二间隙的残余磁通量和/或该磁芯的该第二区域之内的残余磁通量如何。
优选的是,所述磁通量限制装置中的至少一个的所述磁通量密度限度本质上是由所述磁通量限制装置的饱和来限定的。使用多种标准的铁磁材料,由于所使用的材料的多种物理性质在某个点上将发生一种磁饱和。高于该磁饱和限度,该铁磁材料的磁阻通常明显增加,总体上近似地等于空气的磁阻。这一般意味着与低于该饱和限度(其中递增性磁阻较低)的情况相比,高于该饱和限度时该增量磁阻是增大的。于是可以通过适当确定对应部分的尺寸来选择该磁通量限制装置的磁通量限度。然而,不同的实施方案也是可能的。
在所述阀门致动器的一个优选实施方案中,所述磁通量限制装置被设计为一种可变磁通量限制装置。换而言之,由该磁通量限制装置赋予的磁通量极限可以是可变的。以此方式,有可能在该磁芯的不同区域上额外地改变先前提到的磁通量的分布。例如,一旦由于该永磁场产生装置产生的磁通量所引起的磁性锁止已被抵消并且可移动的磁性部件已经稍稍移动,则有可能将由该可变磁通量产生装置所产生的磁通量聚集到该阀门致动器的第一区域上。这是因为在该初始阶段跨越该间隙(例如该第二间隙)的吸引磁力将通常随着该对应间隙的大小的极其轻微的增加而快速地衰减。因此,有可能在一段非常短的时间(例如该可移动的磁性部件的移动距离)之后,减少由该永磁场产生装置产生的经过该第二区域的磁通量。另外,由该可变磁场产生装置(它采取经过第二区域的“更长的”路径)产生的磁通量的一部分可以降低。因此,可以增加在该阀门致动器的该第一区域内的磁通量和/或跨越该阀门致动器的该第一间隙的磁通量。如果通过提高该磁通量限制装置的磁通量限度来增大跨越该第三间隙的磁通量,则在该第一区域内的磁通量的增加可以甚至是更大的。以此方式,可以增加跨越该第一间隙的吸引力,从而导致例如该可移动的磁性部件的一种改进的加速。因此,该阀门致动器可以是甚至是更快的。优选的是,该磁通量限度可以随着可移动的磁性部件的位置而改变。因此,在该可移动的磁性部件的不同位置中,可以将重点放在有待执行的某些动作上。例如,在该可移动的磁性部件的一个锁止位置上(其中该锁止是借助该永磁场产生装置来执行的),可以将重点放在该永磁场产生装置的磁通量的抵消(或充分地减少)上,因此将重点放在解锁上。然而,一旦该可移动的磁性部件被释放,则该重点可以转向该可移动的磁性部件在一个(离开该锁止位置的)方向上的快速加速。
有可能关于所述双叉分支件、优选的关于所述第三间隙来安排所述磁通量限制装置、具体是所述可变磁通量限制装置。以此方式,通过该对应装置的一个适当的尺寸确定和/或通过该磁性材料的一种适当的选择和/或通过该对应装置的适当成形可以容易地实现该(可变)磁通量限制作用。
通常,优选的是该阀门致动器进行设计和安排的方式为使得所述磁通量限制装置中的至少一个(具体是所述可变磁通量限制装置、优选的是所述第三间隙)的磁通量限度和/或磁阻随着所述可移动的磁性部件的位置而变化。以此方式,先前所述的在该磁芯的不同区域上磁场的分布的依存关系不仅取决于所涉及的磁通量的不同的量值,而且取决于该可移动的磁部件的位置。使用这样一个实施方案,它有可能例如对于在该移动的磁性部件的位置与施加在该可移动的磁性部件上的磁力之间提供一个甚至更精巧的函数性。通过毗邻的这些间隙中的一个(或多个)的一种倾斜的或者阶梯式成形的表面可以容易地提供这种函数性。例如,该双叉分支件的这些表面和/或该可移动的磁性部件(朝向该第三间隙)的表面可以显示一种倾斜的和/或台阶状形状。额外地或者可替代地,还有可能将这些部件安排为使得这些对应的表面的表面重叠随着该可移动的磁性部件的移动而改变。当然,实现所述函数性的不同方式也是可能的。特别地与当前所建议的实施方案相关联,通常优选的是如果该可移动的磁性部件的移动的方向本质上与毗邻该第三间隙的这些表面中的至少一个(即该可移动的磁性部件的对应表面和/或该磁芯的双叉分支件的对应表面)的至少一部分是平行的。使用当前建议的实施方案,有可能提供的是使所述可变磁通量限制装置的磁通量限度随着该可移动的磁性部件远离其锁止位置的一种运动而增加,因此在该第一区域内增加由该可变磁场产生装置产生的磁通量,并且因此增加带动该可移动的磁性部件的运动的力。以此方式,由该可变磁场产生装置产生的磁通量可以用于产生吸引力而不是用于抵消该永磁场产生装置的磁通量,虽然这种抵消(该永磁场产生装置的吸引力随着增加该第一间隙的大小而快速地衰减)不再是必要的。然而,它不必提高该磁通量限制装置的通常急剧的切断水平。取而代之,磁阻的甚至一种相对“软的”降低可以证明是足够的。使用当前建议的实施方案,它进一步有可能提供由经过该第二间隙(并且因此经过该永磁场产生装置)的这个或这些可变磁场产生装置所产生的磁通量的一个降低的部分,因此增强由可变磁场产生装置单独经过该磁芯的该第一区域所产生的磁通量的部分。此外,通过这种设计,它甚至有可能保护该永磁场产生装置,因为一种以外部方式施加的、与该永磁场产生装置的磁化的方向相反的磁通量(一般是由这些可变磁场产生装置施加的)的量值可以受到限制。这是有利的,因为如果将与该永磁场产生装置的磁化的方向相反的一个方向的一个过强的磁通量施加到该永磁场产生装置上,许多永磁场产生装置可能被毁坏。
通常优选的是,如果所述阀门致动器进行设计和安排的方式为使得在该可变的磁性部件更接近于所述第二间隙时,所述磁通量限制装置、具体是所述可变磁通量限装置、优选的是所述第三间隙的磁通量限度是较低的,和/或所述磁通量限制装置、具体是所述一种可变磁场限制装置、优选的是所述第三间隙的磁阻是更高的。以此方式,该永磁场产生装置的磁通量的抵消、并且因此该永磁场产生装置的锁止动作可以被非常有效地抵消。另一方面,一旦该可变的磁性部件已经开始移动,则由该可变磁场产生装置产生的、从该磁芯的第二间隙中经过的磁通量的部分就快速地衰减。
该阀门致动器可以进行设计的方式为使得至少一个磁通量聚集装置被安排在所述间隙的至少一个的附近和/或在所述磁通量限制装置的至少一个的附近、具体的是在所述可变磁通量限制装置的至少一个的附近、优选的是在所述第二间隙的附近和/或在所述磁芯的所述第三间隙的附近。以此方式,它有可能使对应的磁通量的产生力的作用最大化,因此能够减小对应磁通量的量值。以此方式,有可能节省电能(例如,用于产生一个相反的磁通和/或用于抵消一个相反的磁通)。另外,通过这样一种磁通量聚集装置可以实现一种可变磁通量限制装置。另外,通过使用多个磁通量聚集装置,它甚至有可能实现一种力在路径上变化的行为,这样使得由该磁通量产生的力可以随着增加这些对应部分的距离而快速地衰减。关于该永磁场产生装置,有可能将该永磁场产生装置安排在所述磁通量聚集装置中的至少一个的附近。甚至有可能至少部分地将一个永磁场产生装置的函数性与一个磁通量聚集装置的函数性组合在一起。例如,通过该永磁场产生装置的一种适当的形状可以做到这一点。然而,不仅仅关于一种永磁场产生装置,通过某些装置的合理形状、例如通过该磁芯的和/或该可移动的磁性部件的多个部分的一种合理形状还可以实现一种磁通量聚集装置。在该第二间隙的附近和/或该第三间隙的附近提供多个磁通量聚集装置可以是特别有用的,因为这些间隙通常是与限定该区域的磁芯的第二区域相关联的,该永磁场产生装置的磁场通常被限制在其中。
有可能通过对这些部件中的至少一个进行成形来提供所述磁通量聚集装置中的至少一个和/或所述磁通量限制装置中的至少一个、具体是所述可变磁通量限制装置中的至少一个。这通常是对应地提供磁通量聚集装置以及可变磁通量限制装置的一种非常容易的方式。具体地讲,该对应部件的一种逐渐缩小的形状通常是有效的。这些对应部件可以是该磁芯的多个部分(具体是该磁芯的那些表面部分,这些部分形成该第一间隙、第二间隙、第三间隙中的一个的和/或可变磁通量限制装置的毗邻表面)、可以是该可移动的磁性部件、和/或该永磁场产生装置的多个部分。
如果所述磁通量限制装置、具体是所述可变磁通量限制装置被独自安排在所述磁芯的所述第一区域内、优选的是在所述双叉分支件的该区域内,则可以实现另一种可能的实施方案。这种设计可以证明是特别有用的,因为这样该磁通量、具体是由可变磁场产生装置所产生的磁通量可以被容易地限制为处于低磁通量的该磁芯的第一区域内。然而,如果该磁通量超出由该磁通量限制装置限定的限度,该磁通量于是将凭借该磁通量限制装置“离开”该第一区域,因此进入该第二区域。然而,如果希望抵消该磁通量,这通常是在该磁芯的这些区域上磁通量的优选的分布。具体地讲,以此方式抵消由该永磁场产生装置所产生的磁通量和/或抵消该可移动的磁性部件的锁止力可以是特别有效的和/或使得该可移动的磁性部件的移动的定时可以是很精确的。以此方式,可以提供具有一种具备有利行为的阀门致动器。
还有可能将该阀门致动器设计为使得所述间隙中的至少一个、具体是所述第一间隙和/或所述第二间隙包括至少一个磁通量增强装置和/或至少一个磁通量密度减少装置。使用这样一种设计,可以减少对应间隙对于多个磁场线的穿透的磁阻。此外,使用这样一种设计将总体上导致对应间隙的磁阻对该间隙的大小的一种较小的依赖性。以此方式,跨越对应间隙所产生的力可以是更加一致的。可以通过例如增大和/或对齐多个对应的表面来实现这样一种磁通量增强装置和/或磁通量密度减少装置。做到这一点的一种可能的方式是在该可移动的磁性部件的第一表面上和/或在该磁芯的第一表面上(即在该间隙内)提供该间隙的一个倾斜的“切削平面”和/或提供多个锥形的特征。
还有可能为该阀门致动器配备至少一种机械式能量存储装置、具体是提供一种弹性可变的装置,如一个弹簧。以此方式,可以将该可移动的磁性部件的动能和/或作用在该可移动的磁性部件上的外力(例如通过液压流体施加的)转换成可存储的能量。在稍后的时候在该阀门致动器的工作周期中可以释放这种可存储的能量。如果在一个适当的时间将所存储的能量释放,则有可能例如减少该阀门致动器的打开和/或关闭时间。此外,所存储的机械能量可以用于减少用于驱动该阀门致动器所需能量的量值。因此,可以节省能量。
如果可以至少将所述可移动的磁性部件移动到一个第一末端位置(在该位置上该第一间隙实质上被关闭)、和/或一个第二末端位置(在该位置上该第二间隙实质上被关闭)则可以实现该阀门致动器的另一个可能的实施方案。特别是在所提出的这些末端位置上,这些磁通量通常产生最大的力。反过来看,可以通过一个比较小的磁通量来产生一个特定的力。由于该阀门致动器在该阀门致动器的一个工作周期中的大多数时间内通常保持在这些末端位置上,如果减少该阀门致动器在一个末端或者两个末端上的能耗,则可以明显地减少该阀门致动器的总体能耗。因此,可以实现一种特别节能的阀门致动器。
此外,这有可能为该阀门致动器提供至少一个支承装置,其中所述支承装置中的至少一个优选地被安排为与所述第三间隙相连接。使用此类支承装置,该可移动的磁性部件的移动可以更加准确。因此,由所提出的阀门致动器驱动的这种阀门的致动也可以更加准确。具体地讲,所提出的支承可以是平移性支承。应当指出,在该第三间隙的附近通常存在多个表面(或者至少多个表面部分),这些表面至少本质上与该可移动的磁性部件的移动方向是平行的。这些表面(或者表面部分)可以方便地用于提供一种平移支承。在该第三间隙附近的磁性材料显示出一个倾斜的或者台阶状的表面的情况下,则可以通过在该磁性材料的表面(的一部分)上添加材料来提供一个光滑并且平行的表面。例如,可以使用一种环氧树脂。所提出的实施方案的另外的益处是可以使该阀门的和/或该致动器的总体积减小,特别是如果某些部件具有“双重功能”。
另外,在此提出了提供带有先前所述的类型的一种阀门致动器的一个被致动的阀门。优选的是,将所述可移动的磁性部件中的至少一个连接到一个阀门孔口改变装置上和/或是它的一部分上。所产生的被致动的阀门可以类似地显示先前提到并说明的多个特征和优点。一种阀门孔口改变装置可以容易地设计为一个孔口,该孔口是可以由一个阀头、具体是由一个阀门提升头来部分打开或关闭的。优选的是,该阀门致动器的一个第一末端位置可以对应于被致动的阀门的一个完全打开的位置,而一个第二末端位置可以对应于被致动的阀门的一个完全关闭的位置。然而,该阀门致动器的位置与该阀门孔口的状态之间的关系可以是不同的,特别是同样可以反过来。
此外,在此建议了一种流体工作机器,该流体工作机器包括至少一个先前说明类型的阀门致动器和/或至少一个先前说明类型的被致动的阀门。优选的是,该流体工作机器至少是部分被设计为一种液压流体工作机器、具体是被设计为一种综合换向液压机器。流体工作机器通常包括流体泵、流体马达、以及作为流体泵和/或流体马达均可以工作的机器。综合换向液压机器也被称作数字排量式泵。它们形成可变排量流体工作机器的一个子集。所提出的流体工作机器可以按照一种类似的方式来显示已说明的多个特征及优点。
此外,在此提出了一种操作阀门致动器的方法,该阀门致动器包括:带有一个空隙的一个磁芯、至少一个可变磁场产生装置、至少一个永磁场产生装置以及至少一个可移动的磁性部件,其中所述可移动的磁性部件被可移动地安排在所述磁芯的所述空隙内的方式为使得在所述可移动的磁性部件的一个第一表面与所述磁芯的所述空隙的一个第一表面之间形成了一个第一间隙,并且在所述可移动的磁性部件的一个第二表面与所述磁芯的所述空隙的一个第二表面之间形成了一个第二间隙,其中由所述永磁场产生装置中的至少一个所产生的磁通量是通过所述可变磁场产生装置中的至少一个通过限制经过所述磁芯的一部分和/或所述可移动的磁性部件的一部分的磁通量来至少部分地临时被抵消。已经关于所提出的阀门致动器、所提出的被致动的阀门和/或所提出的流体工作机器说明了这种方法的基础性原理。所提出的方法以一种类似的方式显示已经说明的多个特征及优点。
有可能执行用于操作先前说明类型的阀门致动器所提出的方法为使得所述磁通量限制的量至少是部分可变的、并且优选的是随着所述可移动的磁性部件的位置而改变。
还有可能将这种所提出的方法用于操作先前说明类型的阀门致动器。此外,有可能进一步地通过由先前说明所建议的方式来修改所提出的方法。
当阅读参照附图进行说明本发明的多个实施方案的以下说明时,本发明及其优点将变得更加清楚,这些附图显示如下:
图1:通过阀门单元的一个第一实施方案的截面,该阀门单元包括一种阀门致动器的一个第一实施方案;
图2a、图2b:该第一实施方案的阀门致动器处于其锁止位置上的磁状况;
图3a、图3b:该第一实施方案的阀门致动器处于一种解锁运动的初始阶段时的磁状况;
图4:该第一实施方案的阀门致动器处于半锁止位置上的磁状况;
图5:该第一实施方案的阀门致动器处于其解锁位置上的磁状况;
图6:在该第一实施方案的阀门致动器中的磁桥的磁饱和;
图7:使用根据图1的阀门单元的一种综合换向液压泵的一个实施方案;
图8:通过第二实施方案的阀门单元的一个截面,该阀门单元包括第一实施方案的一个阀门致动器。
在图1中示出了通过一个阀门单元1的示意性截面,该阀门单元包括一个阀门致动器部分2以及一个阀门孔口部分3。阀门单元1是实质上旋转对称的。
在阀门致动器部分2中提供了一个磁芯6。磁芯6是实质上是由一种显示铁磁性质的软磁材料制成的。磁芯6配备有一个双叉腹板7,该腹板被环圆周安排在磁芯6的内侧。在图1所示的实施方案中,双叉腹板7位于磁芯6大致一半的高度处。双叉腹板7限定了磁芯6的一个上部分4和一个下部分5。当然,双叉腹板7的位置同样可以是选择为不同的。
磁芯6配备有一个空隙8。空隙8是由磁芯6的三个毗邻的边缘9、10、11限定的。第一边缘9形成磁芯6的上部分4的一部分,而第二边缘10形成磁芯6的下部分5的一部分。第三边缘11对应于双叉腹板7(起到一个双叉分支件的作用)并且对于磁芯6的上部分4和下部分5二者是共用的。一个电枢12被可移动地安排在空隙8的内部(在箭头A的方向上是可移动的,并且起到一个可移动的磁性部件的作用)。磁芯6和电枢12的尺寸被确定为使得电枢12本质上仅在所述方向(即向上和向下)上是可移动的(见箭头A)。电枢12的大部分是由一种磁性材料(例如可以与磁芯6的材料相同的一种软磁材料)制造的。电枢12实质上将磁芯6的上部分4的磁回路以及磁芯6的下部分5的磁回路闭合。当然,这也可以被看作是电枢12实质上将双叉腹板7旁通的磁芯6的外部回路闭合。电枢12在所述方向上的典型行进距离是2、3、4或5毫米。
电枢12通过阀杆28被连接到阀门提升头15上。阀门提升头15被安排在阀门单元1的一个分配室29之内。一个流体输入管线30和一个流体输出管线31连接到分配室29上。通过阀门提升头15的一种适当移动A,流体输入管线30的进入端口32可以打开和关闭。流体输入管线30可以例如被连接到综合换向液压泵34的一个气缸39的泵送腔38上(见图7)。流体输出管线31可以被连接到综合换向液压泵34的一个气缸39的低压流体储液器33上。因此,阀门单元1的流体输出管线31将成为气缸39的输送管路。加压的流体(其中仅在阀门单元1被关闭时才发生在活塞40的向内移动到泵送腔38中的过程中泵送腔38内的流体的加压)将通过高压管线36朝着一个高压流体歧管35离开泵送腔38。在对应的高压管线36中,在每个气缸39附近提供了止回阀37。
在磁芯6的下部分5中,存在一个环形的永磁体13(起到一种永磁场产生装置的作用)。优选地,永磁体13是由一种金属陶瓷材料制成的,从而显示了永磁体13的每个单位体积的高磁通。在永磁体13的一侧上安装了由一种由软磁材料(例如与磁芯6相同的材料)制成的通量聚集器14(起到一种磁通量聚集装置的作用)。通量聚集器14面向电枢12并且甚至在电枢12处于其下部位置(阀门单元1的打开位置)时与电枢12发生接触。在图1中示出这个位置。电枢12的这个位置被称为该电枢的锁止位置,因为如果没有电流和/或没有外力施加到阀门致动器部分2上,则电枢12保留在这个位置上。当然,如果将足够大的力施加到阀门提升头15上,则电枢12可以与通量聚集器14脱离接触。然而,对于阀门单元1的典型设计而言,用于对电枢12进行解锁的必要的力将被选择为是在50N与100N之间的某处。当然,该区间还可以在60N、70N、80N和90N处开始/结束。由永磁体13产生的磁回路将实质上通过磁芯6的下部分5和电枢12流过。将参照图2进一步解释所产生的磁场。
在磁芯6的上部分4中提供了一个电线圈16(起到一种可变磁场产生装置的作用)。电线圈16被放入磁芯6的上部分4的内部空间17中。通过向电线圈16施加电流(未示出连接导线),电线圈16可以在磁芯6内产生一个磁通量。如果由电线圈16产生的磁通量低,电线圈16的磁通量将实质上被限制在磁芯6的上部分4。同理适用于如果由电线圈16所产生的磁场的方向与通过永磁体13所产生的磁场处于相同的方向上(例如,通过电线圈16所产生的磁场以及通过永磁体13所产生磁场都逆时针流动),即便是在更高水平磁通量的情况下。当然,即便在此处对于磁通量仍存在特定的限度。然而,如果由永磁体13所产生的磁场与由电线圈16所产生的磁场处于不同的方向(例如,由永磁体13所产生的磁场沿逆时针方向环绕,而由电线圈16所产生的磁场沿顺时针方向环绕),当达到或甚至超过由电线圈16产生的磁通量的一个特定的阈值水平时,至少由双叉腹板7和电枢12形成的中间磁桥18的多个部分将实质上变成饱和的。这些饱和部分优选的是与第三间隙21最接近地相关联的或者真正直接邻近所述第三间隙21的那些部分。一旦中间磁桥18的多个部分中的这种饱和发生,则磁桥18的递增的磁阻将更加高于在发生饱和之前的磁阻。电线圈16和永磁体13所引起的总的磁通量因此受到这些饱和部分的递增磁阻的显著增加的有效限制。如果电线圈16中的电流继续增加,这将趋向于导致在跨越永磁体13的退磁场内的一种增加,而不是在双叉腹板7内的磁通量的增加,因为这个腹板7的饱和位置的递增磁阻在该饱和限度之上是大大增加的。跨越永磁体13的增加的退磁场将起作用来减少通过该永磁体13、并且因此该磁通量聚集器14中流过的通量,并且因此减少电枢12上的保持力。考虑这种效应的另一种方法是来自电线圈16的进一步的通量将导致超过磁桥18的磁通量限度的磁通量遵循通过磁芯6的下部分5的这个更长的路径。电线圈16的磁通量与永磁体13的磁通量指向不同的方向,因此而彼此抵消。这将导致通过第二间隙20的一种减小的总磁通量,从而导致跨越第二间隙20的一个减小的吸引力。在某个点,来自永磁体13的磁通量将被抵消。这种情况将参见图3、图4、图5和图6来进一步解释。当然,只能在一个特定点来测量总的磁通量。不同磁通量的叠加的给定图象只是用于理解这些效应的一种可能的方式。
如从图1中可见,在电枢12的下部位置上(阀门单元1的打开位置),在第一边缘9与电枢12之间存在一个第一间隙19。第一间隙19是由电枢12的毗邻的表面23以及第一边缘9的表面22限定的。在图1所示的阀门单元1的实施方案中,间隙19相对于电枢12的移动方向A是倾斜的或者渐斜削的。第一间隙19的这种倾斜增加了这些毗邻的表面22、23的表面面积。这些增加的表面面积22、23将导致在第一间隙19附近磁通量的增加。这种倾斜还对于沿着电枢12的移动方向A的一个给定的要求的移动减少了这些毗邻的表面22、23之间的垂直距离,由此减少了间隙19的磁阻并且增加了通过所述间隙19的磁通量(由此起到一个磁通量增强装置的作用)。在这些方式中,有可能增强能够经过第一间隙19的总的磁通量。因此第一间隙19对于这些磁场线的穿透的电阻率被降低。换言之,倾斜的第一间隙19被用来增加可以经过第一间隙19的总磁通量并且因此增加可以经过其上部分4中的磁芯6的多个对应部分的总磁通量。使用这样一种倾斜的或者渐斜削的间隙19是用来改进长冲程螺线管的磁吸引力的强度所进行的一种众所周知的惯例。然而,在阀门单元1中,倾斜的间隙19还通过降低所述间隙19的磁阻来提供一种更加快速的操作,因此使经过磁桥(空隙)8积聚的磁通量的速率增加,因此减少了邻近第三间隙21的这些桥8的部分的饱和时间。
阀门单元1的打开运动可以由两个不同的力来实现,这两个力也可以共同起作用。首先,通过永磁体13所导致的跨越第二间隙21的磁吸引力来执行一种打开运动。其次,提供一个弹簧43(起到机械能存储装置的作用),该弹簧迫使阀杆28向下,因此打开阀门单元1。如果两个力一起施加,则阀门单元1的反应时间将增加而阀门单元1的打开时间将减少。
阀杆28(包括电枢12)是由多个支承44、45导向的。第一支承44被安排在阀门单元1的分配室29附近。这个第一支承44可以被安排为一个标准的防流体的平移式支承44。
第二支承45是由电枢12的外表面27以及双叉腹板7的内表面26来提供的。换言之,第三间隙21也可以被设计为执行一个平移式支承45的功能。因为在一个阀门单元1的当前所示的实施方案中,电枢12的磁性材料具有一个台阶状延伸部47,一个由非磁性材料制成的环46被安排在电枢12的上半部分周围以便形成一个光滑表面27,该表面毗邻第三间隙21的双叉腹板7的相反表面26。
由于电枢12的这种设计,其中电枢12的磁性材料在毗邻第三间隙21的一个区域内显示一个延伸部47,如果对电线圈16供给足够的电流,将发生磁桥18(具体是双叉腹板7和/或延伸部47共同起到一种磁通量限制装置的作用)的磁饱和。因此,对于抵消永磁体13的磁场必要的电流是可以由磁桥18(具体是双叉腹板7和/或延伸部47)的大小和形状来确定。这种设计可以根据所产生阀门致动器1的设计参数来选择。因为在阀门单元1的关闭位置上,电枢12的磁性材料的延伸部47的外表面部分27与双叉腹板7的表面26之间的表面重叠只是很小的,发生了磁桥18的提前饱和。
一旦电枢12开始向上(箭头A)移动,在延伸部47的表面部分与双叉腹板7的表面26之间的重叠表面将增加。因此,此时将以一个更高的磁通量发生磁桥18的饱和。进而,这将降低磁桥18的这些饱和部分的磁阻。将从磁桥18中通过由电线圈16产生的一个增加的磁通量。因此,在第一边缘9的表面22与电枢12的表面23之间(限定第一间隙19)的吸引力将增加。因此,电枢12以及被连接到阀门提升头15上的阀杆28将非常快地加速至阀门单元1的关闭位置上。
在图2至图6中进一步说明了在阀门单元1的打开运动过程中这些磁场的变化。图2至图6仅示出所涉及的这些部分(实质上是磁芯6的一部分与电枢12的一部分)中的一部分。
在图2中,示出了在阀门致动器2的一种闲置状态下磁场的情况。此处,电线圈16被断开,即没有电流施加到电线圈16上。磁通量仅来自永磁体3。从这些磁通量线49的密度可以推断出阀门单元1的不同部分中的磁通量密度。注意,场线的数量没有指明磁通量的总水平,所以这样不可能从一个图到另一个图来比较磁通量的绝对水平。
如从图2中可以看到,磁通量被聚集在由磁通量聚集器14的接触表面25和电枢12的毗邻的表面24限定的第二间隙20处。这在电枢12上产生一个向下的力。该磁通量还被聚集在第三间隙21处,并且因此还在与第三间隙21直接邻近的延伸部47的一部分以及与第三间隙21直接邻近的双叉腹板7的一部分中。磁桥18不是饱和的,并且因此通过双叉腹板7的磁通量不受阻碍。因此,磁通量实质上被聚集到磁芯6的下部分5上。只有该磁通量的非常小的部分将通过磁芯6的上部分4采取该“长路径”。
在图2b中(与图2a相反),画出了多个方向箭头48,这些箭头指明了由永磁体13产生的磁通量的方向。
当电线圈16被接通时,即向电线圈16施加电流时,这种情况改变。此时,电线圈16和永磁体13都产生磁通量48、50(见图3b)。如箭头48、50的方向所指明的,由永磁体13产生的磁通量48的方向与由电线圈16产生的磁通量50的方向在磁桥18内指向同一个方向。然而,所导致的磁通量所处的水平超出磁桥18(双叉腹板7和/或延伸部47)的饱和水平。即,双叉腹板7的磁性材料和/或电枢12的延伸部47的磁性材料是饱和的。因此,这两个磁通量48、50将彼此“竞争”。因此,经过第二间隙20引起的磁通量将在某个点几乎降至零,这可以从磁芯6的下部分5中的多个磁通量线49的密度看到(具体见图3a)。这导致第二间隙20临时退磁,因此几乎完全抵消了电枢12上的向下的力。另一方面,在电枢12与磁芯6的上部分4中的磁芯6的第一边缘9之间的第一间隙19中经过的磁通量将在电枢12上产生一个向上的力。因此,阀门1将开始关闭。
在图4中,阀门单元1是已经半关闭的。如从图4中可以看到,电枢12的延伸部47的毗邻的表面26与双叉腹板7的表面27的重叠表面部分(第三间隙21)已经被增加。因此,与图2和图3中的情况相比,磁桥18(双叉腹板7和/或延伸部47)的饱和水平此时更高。因此,第三间隙3对于多个磁场线的穿透的磁阻减小。因此,电线圈16的有效性增加。从磁芯6的上部分4的磁场线49的更高密度可以看到这种更高的有效性。
最后,在图5中,电枢12到达其上部末端位置,其中阀门单元1被完全关闭。在这个位置上,磁芯6的第一边缘9与电枢12之间的第一间隙19实质上是关闭的。另一方面,电枢12的毗邻的表面24与磁通量聚集器14的表面25之间的第二间隙20此时将是完全打开的。在这个位置上,即便减小通过电线圈16的电流,也可将阀门单元1保持在其关闭位置上。甚至如果将弹簧43的机械力考虑在内这仍然成立。
在图6所示的曲线图53中,描绘了在电枢12上的总力FM与通过电线圈16的电流I之间的函数性。总力FM被示出在纵坐标54上,而电流I被示出在横坐标55上。总磁力FM实质上包括跨越第一间隙19的磁力以及跨越第二间隙20的磁力。总磁力FM实质上是所述力的矢量和。具体地讲,通过弹簧43施加的力不是总磁力FM的一部分。
在曲线图53中示出了对于阀门致动器2的总磁力FM与电流I之间的函数关系,该阀门致动器包括一个磁通量限制装置(见饱和线56)。在图1和图8中描绘了在阀门致动器2上发生的这种函数关系56。为了比较,还示出了非饱和线57,这里没有发生饱和。这对应于例如如在US7,077,378B2中示出的阀门致动器。
在非常低的电流I处,饱和线56与非饱和线57一起下降。然而,与非饱和情况57相比,当穿过磁芯的饱和限度58时,将电枢12保持在其锁止位置上的力FM(总磁力FM的负值使电枢12向下移动)更加快速地衰减。因此,与非饱和情况57相比,饱和线56与横坐标55相交的点是处于一个相对更低的电流I处。对应线56、57与横坐标55的这个交点与电枢12开始向其上部位置移动的点相对应,因此将进入端口32(在图1中所示的阀门单元1的情况中)关闭。以此方式,在饱和的情况下,对于该阀门单元的致动需要更少的电能,从而导致阀门单元1、51更高的效率。
从曲线图53中还可以推断出另一种效应。如在曲线图53中清晰的是,与非饱和线57相比,当与横坐标55相交时,饱和线56示出了高得多的倾斜。然而,横坐标55周围的区域对应于一种情况,在这种情况中磁芯6和/或电枢12的相对小的外力或残余磁化可以将电枢12保持在其当前位置上、或者与此相反可以开始电枢12的一种运动。因此,在这个区域内会发生波动。由于饱和线56的更急剧的倾斜,与现有技术相比,创建这个“不确定区域”的时间间隔的宽度将小得多,从而导致结果的阀门致动器2的好得多的定时。
在图7中,使用了一个综合换向液压泵34,该液压泵使用了先前说明的设计的阀门单元1。综合换向液压泵34与三个气缸39一起示出。每个气缸39包括一个泵送腔38以及从对应的泵送腔38往复进出的一个活塞40。这些活塞40的运动是由一个凸轮41实现的,该凸轮是以偏心的方式安装在一个旋转轴42上。当一个活塞40从其相应的泵送腔38中移出时,液压流体将通过阀门单元1(阀门单元1处于其打开位置上)从低压储液器33被吸入泵送腔38中。一旦活塞40已经到达其下止点,就可以将阀门单元1关闭。因此,泵送腔38内的流体的压力增加。最终,流体使止回阀37开放并且因此将液压流体通过止回阀37从泵送腔38排出至综合换向液压泵34的高压歧管35。这等同于所谓的全冲程泵送模式。
然而,还有可能使阀门单元1的关闭延迟。如果阀门单元1是在一个更晚的时间关闭,则泵送腔38内的流体将开始经过阀门单元1而驱逐返回低压流体储液器33中。因此,将不执行向高压流体歧管35的有效泵送。仅在一旦阀门单元1被关闭时,才使泵送腔38内剩余部分的液压流体朝着高压流体储液器35驱送。因此,综合换向液压泵34的泵送性能与实际的高压流体流动要求可以容易地进行适配。
最后,在图8中示出了阀门单元51的另一个可能的实施方案。阀门单元51的阀门致动器部分2与图1中示出的阀门单元1的阀门致动器部分2几乎是完全相同的。在图1与图8的两个阀门单元1、51之间的主要区别是当前示出的阀门单元51的阀门孔口部分52被设计为使得在阀门致动器2的锁止位置上,阀门孔口部分52的阀门孔口32是关闭的。因此,当阀门致动器2是处于其上部位置中时,阀门孔口部分52的阀门孔口32是开放的。
1.阀门单元
2.阀门致动器部分
3.阀门孔口部分
4.上部分
5.下部分
6.磁芯
7.双叉腹板
8.空隙
9.第一边缘
10.第二边缘
11.第三边缘
12.电枢
13.永磁体
14.通量聚集器
15.阀门提升头
16.电线圈
17.内部空间
18.磁桥
19.第一间隙
20.第二间隙
21.第三间隙
22-27.表面
28.阀杆
29.分配室
30.流体输入管线
31.流体输出管线
32.进入端口
33.低压流体储液器
34.综合换向液压泵
35.高压流体歧管
36.高压管线
37.止回阀
38.泵送腔
39.气缸
40.活塞
41.凸轮
42.转动轴
43.弹簧
44.第一支承
45.第二支承
46.环
47.延伸部分
48.磁场方向(永磁体)
49.磁场线
50.磁场方向(可变磁场)
51.阀门单元
52.阀门孔口部分
53.曲线图
54.纵坐标
55.横坐标
56.饱和线
57.非饱和线
58.饱和限度

Claims (14)

1.一种阀门致动器(2),包括:带有一个空隙(8)以及至少一个双叉分支件(7)的一个磁芯(6)、至少一个可变磁场产生装置(16)、至少一个永磁场产生装置(13)以及至少一个可移动的磁性部件(12),其中所述双叉分支件(7)限定所述磁芯(6)的一个第一区域(4)和一个第二区域(5),
其中所述可移动的磁性部件(12)被可移动地安排在所述磁芯(6)的所述空隙(8)内的方式为使得在所述可移动的磁性部件(12)的一个第一表面(23)与所述磁芯(6)的所述空隙(8)的一个第一表面(22)之间形成了一个第一间隙(19),在所述可移动的磁性部件(12)的一个第二表面(24)与所述磁芯(6)的所述空隙(8)的一个第二表面(25)之间形成了一个第二间隙(20),并且在所述可移动的磁性部件(12)的一个第三表面(27)与所述磁芯(6)的所述双叉分支件(7)的一个第三表面(26)之间形成了一个第三间隙(21),其中,所述可变磁场产生装置(16)中的至少一个是存在于所述磁芯(6)的所述第一区域(4)中的,并且所述永磁场产生装置(13)中的至少一个是存在于所述磁芯(6)的所述第二区域(5)中的,其中,所述阀门致动器(2)以如下方式被设计和安排,即使得由所述可变磁场产生装置(16)中的至少一个所产生的磁通量能够在所述至少一个可移动的磁性部件(12)上施加一个力,并且能够抵消由所述永磁场产生装置(13)中的至少一个所产生的磁通量(48,49),其特征为,所述双叉分支件(7)和所述可移动的磁性部件(12)共同起到至少一个磁通量限制装置(7,12)的作用,所述磁通量限制装置中的至少一个的磁通量限度是可以达到的,该磁通量限度本质上是由所述磁通量限制装置(7,12)的磁饱和来定义的。
2.根据权利要求1所述的阀门致动器,其特征在于,所述磁通量限制装置(7,12)中的至少一个被设计为一种可变磁通量限制装置(18,47)。
3.根据权利要求2所述的阀门致动器,其特征在于,所述可变磁通量限制装置(18、47)被安排为与所述第三间隙(21)相关联。
4.根据权利要求2或3所述的阀门致动器,其特征在于,所述阀门致动器(2)进行设计和安排的方式为使得所述可变磁通量限制装置(18、47)的磁通量限度和/或磁阻是随所述可移动的磁性部件(12)的位置而改变的。
5.根据权利要求2或3所述的阀门致动器,其特征在于,所述阀门致动器(2)进行设计和安排的方式为使得,当该可移动的磁性部件(12)越接近于所述第二间隙(20),所述可变磁通量限制装置(18,47)的磁阻越高。
6.根据权利要求2或3所述的阀门致动器,其特征在于,至少一个磁通量聚集装置(14)被安排在所述间隙(19,20,21)中的至少一个的附近和/或在所述可变磁通量限制装置(18,47)的至少一个的附近。
7.根据权利要求6所述的阀门致动器,其特征在于,至少一个所述磁通量聚集装置(14)和/或所述可变磁通量限制装置(18,47)中的至少一个是通过所述磁芯(6)的所述可移动的磁性部件中的至少一个部件的一种形状而实现的。
8.根据权利要求1所述的阀门致动器,其特征在于,所述第一间隙(19)和/或所述第二间隙(20)包括至少一个磁通量增强装置(19,22,23)和/或至少一个磁通量密度减少装置(19,22,23)。
9.一个被致动的阀门(1),包括根据以上权利要求中任一项所述的阀门致动器(2),其中所述可移动的磁性部件(12)中的至少一个被连接到一个阀门孔口改变装置(15)上,或者所述可移动的磁性部件(12)中的至少一个是阀门孔口改变装置(15)的一部分。
10.一种流体工作机器(34),其特征在于,至少一个根据权利要求1至8的任一项所述的阀门致动器(2)和/或至少一个根据权利要求9所述的被致动的阀门(1),其中所述流体工作机器被设计为一种液压流体工作机器。
11.如权利要求10所述的流体工作机器(34),其特征在于,所述液压流体工作机器为综合换向液压机器。
12.操作如权利要求1的阀门致动器(2)的方法,其特征在于,所述永磁场产生装置(13)中的至少一个产生磁通量(48,49),所述磁通量(48,49)通过使经过所述磁芯(6)的所述双叉分支件(7)和/或所述可移动的磁性部件(12)的一部分的磁通量受限制而被所述可变磁场产生装置(16)中的至少一个至少部分地抵消。
13.根据权利要求12所述的操作一个阀门致动器(2)的方法,其特征在于,所述磁通量受限制的量值是至少部分可变的。
14.根据权利要求12所述的操作阀门致动器(2)的方法,其特征在于,所述磁通量受限制的量值随着所述可移动的磁性部件(12)的位置来改变。
CN200980143848.7A 2008-10-29 2009-10-27 阀门致动器 Expired - Fee Related CN102203884B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08018862.6 2008-10-29
EP08018862.6A EP2182531B1 (en) 2008-10-29 2008-10-29 Valve actuator
PCT/DK2009/000226 WO2010048954A1 (en) 2008-10-29 2009-10-27 Valve actuator

Publications (2)

Publication Number Publication Date
CN102203884A CN102203884A (zh) 2011-09-28
CN102203884B true CN102203884B (zh) 2015-11-25

Family

ID=40383725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980143848.7A Expired - Fee Related CN102203884B (zh) 2008-10-29 2009-10-27 阀门致动器

Country Status (10)

Country Link
US (1) US9033309B2 (zh)
EP (1) EP2182531B1 (zh)
JP (1) JP5566390B2 (zh)
KR (1) KR101304141B1 (zh)
CN (1) CN102203884B (zh)
AU (1) AU2009310136A1 (zh)
BR (1) BRPI0914528A2 (zh)
CA (1) CA2741235A1 (zh)
RU (1) RU2011121579A (zh)
WO (1) WO2010048954A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032688B4 (de) * 2010-07-29 2012-11-29 Kendrion (Donaueschingen/Engelswies) GmbH Elektromagnet mit Permanentmagnet
JP5429143B2 (ja) * 2010-11-25 2014-02-26 株式会社豊田自動織機 差圧制御弁及び容量可変型圧縮機
JP5917925B2 (ja) * 2012-01-27 2016-05-18 武蔵エンジニアリング株式会社 液滴形成装置および液滴形成方法
DE102012106824A1 (de) 2012-07-26 2014-01-30 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102012109074A1 (de) * 2012-09-26 2014-03-27 Sauer-Danfoss Gmbh & Co. Ohg Verfahren und Vorrichtung zur Ansteuerung einer elektrisch kommutierten Fluidarbeitsmaschine
EP3061104B1 (de) 2013-10-23 2022-05-11 Rhefor GbR Elektromechanischer aktor
US10522313B2 (en) * 2013-10-23 2019-12-31 Rhefor Gbr Reversing linear solenoid
WO2015172824A1 (en) 2014-05-14 2015-11-19 Abb Technology Ltd Thomson coil based actuator
US9997287B2 (en) * 2014-06-06 2018-06-12 Synerject Llc Electromagnetic solenoids having controlled reluctance
JP6421745B2 (ja) * 2015-12-11 2018-11-14 オムロン株式会社 リレー
JP6575343B2 (ja) 2015-12-11 2019-09-18 オムロン株式会社 リレー
US10024454B2 (en) * 2016-07-21 2018-07-17 Kidde Technologies, Inc. Actuators for hazard detection and suppression systems
BE1024608B1 (fr) * 2016-09-30 2018-05-02 Safran Aero Boosters S.A. Vanne a actionneur electromagnetique proportionnel
JP6920096B2 (ja) * 2017-04-27 2021-08-18 株式会社ミクニ 電磁アクチュエータ
US11035491B2 (en) * 2017-07-03 2021-06-15 Continental Automotive Systems, Inc. Fuel pump solenoid having hydraulic damping
US10726985B2 (en) * 2018-03-22 2020-07-28 Schaeffler Technologies AG & Co. KG Multi-stage actuator assembly
US11118702B2 (en) * 2018-07-23 2021-09-14 Buerkert Werke Gmbh & Co. Kg Valve with energy-saving electrodynamic actuator
US11598442B2 (en) 2019-05-29 2023-03-07 Denso International America, Inc. Current dependent bi-directional force solenoid
KR102495645B1 (ko) * 2020-11-26 2023-02-06 한국과학기술원 정보 출력 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128977A2 (en) * 2006-04-07 2007-11-15 Artemis Intelligent Power Limited Electromagnetic actuator

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683239A (en) 1971-06-17 1972-08-08 Oded E Sturman Self-latching solenoid actuator
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
US4403765A (en) * 1979-11-23 1983-09-13 John F. Taplin Magnetic flux-shifting fluid valve
JPH0134326Y2 (zh) * 1981-04-22 1989-10-19
JPS5875806A (ja) 1981-10-30 1983-05-07 Matsushita Electric Works Ltd 有極型電磁石装置
DE3271375D1 (en) 1982-08-20 1986-07-03 Burkert Gmbh Magnetic-impulse valve with a permanent magnetic latch mechanism without changeable magnetisation
FR2573570B1 (fr) 1984-11-22 1988-05-27 Merlin Gerin Relais electromagnetique polarise a accrochage magnetique pour un declencheur d'un disjoncteur electrique
JPS6379304A (ja) 1986-06-02 1988-04-09 Fuji Electric Co Ltd 有極電磁石装置
JPS6482606A (en) 1987-09-25 1989-03-28 Matsushita Electric Works Ltd Electromagnet device
GB8728628D0 (en) 1987-12-08 1988-01-13 Lucas Ind Plc Fuel injection valve
DE3814765A1 (de) * 1988-04-30 1989-11-09 Messerschmitt Boelkow Blohm Magnetventil
GB8822901D0 (en) 1988-09-29 1988-11-02 Mactaggart Scot Holdings Ltd Apparatus & method for controlling actuation of multi-piston pump &c
AU641438B2 (en) 1988-09-29 1993-09-23 Artemis Intelligent Power Ltd. Improved fluid-working machine
FR2649206B1 (fr) 1989-07-03 1993-02-05 Total Petroles Procede et dispositif de mesure de la gelification de produits petroliers paraffiniques, notamment bruts
US4994776A (en) 1989-07-12 1991-02-19 Babcock, Inc. Magnetic latching solenoid
US5034714A (en) * 1989-11-03 1991-07-23 Westinghouse Electric Corp. Universal relay
DE3939537B4 (de) 1989-11-30 2004-09-30 Steuerungstechnik Staiger Gmbh & Co. Produktions-Vertriebs-Kg Magnetventil
DE4334031C2 (de) 1993-10-06 1998-02-12 Kuhnke Gmbh Kg H Verfahren zum Betrieb eines bistabilen Hubmagneten und Hubmagnet zur Durchführung des Verfahrens
JP3671091B2 (ja) 1996-09-06 2005-07-13 有限会社牛方商会 図形測定装置におけるプロット針
AU1728500A (en) 1998-11-20 2000-06-13 Mas-Hamilton Group, Inc. Autosecuring solenoid
US6737946B2 (en) * 2000-02-22 2004-05-18 Joseph B. Seale Solenoid for efficient pull-in and quick landing
US6351199B1 (en) 2000-05-18 2002-02-26 Moog Inc. Position sensor for latching solenoid valve
JP3076067U (ja) * 2000-09-04 2001-03-16 復盛股▲分▼有限公司 コンプレッサボリューム調節装置
GB0130160D0 (en) 2001-12-17 2002-02-06 Artemis Intelligent Power Ltd Annular valve
US6615780B1 (en) * 2002-08-16 2003-09-09 Delphi Technologies, Inc. Method and apparatus for a solenoid assembly
GB0221165D0 (en) 2002-09-12 2002-10-23 Artemis Intelligent Power Ltd Fluid-working machine and operating method
JP4328185B2 (ja) * 2003-11-19 2009-09-09 株式会社日本Aeパワーシステムズ 電磁石
EP1507271A3 (en) 2003-08-12 2005-04-20 Japan AE Power Systems Corporation Electromagnetic device
JP2006024871A (ja) * 2004-06-08 2006-01-26 Japan Ae Power Systems Corp 電磁石装置
JP2005353695A (ja) * 2004-06-08 2005-12-22 Japan Ae Power Systems Corp 電磁石
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
JP2006108615A (ja) * 2004-09-07 2006-04-20 Toshiba Corp 電磁アクチュエータ
US20070194872A1 (en) 2005-12-01 2007-08-23 Pfister Andrew D Electromagnetic actuator
DE102006022561A1 (de) 2006-05-15 2007-11-22 Nass Magnet Gmbh Magnetventil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128977A2 (en) * 2006-04-07 2007-11-15 Artemis Intelligent Power Limited Electromagnetic actuator

Also Published As

Publication number Publication date
AU2009310136A1 (en) 2010-05-06
CA2741235A1 (en) 2010-05-06
WO2010048954A1 (en) 2010-05-06
JP5566390B2 (ja) 2014-08-06
US9033309B2 (en) 2015-05-19
EP2182531A1 (en) 2010-05-05
RU2011121579A (ru) 2012-12-10
KR101304141B1 (ko) 2013-09-05
CN102203884A (zh) 2011-09-28
BRPI0914528A2 (pt) 2015-12-15
EP2182531B1 (en) 2014-01-08
US20110253918A1 (en) 2011-10-20
KR20110094291A (ko) 2011-08-23
JP2012506981A (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
CN102203884B (zh) 阀门致动器
US5339777A (en) Electrohydraulic device for actuating a control element
CN101416257B (zh) 电磁驱动器
KR101947298B1 (ko) 복합 자기회로 이중 영구자석 전자석 및 복합 자기회로 이중 영구자석 고속전자밸브
US5592905A (en) Electromechanical variable valve actuator
JP5307803B2 (ja) 電磁駆動装置
US20010026204A1 (en) Permanent magnet actuator mechanism
US20090191073A1 (en) Magnetic pumping machines
CN102086826B (zh) 用于控制喷射器或用于调节高压燃料蓄集器的压力的电磁阀
CN101074688A (zh) 带有颗粒吸收磁铁的液压流体通道
WO1999057430A1 (en) A hydraulically driven springless fuel injector
US20130328650A1 (en) Divergent flux path magnetic actuator and devices incorporating the same
JP2014117149A (ja) リニアドライブ装置ならびにピストンポンプ装置
US20160186883A1 (en) Valve having a linear drive for the valve piston
CN105655086A (zh) 高性能双边法向电磁执行器
Liu et al. Electromechanical valve actuator with hybrid MMF for camless engine
US20130302181A1 (en) Zero emissions pneumatic-electric engine
CN109300648B (zh) 一种耐高压动磁式双向比例电磁铁
CN110958964A (zh) 用于液压制动系统的双稳态电磁阀、用于该电磁阀的操控方法和装配方法以及具有这种电磁阀的制动系统
Dhangar et al. Magnetic piston operated engine
Sato et al. Valve Mechanism for Gasoline Engine with Linear Motor (Fundamental Consideration Using Electromagnetic Field Analysis)
KR20070006623A (ko) 솔레노이드 압력펌프
Mahajan et al. High force density solenoid actuator for aerospace application
CN212106183U (zh) 一种纯磁驱气体增压机
CN201092989Y (zh) 数字直行程电液执行机构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Fort Hood

Applicant after: SAUER-DANFOSS APS

Applicant after: ARTEMIS INTELLIGENT POWER Ltd.

Address before: Fort Hood

Applicant before: Sauer Danfoss Aps

Applicant before: Artemis Intelligent Power Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SAUER DANFOSS APS TO: DANFOSS POWER SOLUTIONS CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

CF01 Termination of patent right due to non-payment of annual fee