CN102184946A - 金属半导体化合物薄膜和dram存储单元及其制备方法 - Google Patents

金属半导体化合物薄膜和dram存储单元及其制备方法 Download PDF

Info

Publication number
CN102184946A
CN102184946A CN2011100638822A CN201110063882A CN102184946A CN 102184946 A CN102184946 A CN 102184946A CN 2011100638822 A CN2011100638822 A CN 2011100638822A CN 201110063882 A CN201110063882 A CN 201110063882A CN 102184946 A CN102184946 A CN 102184946A
Authority
CN
China
Prior art keywords
metal
compound film
semiconductor compound
semiconductor
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100638822A
Other languages
English (en)
Other versions
CN102184946B (zh
Inventor
吴东平
张世理
朱志炜
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201110063882.2A priority Critical patent/CN102184946B/zh
Publication of CN102184946A publication Critical patent/CN102184946A/zh
Priority to US13/394,303 priority patent/US20140008710A1/en
Priority to PCT/CN2011/080285 priority patent/WO2012122790A1/zh
Application granted granted Critical
Publication of CN102184946B publication Critical patent/CN102184946B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种金属半导体化合物薄膜,形成于半导体层与多晶半导体层之间,其厚度为2~5nm,从而改善所述半导体层与多晶半导体层之间的接触;还公开了一种DRAM存储单元,该存储单元中的MOS晶体管的漏区与多晶半导体缓冲层之间加入金属半导体化合物薄膜,且其厚度为2~5nm,从而可在提高晶体管的读写速度的同时,避免所述漏区与硅衬底之间的漏电流过度增大;同时,还公开了一种DRAM存储单元的制备方法,该方法形成的DRAM存储单元,其MOS晶体管器件的漏区与多晶半导体缓冲层之间形成有金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可提高DRAM存储单元的性能。

Description

金属半导体化合物薄膜和DRAM存储单元及其制备方法
技术领域
本发明涉及微电子器件技术领域,尤其涉及一种金属半导体化合物薄膜和DRAM存储单元及其制备方法。
背景技术
作为金属电极的金属半导体化合物薄膜被广泛用于金属氧化物半导体场效应晶体管(MOSFET)的源漏极和栅极,形成和硅、锗或硅-锗半导体的金-半接触。
金属半导体化合物薄膜的主要作用从一开始的为简单的二极管提供可靠的接触,到近来利用自对准金属半导体化合物薄膜形成工艺(salicide)为MOSFET形成低阻源漏接触和低方块电阻栅电极,在CMOS器件尺寸的微缩化及提高器件性能上起着非常重要的作用。随着半导体制备工艺技术的进步,金属半导体化合物薄膜从早期的硅化钛(TiSi2)、硅化钴(CoSi2)发展到现在主流的的硅化镍(NiSi)或掺铂硅化镍(Ni(Pt)Si)。
并且随着器件尺寸的缩小,金属半导体化合物薄膜的厚度也要求越来越薄;这一点在动态随机存储器(DRAM,Dynamic Random Access Memory)中表现尤为明显。
DRAM通常由多个基本存储单元按照行和列组成,每个存储单元包括一个MOS晶体管及一个电容,所述MOS晶体管的源区与位线(bit line)相连,其栅区与字线(word line)相连,其漏区通过一缓冲层与所述电容相连,其中,所述缓冲层为高掺杂多晶硅层,所述电容为金属-绝缘层-金属(MIM,Metal-Insulator-Metal)电容。之所以在漏区与所述电容之间加入高掺杂多晶硅层,是因为如果MIM电容的金属电极和硅衬底直接接触,将会使得漏区与硅衬底之间形成的PN结(简称漏极PN结)的漏电流增大,从而导致DRAM存储单元的电荷保持能力下降;加入高掺杂多晶硅层可避免漏极PN结的漏电流过度增大。
然而,由于所述漏区的组成材料为Si,而Si与多晶硅之间的接触电阻很大,并且由于Si的表面通常会形成一层天然的氧化层,因而进一步增大了Si与多晶硅之间的接触电阻,从而使得晶体管的读写速度降低。
为了提高晶体管的读写速度,目前采取的办法是在所述漏区形成一层金属半导体化合物薄膜,所述漏区通过所述金属半导体化合物薄膜与所述多晶硅相连,从而可大大降低所述漏区与所述多晶硅之间的接触电阻,提高所述晶体管的读写速度。
然而,在所述漏区形成一层金属半导体化合物薄膜后,所述漏区与半导体衬底之间形成的PN结的电阻也随之降低,使得所述PN结的漏电流增大,从而导致所述电容中存储的电荷容易流失,使得所述电容的存储能力下降,因而需对DRAM不断进行刷新;并且金属半导体化合物薄膜层的厚度越厚,所述电容的存储能力越差。
因此,为了在提高所述晶体管的读写能力的同时,保证所述电容的存储能力,希望所述金属半导体化合物薄膜的厚度越薄越好。
目前,形成金属半导体化合物薄膜的方法主要有以下几种:
1)硅化钛工艺
硅化钛工艺是先将钛金属沉积在晶片上,然后经过稍低温度的第一次退火,得到高阻的中间亚稳相C49,然后再经过温度稍高的第二次退火,使C49相转变成最终需要的低阻C54相(稳定)。硅化钛具有形成工艺简单、高温稳定性好等优点。然而,随着MOSFET尺寸的不断变小,会出现硅化钛的形成和相变不彻底的现象,尤其是其窄线条效应,即硅化钛的形成和相变随着线宽或接触面积的减小而变得更加困难,这不仅大大增加了接触电阻和寄生串联电阻,而且导致了器件和器件、电路和电路及芯片和芯片之间特性的不稳定和不重复;
2)硅化钴工艺
为了解决较小尺寸下出现的线宽效应,硅化钴作为硅化钛的替代品应运而生,但当器件尺寸更小时,窄线条效应在硅化钴的形成中仍然会出现;随着有源区掺杂深度不断变浅,硅化钴形成过程中也会过度消耗表面高掺杂硅;
3)硅化镍工艺
相对于之前的硅化钛和硅化钴而言,硅化镍具有一系列独特的优势。硅化镍仍然沿用之前硅化物类似的两步退火工艺,但是退火温度有了明显降低(<600℃),这样就大大减少对器件已形成的超浅结的破坏,较低的退火温度不会导致已掺杂离子在硅化物形成过程中的扩散。同时,较低的退火温度也有利于更加先进的材料和技术的集成,这里特别包括了高介电系数的介质栅(high-K dielectric)和金属栅极(metal gate);镍的硅化物的形成即使在30纳米以下的线条中都没有发现窄线条效应;硅化镍的形成过程对源/漏区的硅的消耗较少,而靠近表面的硅刚好是掺杂浓度最大的区域,因而对于降低整体的接触电阻十分有利。
然而,超薄镍硅化物也面临一系列的问题。一方面,通常使用的低阻硅化镍薄膜有着一镍一硅的化学组份比,即一硅化镍NiSi。而由于Si的存在并直接同NiSi接触,随着温度的升高,NiSi会和Si发生反应,形成更加稳定的二硅化镍NiSi2相,即低阻的一硅化镍相有着潜在的高温不稳定性,对随后的后端工艺中各个步骤的最高温度产生了限制;另一方面,随着超薄硅化物的厚度越来越小,原先的连续厚度均匀的薄膜会由于表面张力作用,会出现厚度不均匀甚至变成类似于岛状的不连续形状,从而导致电阻变大甚至不导电;另外,通常的硅化镍形成工艺在形成硅化物时的速度不易控,不利于形成超薄的硅化物层。
因此,有必要对现有的金属半导体化合物薄膜的制备方法进行改进。
发明内容
本发明的目的在于提供一种金属半导体化合物薄膜和带金属半导体化合物薄膜的DRAM存储单元及其制备方法,以解决现有的DRAM存储单元的晶体管的读写速度与电容的存储能力矛盾制约的问题。
为解决上述问题,本发明提出一种金属半导体化合物薄膜,形成于半导体层与多晶半导体层之间,用于改善所述半导体层与所述多晶半导体层之间的接触,所述金属半导体化合物薄膜的厚度为2~5nm。
可选的,所述半导体层为硅或绝缘层上硅,所述多晶半导体层为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
可选的,所述半导体层为锗或绝缘层上锗,所述多晶半导体层为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
可选的,所述金属半导体化合物薄膜由金属与所述半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
可选的,所述金属中还掺入了钨和/或钼。
同时,为解决上述问题,本发明还提出一种DRAM存储单元,包括半导体衬底、形成于所述半导体衬底上的MOS晶体管及电容,所述MOS晶体管的源区与一位线相连,其栅区与一字线相连,其漏区通过一缓冲层与所述电容相连,所述缓冲层的材料为多晶半导体,在所述漏区与所述缓冲层之间还包括金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm。
可选的,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
可选的,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
可选的,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
可选的,所述金属中还掺入了钨和/或钼。
同时,为解决上述问题,本发明还提出一种DRAM存储单元的制备方法,该方法包括如下步骤:
提供一半导体衬底,并在所述半导体衬底上形成MOS晶体管器件;
在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm;
在所述金属半导体化合物薄膜上形成缓冲层;
在所述半导体衬底上形成电容,所述电容与所述缓冲层相连。
可选的,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜进一步包括如下步骤:
在所述MOS晶体管器件的漏区上沉积金属层,所述金属向所述漏区扩散;
去除所述漏区表面剩余的金属层;
进行退火,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜。
可选的,在所述半导体衬底上沉积金属层时的衬底温度为0~300℃。
可选的,所述退火的温度为200~900℃。
可选的,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
可选的,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
可选的,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
可选的,所述金属中还掺入了钨和/或钼。
可选的,该方法还包括将所述MOS晶体管的源区与一位线相连的步骤,以及将所述MOS晶体管的栅区与一字线相连的步骤。
本发明由于采用上述技术方案,使之与现有技术相比,具有以下的优点和积极效果:
1)通过在半导体层与多晶半导体层之间加入金属半导体化合物薄膜,减小了半导体层与多晶半导体层之间的接触电阻,提高了其接触性能;
2)通过在DRAM存储单元中的MOS晶体管器件的漏区与多晶半导体缓冲层之间加入金属半导体化合物薄膜,减小了漏区与多晶半导体缓冲层之间的接触电阻,提高了DRAM存储单元的晶体管的读写速度;同时通过将所述金属半导体化合物薄膜的厚度控制在2~5nm,避免了所述漏区与硅衬底之间的漏电流过度增大,防止了所述电容上存储的电荷过快流失,从而降低了DRAM存储器的刷新频率;
3)本发明提供的DRAM存储单元的制备方法形成的DRAM存储单元,其MOS晶体管器件的漏区与多晶半导体缓冲层之间形成有金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可提高DRAM存储单元的性能。
附图说明
图1为本发明实施例提供的半导体层与多晶半导体层接触的示意图;
图2为本发明实施例提供的DRAM存储单元的制备方法的步骤流程图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种金属半导体化合物薄膜和DRAM存储单元及其制备方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用于方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,提供一种金属半导体化合物薄膜,形成于半导体层与多晶半导体层之间,所述金属半导体化合物薄膜的厚度为2~5nm,从而改善所述半导体层与所述多晶半导体层之间的接触;同时,提供一种DRAM存储单元,所述DRAM存储单元中的MOS晶体管器件的漏区与多晶半导体缓冲层之间加入金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可在提高DRAM存储单元的晶体管的读写速度的同时,避免所述漏区与半导体衬底之间的漏电流过度增大;同时,还提供一种DRAM存储单元的制备方法,该方法形成的DRAM存储单元,其MOS晶体管器件的漏区与多晶半导体缓冲层之间形成有金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可提高DRAM存储单元的性能。
请参考图1,图1为本发明实施例提供的半导体层与多晶半导体层接触的示意图,如图1所示,本发明实施例提供的金属半导体化合物薄膜300,形成于半导体层100与多晶半导体层200之间,用于改善所述半导体层100与所述多晶半导体层200之间的接触,所述金属半导体化合物薄膜300的厚度为2~5nm。
进一步地,所述半导体层100为硅或绝缘层上硅,所述多晶半导体层200为掺杂多晶硅,所述金属半导体化合物薄膜300为金属硅化物。
进一步地,所述半导体层100为锗或绝缘层上锗,所述多晶半导体层200为掺杂多晶锗,所述金属半导体化合物薄膜300为金属锗化物。
进一步地,所述金属半导体化合物薄膜300由金属与所述半导体层100反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
进一步地,所述金属中还掺入了钨和/或钼。
同时,本发明实施例还提供了一种DRAM存储单元,包括半导体衬底、形成于所述半导体衬底上的MOS晶体管及电容,所述MOS晶体管的源区与一位线相连,其栅区与一字线相连,其漏区通过一缓冲层与所述电容相连,所述缓冲层的材料为多晶半导体,在所述漏区与所述缓冲层之间还包括金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm。
通过在所述DRAM存储单元中的MOS晶体管器件的漏区与所述缓冲层之间加入金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可在提高DRAM存储单元的晶体管的读写速度的同时,避免所述漏区与硅衬底之间的漏电流过度增大。
进一步地,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
进一步地,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
进一步地,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
进一步地,所述金属中还掺入了钨和/或钼。
请继续参考图2,图2为本发明实施例提供的DRAM存储单元的制备方法的步骤流程图,如图2所示,本发明实施例提供的DRAM存储单元的制备方法包括如下步骤:
S101、提供一半导体衬底,并在所述半导体衬底上形成MOS晶体管器件;具体地,在所述半导体衬底上形成MOS晶体管器件包括如下步骤:首先在所述半导体衬底上形成栅叠层,并经过光刻及刻蚀形成栅电极;然后通过离子注入掺杂分别形成源区与漏区;其中,所述栅叠层包括多晶硅,以及在所述多晶硅上依次形成的金属硅化物和绝缘层;
S102、在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm;
S103、在所述金属半导体化合物薄膜上形成缓冲层;具体地,所述缓冲层为多晶半导体层;
S104、在所述半导体衬底上形成电容,所述电容与所述缓冲层相连。具体地,所述电容为MIM电容。
本发明提供的DRAM存储单元的制备方法,在MOS晶体管器件的漏区与所述缓冲层之间形成金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可在提高DRAM存储单元的晶体管的读写速度的同时,避免所述漏区与半导体衬底之间的漏电流过度增大。
进一步地,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜包括如下步骤:
在所述MOS晶体管器件的漏区上沉积金属层,所述金属向所述漏区扩散;
去除所述漏区表面剩余的金属层;
进行退火,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜。
由于金属往半导体衬底中的扩散饱和度是一定的,因此,上述方法形成的金属半导体化合物薄膜的厚度是可控的(即最终形成的金属半导体化合物薄膜的厚度是一定的),并且厚度极薄,从而有利于提高DRAM存储单元的性能。
进一步地,在所述半导体衬底上沉积金属层时的衬底温度为0~300℃。
进一步地,所述退火的温度为200~900℃。
进一步地,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
进一步地,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
进一步地,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂;掺入铂是因为纯的一硅化镍在高温条件下稳定性差,或出现薄膜厚度变得不均匀并结块,或生成电阻率高的二硅化镍NiSi2,严重影响器件的性能,因此,为了减慢硅化镍的生长速度以及防止硅化镍薄层遇到高温时发生结块或形成二硅化镍,可以在镍中掺入一定比例的铂;其它金属中掺铂作类似解释。
进一步地,所述金属中还掺入了钨和/或钼;以进一步控制硅化镍或掺铂硅化镍的生长和镍/铂的扩散,并增加硅化镍或掺铂硅化镍的稳定性;其它金属中掺钨和/或钼作类似解释。
进一步地,该方法还包括将所述MOS晶体管的源区与一位线相连的步骤,以及将所述MOS晶体管的栅区与一字线相连的步骤。
综上所述,本发明提供了一种金属半导体化合物薄膜,形成于半导体层与多晶半导体层之间,所述金属半导体化合物薄膜的厚度为2~5nm,从而改善所述半导体层与所述多晶半导体层之间的接触;同时,提供了一种DRAM存储单元,所述DRAM存储单元中的MOS晶体管器件的漏区与多晶半导体缓冲层之间加入金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可在提高DRAM存储单元的晶体管的读写速度的同时,避免所述漏区与半导体衬底之间的漏电流过度增大;同时,还提供了一种DRAM存储单元的制备方法,该方法形成的DRAM存储单元,其MOS晶体管器件的漏区与多晶半导体缓冲层之间形成有金属半导体化合物薄膜,且所述金属半导体化合物薄膜的厚度控制在2~5nm,从而可提高DRAM存储单元的性能。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (19)

1.一种金属半导体化合物薄膜,形成于半导体层与多晶半导体层之间,用于改善所述半导体层与所述多晶半导体层之间的接触,其特征在于,所述金属半导体化合物薄膜的厚度为2~5nm。
2.如权利要求1所述的金属半导体化合物薄膜,其特征在于,所述半导体层为硅或绝缘层上硅,所述多晶半导体层为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
3.如权利要求1所述的金属半导体化合物薄膜,其特征在于,所述半导体层为锗或绝缘层上锗,所述多晶半导体层为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
4.如权利要求2或3所述的金属半导体化合物薄膜,其特征在于,所述金属半导体化合物薄膜由金属与所述半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
5.如权利要求4所述的金属半导体化合物薄膜,其特征在于,所述金属中还掺入了钨和/或钼。
6.一种DRAM存储单元,包括半导体衬底、形成于所述半导体衬底上的MOS晶体管及电容,所述MOS晶体管的源区与一位线相连,其栅区与一字线相连,其漏区通过一缓冲层与所述电容相连,所述缓冲层的材料为多晶半导体,其特征在于,在所述漏区与所述缓冲层之间还包括金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm。
7.如权利要求6所述的DRAM存储单元,其特征在于,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
8.如权利要求6所述的DRAM存储单元,其特征在于,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
9.如权利要求7或8所述的DRAM存储单元,其特征在于,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
10.如权利要求9所述的DRAM存储单元,其特征在于,所述金属中还掺入了钨和/或钼。
11.一种如权利要求6所述的DRAM存储单元的制备方法,其特征在于,包括如下步骤:
提供一半导体衬底,并在所述半导体衬底上形成MOS晶体管器件;
在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜,所述金属半导体化合物薄膜的厚度为2~5nm;
在所述金属半导体化合物薄膜上形成缓冲层;
在所述半导体衬底上形成电容,所述电容与所述缓冲层相连。
12.如权利要求11所述的DRAM存储单元的制备方法,其特征在于,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜进一步包括如下步骤:
在所述MOS晶体管器件的漏区上沉积金属层,所述金属向所述漏区扩散;
去除所述漏区表面剩余的金属层;
进行退火,在所述MOS晶体管器件的漏区形成金属半导体化合物薄膜。
13.如权利要求12所述的DRAM存储单元的制备方法,其特征在于,在所述漏区上沉积金属层时的衬底温度为0~300℃。
14.如权利要求13所述的DRAM存储单元的制备方法,其特征在于,所述退火的温度为200~900℃。
15.如权利要求12所述的DRAM存储单元的制备方法,其特征在于,所述半导体衬底为硅或绝缘层上硅,所述多晶半导体为掺杂多晶硅,所述金属半导体化合物薄膜为金属硅化物。
16.如权利要求12所述的DRAM存储单元的制备方法,其特征在于,所述半导体衬底为锗或绝缘层上锗,所述多晶半导体为掺杂多晶锗,所述金属半导体化合物薄膜为金属锗化物。
17.如权利要求15或16所述的DRAM存储单元的制备方法,其特征在于,所述金属半导体化合物薄膜由金属与所述漏区的半导体层反应生成,其中,所述金属为镍、钴、钛中的任一种,或镍、钴、钛中的任一种并掺入铂。
18.如权利要求17所述的DRAM存储单元的制备方法,其特征在于,所述金属中还掺入了钨和/或钼。
19.如权利要求11所述的DRAM存储单元的制备方法,其特征在于,该方法还包括将所述MOS晶体管的源区与一位线相连的步骤,以及将所述MOS晶体管的栅区与一字线相连的步骤。
CN201110063882.2A 2011-03-17 2011-03-17 金属半导体化合物薄膜和dram存储单元及其制备方法 Expired - Fee Related CN102184946B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201110063882.2A CN102184946B (zh) 2011-03-17 2011-03-17 金属半导体化合物薄膜和dram存储单元及其制备方法
US13/394,303 US20140008710A1 (en) 2011-03-17 2011-09-28 Metal/Semiconductor Compound Thin Film and a DRAM Storage Cell and Method of Making
PCT/CN2011/080285 WO2012122790A1 (zh) 2011-03-17 2011-09-28 金属半导体化合物薄膜和dram存储单元及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110063882.2A CN102184946B (zh) 2011-03-17 2011-03-17 金属半导体化合物薄膜和dram存储单元及其制备方法

Publications (2)

Publication Number Publication Date
CN102184946A true CN102184946A (zh) 2011-09-14
CN102184946B CN102184946B (zh) 2017-04-12

Family

ID=44571087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110063882.2A Expired - Fee Related CN102184946B (zh) 2011-03-17 2011-03-17 金属半导体化合物薄膜和dram存储单元及其制备方法

Country Status (3)

Country Link
US (1) US20140008710A1 (zh)
CN (1) CN102184946B (zh)
WO (1) WO2012122790A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122790A1 (zh) * 2011-03-17 2012-09-20 复旦大学 金属半导体化合物薄膜和dram存储单元及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583978B2 (en) * 2015-10-06 2020-03-10 Cold Chain Technologies, Llc Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728625A (en) * 1996-04-04 1998-03-17 Lucent Technologies Inc. Process for device fabrication in which a thin layer of cobalt silicide is formed
US6077743A (en) * 1998-04-24 2000-06-20 Vanguard International Semiconductor Corporation Method for making dynamic random access memory cells having brush-shaped stacked capacitors patterned from a hemispherical grain hard mask
US6232224B1 (en) * 1999-04-20 2001-05-15 Nec Corporation Method of manufacturing semiconductor device having reliable contact structure
US20020036353A1 (en) * 2000-09-22 2002-03-28 Song Won-Sang Semiconductor device having a metal silicide layer and method for manufacturing the same
CN1976006A (zh) * 2005-11-28 2007-06-06 国际商业机器公司 形成半导体结构的方法
CN101764058A (zh) * 2009-12-31 2010-06-30 复旦大学 形成超薄可控的金属硅化物的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026666A (en) * 1989-12-28 1991-06-25 At&T Bell Laboratories Method of making integrated circuits having a planarized dielectric
US6093615A (en) * 1994-08-15 2000-07-25 Micron Technology, Inc. Method of fabricating a contact structure having a composite barrier layer between a platinum layer and a polysilicon plug
US5550076A (en) * 1995-09-11 1996-08-27 Vanguard International Semiconductor Corp. Method of manufacture of coaxial capacitor for dram memory cell and cell manufactured thereby
JP2962250B2 (ja) * 1996-11-12 1999-10-12 日本電気株式会社 半導体記憶装置の製造方法
US6777298B2 (en) * 2002-06-14 2004-08-17 International Business Machines Corporation Elevated source drain disposable spacer CMOS
JP4015968B2 (ja) * 2003-06-09 2007-11-28 株式会社東芝 強誘電体メモリ
KR100738066B1 (ko) * 2003-12-01 2007-07-12 삼성전자주식회사 열적 안정성이 우수한 실리사이드막 형성방법, 이방법으로 형성된 실리사이드막이 구비된 반도체 소자와반도체 메모리 소자 및 이들 소자의 제조 방법
JP4524698B2 (ja) * 2006-10-26 2010-08-18 エルピーダメモリ株式会社 容量素子を有する半導体装置及びその製造方法
CN101202306B (zh) * 2006-12-15 2010-05-26 群康科技(深圳)有限公司 薄膜晶体管基板的制造方法
US8159038B2 (en) * 2008-02-29 2012-04-17 Infineon Technologies Ag Self aligned silicided contacts
CN102184946B (zh) * 2011-03-17 2017-04-12 复旦大学 金属半导体化合物薄膜和dram存储单元及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728625A (en) * 1996-04-04 1998-03-17 Lucent Technologies Inc. Process for device fabrication in which a thin layer of cobalt silicide is formed
US6077743A (en) * 1998-04-24 2000-06-20 Vanguard International Semiconductor Corporation Method for making dynamic random access memory cells having brush-shaped stacked capacitors patterned from a hemispherical grain hard mask
US6232224B1 (en) * 1999-04-20 2001-05-15 Nec Corporation Method of manufacturing semiconductor device having reliable contact structure
US20020036353A1 (en) * 2000-09-22 2002-03-28 Song Won-Sang Semiconductor device having a metal silicide layer and method for manufacturing the same
CN1976006A (zh) * 2005-11-28 2007-06-06 国际商业机器公司 形成半导体结构的方法
CN101764058A (zh) * 2009-12-31 2010-06-30 复旦大学 形成超薄可控的金属硅化物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122790A1 (zh) * 2011-03-17 2012-09-20 复旦大学 金属半导体化合物薄膜和dram存储单元及其制备方法

Also Published As

Publication number Publication date
US20140008710A1 (en) 2014-01-09
WO2012122790A1 (zh) 2012-09-20
CN102184946B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
CN100474592C (zh) 半导体存储器件
CN1933178B (zh) 半导体器件
US7456054B2 (en) Gated lateral thyristor-based random access memory cell (GLTRAM)
US20130126954A1 (en) Dynamic Random Access Memory Array and Method of Making
JP4352410B2 (ja) 半導体mos装置及びcmos装置、コンデンサ、及び製造方法
US7566620B2 (en) DRAM including a vertical surround gate transistor
US20150263009A1 (en) Semiconductor device having buried gate, method of fabricating the same, and module and system having the same
CN101764058B (zh) 形成超薄可控的金属硅化物的方法
US6248623B1 (en) Method for manufacturing embedded memory with different spacer widths
JP2008153329A (ja) 半導体装置の製造方法
JP2008131051A (ja) 半導体装置の製造方法
CN102104006A (zh) 一种场效应晶体管的制备方法
JP2010147392A (ja) 半導体装置およびその製造方法
CN104979355B (zh) 半浮栅存储器单元及半浮栅存储器阵列
CN102184946B (zh) 金属半导体化合物薄膜和dram存储单元及其制备方法
WO2023226179A1 (zh) 晶体管及其制备方法、以及存储器
CN102479812B (zh) 半导体器件及其制造方法
KR20140029954A (ko) 매립 게이트형 반도체 소자, 그 반도체 소자를 갖는 모듈 및 시스템 그리고 그 반도체 소자 제조 방법
CN213635990U (zh) 半导体结构
US8138541B2 (en) Memory cells
CN114005825A (zh) 一种半导体器件及其制备方法
Chen et al. First Demonstration of Stacked 2T0C-DRAM Bit-Cell Constructed by Two-Layers of Vertical Channel-All-Around IGZO FETs Realizing 4F 2 Area Cost
US6417099B1 (en) Method for controlling dopant diffusion in a plug-shaped doped polysilicon layer on a semiconductor wafer
WO2014108065A1 (zh) 一种平面沟道的半导体器件及其制造方法
US20230397391A1 (en) Support structure for multiple, alternating epitaxial silicon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170412

Termination date: 20200317

CF01 Termination of patent right due to non-payment of annual fee