CN102156322B - 有折射率分布的多模光纤、应用的光通信系统、制造方法 - Google Patents

有折射率分布的多模光纤、应用的光通信系统、制造方法 Download PDF

Info

Publication number
CN102156322B
CN102156322B CN2011100440436A CN201110044043A CN102156322B CN 102156322 B CN102156322 B CN 102156322B CN 2011100440436 A CN2011100440436 A CN 2011100440436A CN 201110044043 A CN201110044043 A CN 201110044043A CN 102156322 B CN102156322 B CN 102156322B
Authority
CN
China
Prior art keywords
optical fiber
concentration
multimode optical
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011100440436A
Other languages
English (en)
Other versions
CN102156322A (zh
Inventor
P·马西塞
M·J·N·斯特拉伦
M·P·M·杰坦
G·-J·克拉舒伊斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DERACA FIBER TECHNOLOGIES Co Ltd
Original Assignee
DERACA FIBER TECHNOLOGIES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DERACA FIBER TECHNOLOGIES Co Ltd filed Critical DERACA FIBER TECHNOLOGIES Co Ltd
Publication of CN102156322A publication Critical patent/CN102156322A/zh
Application granted granted Critical
Publication of CN102156322B publication Critical patent/CN102156322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02047Dual mode fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Communication System (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

本发明涉及一种用于制造具有折射率分布的多模光纤的方法,其利用活性混合气体通过化学汽相沉积技术,使掺杂或非掺杂玻璃层沉积于基管内部,以获得精确地限定了折射率分布的预成型件,通过加热预成型件的一端从预成形件抽取多模光纤,至少一种折射率改变掺杂物的浓度在多模光纤的光导纤芯内调整,以使在光纤轴(r=0)上的掺杂物的浓度低于光导纤芯区域的掺杂物的浓度。本发明还涉及一种具有折射率分布的多模光纤,包括由多种掺杂物形成的光导梯度折射率纤芯,其中,对多模光纤光导纤芯中至少一种折射率改变掺杂物的浓度进行调整,使得光纤轴(r=0)上的掺杂物浓度低于光导纤芯范围中的掺杂物的浓度。

Description

有折射率分布的多模光纤、应用的光通信系统、制造方法
本申请为2004年7月28日提交的题为“有折射率分布的多模光纤、应用的光通信系统、制造方法”的中国专利申请200410068412.5的分案申请。 
技术领域
本申请涉及一种具有折射率分布的多模光纤,其包括环绕有一层或多层包层的光导纤芯。本发明还涉及一种光通信系统,其包括发射机、接收机和多模光纤。另外,本申请还涉及制造具有折射率分布多模光纤的方法,其利用活性混合气体通过化学汽相沉积技术,使掺杂或非掺杂玻璃层沉积于基管内部,以获得精确地限定了折射率分布的预成型件,通过加热预成型件的一端从而预成形多模光纤,还涉及一种具有折射率分布的多模光纤,其具有由多种掺杂物构建的光波导梯度折射率纤芯。 
背景技术
美国专利No.4,339,174本身披露了一种多模光纤,其使用至少为700MHz的带宽。该公开的光纤中包括三个分离的区域,即,外包层、设置在外包层内壁表面的阻挡层,以及设置在阻挡层内带有折射率分布的极纯玻璃纤芯,该纤芯包括掺有足量的第一氧化物的SiO2,该第一氧化物用于使纤芯折射率增加至高于包层折射率的值,第一氧化物的浓度根据具体的折射率分布变化。对于纤芯直径为64.0μm、数值孔径为0.207的多模光纤,在900nm和1300nm波长处测得的带宽(MHz)分别为1024和1082。该专利没有提供关于传输容量的进一步的详细信息 
美国专利No.3,989,350披露了一种多模光纤,其以加宽光通信系统的可用带宽为目的,具有减少模间色散的折射率分布。披露的多模光纤包括具有从光纤轴线至纤芯圆周区域折射率径向减小的纤芯,纤芯基本上由SiO2和至少一种折射率改变物质组成,尤其是浓度径向增加的氧化硼,其中在纤芯圆周处的最终组分包括含有10mol%B2O3至20mol%B2O3的硅酸硼。其没有提供关于带宽 或传输容量的进一步描述。 
美国专利No.4,222,631披露了一种多模光纤,其包括至少三种成玻组分,并具有包层和径向梯度折射率分布的纤芯,其中折射率分布根据作为半径函数的一个具体公式变化。其没有提供关于带宽或传输容量的具体细节。 
因为数据通信和远距离通信的持续增长,需要具有高传输容量的通信系统和玻璃纤维。增加玻璃纤维(系统)传输容量的一种途径是使用所谓的波分复用(WDM),其中,以不同的波长同时在玻璃纤维中传输几个信号。因为需要昂贵的外围设备,这种技术主要应用在使用单模光纤的远程网络中。 
然而,在局域网(LAN)、存储网络(SAN)和连接网络中,多模光纤频繁地用于相对短距离和大量连接中,对WDM技术实现高传输容量的需求在增长。另外,在上述短距离网络中使用非温度稳定性激光器成为趋势,它与使用温度稳定性激光器相比明显便宜。使用非温度稳定性激光器,在温度改变时会在激光波长中发生位移。WDM技术和非温度稳定性激光器的使用都需要多模光纤的带宽充分高于将要使用的传输速率的相对大的波长范围。
可通过将已十分准确定义的折射率分布引入光纤中来制造适合高传输速率的高带宽多模玻璃光纤。例如,在先公开的国际申请PCT/NL02/00604,指出该光纤的折射率分布必须与公式(1)的等式完全一致: 
n ( r ) = n 1 1 - 2 Δ ( r a ) α - - - ( 1 )
其中: 
n1=光纤纤芯的折射率值 
r=在光纤纤芯中的径向位置(μm) 
Δ=光纤的折射率差 
α=分布形状参数 
a=纤芯半径(μm) 
所述的国际申请还指出光纤纤芯内部的适当控制很重要。激光器通常用在希望的高传输速率,其中激光器由于光斑大小,只“曝光”部分光纤纤芯,因此更迫切需要关于适当分布的控制。 
根据PCT/NL02/00604披露的方法,可制造出对于设计光纤的一特定波长具有高带宽的多模光纤。这种光纤在该特定波长适于高传输速率。当该光纤用在 与设计波长不同的波长(较高和较低)时,由于带宽明显较低,在不同于设计波长的波长处最大传输速率较低。 
发明内容
本发明的第一方面是获得一种多模光纤,其可在一特定传输速率上用在相对大波长范围中。 
根据本发明的另一方面,优选多模光纤具有特定的纤芯直径和数值孔径以及根据FOTP-204,TIA/EIA-455-204测定的特定的最小过满发射(over filled launch)(OFL)带宽。 
另一方面涉及对含有多模光纤的光通信系统的需求,该系统在特定传输速率具有相对大的波长范围。 
本发明的另一方面涉及对含有多模光纤的光通信系统的需求,该系统可使用非温度稳定性激光器。 
本发明的另一方面是提供一种在特定波长范围内具有足够高带宽的光纤,例如,800nm周围,用于实现特定的传输容量。 
本发明的另一方面包括提供一种可与已安装的多模光纤相兼容的多模光纤。 
根据本发明,所介绍的多模光纤其特征在于,在含有1300nm的波长范围内,具有至少为100nm带宽的波带中,以及光纤长度至少为1000m,其传输容量至少为1Gbit/秒。 
根据本发明的另一实施例,在含有850nm的波长范围内,具有波带宽度至少为50nm,尤其是宽度至少为100nm,以及光纤长度至少为150m,其传输容量至少为10Gbit/秒。 
根据本发明的多模光纤的一具体实施例,其特征在于,包括1400nm的波长范围和光纤长度至少为850m时,宽度至少为250nm的波长带宽范围内,传输容量至少为1Gbit/秒。 
因为希望的是该多模光纤与已安装的多模光纤兼容,所以优选该光纤纤芯直径为62.5μm、数值孔径从0.25至0.30以及最小OFL带宽在850nm处至少为160MHz.km,尤其是最小OFL带宽在1300nm处至少为300MHz.km。 
本发明还涉及具有折射率分布的多模光纤,其包括环绕有一层或多层包层的光导纤芯,其特征在于,在含有1300nm的波长范围内,波带宽度至少为100nm,以及光纤长度至少为2000m时,传输容量至少为1Gbit/秒。 
根据本发明多模光纤的一具体实施例,在含有850nm的波长范围内,波带宽度至少为50nm,尤其是宽度至少为100nm,以及光纤长度至少为300m,其传输容量至少为10Gbit/秒。 
按照本发明多模光纤的另一实施例,在含有1400nm的波长范围内,波带宽度至少为250nm,以及光纤长度至少为1300m,其传输容量至少为1Gbit/秒。 
因为希望的是该多模光纤与已安装的多模光纤兼容,所以优选该光纤纤芯直径为50μm、数值孔径从0.18至0.22以及最小OFL带宽在850nm处至少为400MHz.km,尤其是在1300nm处至少为400MHz.km。 
为了能保证在不同系统中梯度折射率光纤的传输容量,可使用具有不同特性的激光器,一些可用的型号限定了将被使用的光纤的最小OFL带宽。本领域的技术人员知道,该OFL带宽为前述传输容量/产品/波长范围组合的最低限度要求。 
另外,本发明的光纤在将被使用的波长范围内,其中中心部分的DMD(模时延差)特性不出现任何扰动。这种扰动包括:双脉冲、脉冲加宽、超前脉冲或滞后脉冲。 
在DMD测量中,测量多模光纤纤芯不同半径位置处的光脉冲传输的脉冲响应。当以前述较高的传输速率使用多模光纤时,其纤芯直径为18μm,纤芯中心部分的光脉冲的脉冲响应不出现任何扰动是非常重要的。 
本发明还涉及包括发射机、接收机和多模光纤的光学传输系统,其特征在于,上述多模光纤用作n×至少1Gbit/秒的传输的多模光纤,光纤发射机和接收机之间的距离至少为1km,其中n>=2。 
在前述光学通信系统的具体实施例中,优选特征在于,上述多模光纤用作n×至少10Gbit/秒的传输的多模光纤,光纤发射机和接收机之间的距离至少为150m,其中n>=2。 
对于特殊的光通信系统,上述多模光纤用作n×至少1Gbit/秒的传输的多模光纤,光纤发射机和接收机之间的距离至少为850m,其中n>=2。 
参数“n”被理解为表示多通道光通信系统,本发明同时还涉及单通道光纤通信系统,其传输容量分别至少为1Gbit/秒或10Gbit/秒,其中尤其是发射机为非温度稳定性激光器。依赖于非温度稳定性激光器的波长漂移大小,包括这种激光器的光通信系统可形成多通道系统。 
根据本发明,可获得使用两种或两种以上的掺杂物逐步形成多模光纤的梯度折射率纤芯。通过在纤芯半径上改变掺杂物的浓度,以带宽的波长相关性更小的方式改变多模光纤的模间色散特性。通过同时限定一个十分精确的折射率分布,在宽波长范围内获得高带宽。 
优选的,GeO2和F作为SiO2中的掺杂物来形成光纤芯。重要的是,在这种关系中,多模光纤纤芯中光轴上的F浓度(r=0位置)低于光纤纤芯中的其它位置(0<r=<a位置),其中纤芯的边缘被定义为r=a。这样,所用的光波长的带宽相关可以以这种方式被改变,以实现本光纤的充足产量。 
在SiO2中使用其它掺杂物的混合也能以相同方式改变光纤模间色散特性,从而使带宽的波长相关降低。这些可用的掺杂物除了上述的GeO2和F之外还包括:B2O3、P2O5、N、TiO2、ZrO2、SnO2或Al2O3。 
在从属权利要求中限定了根据本发明多模光纤的具体实施例和制造这种多模光纤的方法。 
附图说明
下文将参照附图详细解释本发明,然而,应注意,本发明无意被限定在特定附图中。 
图1表示根据现有技术多模光纤的带宽和波长之间的关系。 
图2表示图1所示的光纤的折射率分布和掺杂浓度。 
图3表示根据本发明另一多模光纤的波长和带宽之间的关系。 
图4表示图3所示的多模光纤的折射率分布和掺杂浓度。 
图5表示根据本发明的另一多模光纤的波长和带宽之间的关系。 
图6表示图5所示的多模光纤的折射率分布和掺杂浓度。 
具体实施方式
图1表示现有技术中多模光纤带宽的波长相关。图2表示所述光纤的折射率分布(实线)和F的浓度(点划线)。F的浓度可从0变化至4wt.%,以及使折射率增加的掺杂物,诸如GeO2、P2O5或其混合物,根据折射率分布的希望形状沿纤芯半径的浓度变化形成折射率分布。通过增加或降低F的浓度(半径方向上为常数)或是改变折射率分布的形状,使图中的最大带宽峰位置位移至较高或较低波长处,分布参数α的较低值引起该带宽峰位移至右侧。α值或F浓度的这种变化不导致图1中所示峰形状的明显改变。根据公式的希望折射率分布的偏移通常 导致带宽范围低于图1所示的曲线。图1所示的曲线表示了特定组合物光纤的特定波长可达到的最大带宽。 
图3示出了根据图4的原理,用于具有折射率分布(实线)和F浓度(点划线)的多模玻璃光纤的带宽相关。通过从中心光纤轴沿半径方向增加F的浓度,改变多模光纤的色散特性,达到在较大波长范围内可达到特定最小带宽的程度。半峰宽为图1所示宽度的1.8倍。图4表示了随着多模玻璃光纤的纤芯半径变化的F浓度的线性增加。然而,带宽波长相关的这种变化也可发生在F浓度随着半径变化呈抛物线或指数增长的情况中。 
根据图4的例子,F的浓度从中心光纤轴(r=0)的0wt.%增加至光纤纤芯边缘(r=a)的大约在0.5至5wt.%之间的最大值。通过改变标准多模光纤中F掺杂物浓度,例如从0至wt.%,大约1.97的α值将导致光纤适于在含有1300nm波长范围内1000m的距离上以至少1Gbit/秒的速率传输,标准多模光纤的纤芯直径为62.5μm,数值孔径大约为0.27。这种光纤可被用在包括发射机和接收机的光通信系统中,该系统中两个或更多波长处同时传输信号,每个波长带宽至少为100nm,以至少1Gbit/秒速率传输最小超过1000m的距离。这种光纤还可用在具有非温度稳定性发射机和非温度稳定性接收机的光通信系统中,以至少1Gbit/秒的速率传输至少1000m的距离。在纤芯直径为50μm、数值孔径约为0.2,同样地α值约为1.97的标准多模光纤中F掺杂物浓度的类似变化提供了一种光纤,该光纤适于在包括1300nm的波长范围内,具有100nm的波长带宽中以至少1Gbit/秒速率传输2000m的距离。这种光纤可用在包括发射机和接收机的光通信系统中,该系统以两个或更多波长同时传输信号,以至少1Gbit/秒速率对每个波长传输最小2000m的距离。这种光纤也可用在包括非温度稳定性发射机和非温度稳定性接收机的光通信系统中,以至少1Gbit/秒的速率传输至少2000m的距离。 
较高α值的选择引起带宽的峰移至较低波长处。在α值约为2.05的多模光纤中,利用F掺杂物浓度的改变,例如从0至1.5wt.%,可使其适应于标准多模光纤在含有850nm的波长范围内,在50nm的波带宽中以至少10Gbit/秒的速率传输150m的距离,该标准多模光纤的纤芯直径为62.5μm、数值孔径约为0.27。纤芯直径为50μm、数值孔径为0.2的标准多模光纤可适于在含有850nm的波长范围内,50nm的波带宽中以至少10Gbit/秒的速率传输300m的距离。F掺杂物的最小值至最大值之间的增长,例如从0至2wt.%将使波带宽扩展,其中该光纤适于所述传 输速率和所述距离。在这种情况中,波带宽将从50nm增大至100nm。所述光纤最佳在850nm处,可被用在包括发射机和接收机的光通信系统中,该系统中两个或更多波长处同时传输信号,对每个波长以至少10Gbit/秒速率传输至少150m的距离。这种光纤还可用在具有非温度稳定性发射机和非温度稳定性接收机的光通信系统中,以至少10Gbit/秒的速率传输至少150m的距离。中心纤芯轴的F浓度>0wt.%也可获得预期的效果。F的浓度从0至1wt.%的变化与从0.5至1.5或从2至3wt.%的变化似乎产生相同的结果。图6所示的具体实施例,其中F浓度在半径方向上从中心光纤轴增加至范围在0至a之间的半径rmax处的约0.5-8wt.%的特定最大值,然后从rmax至a处降低。通过利用F掺杂物浓度的特殊变化,在从0至a的半径中具有F掺杂物的最大值,标准多模光纤可适于在大波带上高速率传输,即波带大于250nm。纤芯直径为62.5μm、数值孔径约为0.27的标准多模光纤,适于在大于250nm的带宽上以1Gbit/秒的速率传输850nm的距离。通过在光纤的制造过程中用这种F浓度的变化掺杂所述光纤,在半径r=20μm处使用5wt.%的最大F掺杂物浓度,例如,在纤芯中心和纤芯边缘保持F=0的浓度,并同时掺杂浓度变化的GeO2,可实现具有特定α值的折射率分布。当选择α值约为2.3时,波长带包括在1400nm的波长范围内250nm的宽度。 
类似的,通过在光纤的制造过程中用这种F浓度的变化掺杂所述光纤,在半径r=15μm使用4.5wt.%的最大F掺杂物浓度,其具有α值为2.4的折射率分布,该纤芯直径为50μm、数值孔径约为0.2的标准多模光纤适于在大于250nm的波带中以1Gbit/秒传输1300nm的距离。 
所述光纤可用在包括发射机和接收机的光通信系统中,该系统中两个或更多波长处同时传输信号,对每个波长以至少1Gbit/秒速率传输至少850m。这种光纤还可用在具有非温度稳定性发射机和非温度稳定性接收机的光通信系统中,以至少1Gbit/秒的速率传输至少850m的距离。 
术语“标准多模光纤”应被理解为纤芯直径为50μm、OFL带宽在850nm处>400MHz.km并在1300nm处>400MHz.km的多模光纤;纤芯直径为62.5μm,OFL-带宽在850nm处>160MHz.km并在1300nm处>300MHz.km的多模光纤。 
图5示出了一多模玻璃光纤带宽相关的例子,该多模玻璃光纤含有根据图6的原理的一摩尔分数GeO2(虚线)、折射率分布(实线)和F浓度(点划线)。这样,甚至在一较大波长范围内可获得特定最小带宽;图5中半峰波高为图1所示 的现有技术的宽度的10.8倍。已有的几种制造方法可使前述F掺杂物混入多模光纤纤芯。因为有较高的氟混合效率,PCVD方法非常适于该目的。在这种方法中,玻璃层经过沉积工艺沉积在基管的内部,该玻璃层将形成多模光纤的纤芯。在管中产生的往复低压等离子的影响下,在管的进气口处输出气体加工气体并发生反应以在管的内侧形成一薄层玻璃层。该玻璃薄层沉积有一层等离子体。通过改变每次冲程提供的气流中原材料的浓度,或是在时间上连续不断,可获得含有如上所述变化着的F掺杂物浓度之一的折射率分布。根据本发明,利用其它光纤制造方法也可获得该变化着的掺杂物浓度。MCVD方法的一个例子,其中气体供给管内部,在外部加热源下在基管的内部反应形成玻璃层,其中供给的气流中原材料的浓度可随沉积的每层玻璃层变化。同样应用于OVD或VAD方法。沉积玻璃层之后,通过紧缩中空管或烧结粉末沉积层形成预成型件。该预成型件通过加热拉制成玻璃光纤。 
通过利用模式耦合也可获得该多模光纤。荷兰专利申请1022315(之前未公开)以本申请的名义描述一种方法的例子,其中,应力中心十分局部地引入光纤中,应力中心安排不同模式的耦合,其影响信号在多模光纤中的传输,使得在高阶模和低阶模中的传输速率没有差异,以及折射率或多或少的独立。这也使带宽的波长相关性更小。模式耦合和前述沉积技术的结合用于获得根据本发明的多模光纤。 
例1 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为50.2μm、NA为0.201。分布形状参数α的值为1.97。纤芯中氟的浓度从中心光纤轴r=0处的0wt.%增加至纤芯边缘r=a处的4wt.%。 
利用FOTP-204法,在850nm处和1300nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表1中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表1 
  波长L(nm)   850   1250   1270   1300   1330   1350
  带宽(MHz.km)   447   2037   1979   2280   2027   1829
在所示的1300nm波长周围,为了能保证以至少1Gbit/秒的速率传输2000m的最短距离,需要全波范围内最小带宽为1821MHz.km。为了提供所述的传输容 量,光纤的1300nm周围波长中的带宽因此要足够高。
比较例1 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为49.9μm、NA为0.202。分布形状参数α的值为1.97。纤芯中氟的浓度值0.2wt.%为常数。 
利用FOTP-204法,在850nm处和1300nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表2中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表2 
  波长L(nm)   850   1250   1270   1300   1330   1350
  带宽(MHz.km)   324   993   1128   2095   2257   1401
对以至少1Gbit/秒的速率传输2000m的最短距离,1300nm和1330nm波长处的带宽足够高。表中所示的其它波长,对于所述的传输容量带宽太低。
比较例2 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为50.4μm、NA为0.206。分布形状参数α的值为1.93。纤芯中氟的浓度从中心光纤轴r=0处的4wt.%降低至纤芯边缘r=a处的0wt.%。 
利用FOTP-204法,在850nm处和1300nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表3中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表3 
  波长L(nm)  850   1250   1270   1300   1330   1350
  带宽(MHz.km)  269   733   1020   2354   1056   629
在1300nm波长处的带宽足够高以至少1Gbit/秒的速率传输2000m的最短距离。表中所示的其它波长,对于所述的传输容量带宽太低。
例2 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为62.3μm、NA为0.269。分布形状参数α的值为1.97。纤芯中氟的浓度从中心光纤轴r=0处的0wt.%增加至纤芯边缘r=a处的4wt.%。 
利用FOTP-204法,在850nm处和1300nm附近的多个波长处测定所述光纤的 带宽。测量结果适于下面的表4中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表4 
  波长L(nm)   850   1250   1270   1300   1330   1350
  带宽(MHz.km)   175   720   820   1010   904   817
在所示的1300nm波长周围,为了能保证以至少1Gbit/秒的速率传输1000m的最短距离,需要全波范围内最小带宽为707MHz.km。为了提供所述的传输容量,光纤的1300nm周围波长中的带宽因此要足够高。
比较例3 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为62.4μm、NA为0.262。分布形状参数α的值为1.96。纤芯中氟的浓度值1wt.%为常数。 
利用FOTP-204法,在850nm处和1300nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表5中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表5 
  波长L(nm)   850   1250   1270   1300   1330   1350
  带宽(MHz.km)   273   522   695   955   909   726
在所示的1300nm波长周围,为了能保证以至少1Gbit/秒的速率传输1000m的最短距离,需要全波范围内最小带宽为707MHz.km。此处示出的光纤不具有在1250-1350nm的全波长范围上的带宽。 
例3 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为49.7μm、NA为0.198。分布形状参数α的值为2.045。纤芯中氟的浓度从中心光纤轴r=0处的0wt.%增加至纤芯边缘r=a处的2wt.%。 
利用FOTP-204法,在1300nm处和850nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表6中。另外,在850nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表6 
  波长L(nm)   800   820   850   875   900   1300
  带宽(MHz.km)   2182   2604   4880   2791   2081   634
[0094] 在所示的850nm波长周围,为了能保证以至少10Gbit/秒的速率传输300m的最短距离,需要全波范围内最小带宽为2000MHz.km。为了提供所述的传输容量,光纤的800nm周围波长中的带宽因此要足够高。
例4 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为50.3μm、NA为0.201。分布形状参数α的值为2.05。纤芯中氟的浓度从中心光纤轴r=0处的1wt.%增加至纤芯边缘r=a处的2.5wt.%。 
利用FOTP-204法,在1300nm处和850nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表7中。另外,在850nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表7 
  波长L(nm)   800   820   850   875   900   1300
  带宽(MHz.km)   1829   2737   4860   2652   1789   583
在所示的850nm波长周围,为了能保证以至少10Gbit/秒的速率传输300m的最短距离,需要全波范围内最小带宽为2000MHz.km。光纤的850nm周围波长中至少50nm的带宽足以提供所述的传输容量。 
例5 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为62.7μm、NA为0.274。分布形状参数α的值为2.03。纤芯中氟的浓度从中心光纤轴r=0处的0wt.%增加至纤芯边缘r=a处的3wt.%。 
利用FOTP-204法,在1300nm处和850nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表8中。另外,在850nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表8 
  波长L(nm)   800   820   850   875   900   1300
  带宽(MHz.km)   1135   1542   2056   1814   826   357
在所示的850nm波长周围,为了能保证以至少10Gbit/秒的速率传输150m的最短距离,需要全波范围内最小带宽为808MHz.km。光纤的850nm周围波长中至少100nm的带宽足以提供所述的传输容量。 
例6 
多模光纤具有与等式1一致的纤芯梯度折射率,形成的纤芯直径为49.7μm、NA为0.198。分布形状参数α的值为2.427。纤芯中氟的浓度从中心光纤轴r=0处的0wt.%增加至r=15.5处的最大值6.1wt.%,然后氟的浓度在纤芯的边缘r=a处减小到0wt.%。 
利用FOTP-204法,在850nm处以及1300nm和1550nm之间多个波长处测定所述光纤的带宽。测量结果适于下面的表9中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表9 
  波长L(nm)   850   1300   1360   1400   1450   1500   1550
  带宽(MHz.km)   431   1477   1386   1597   1537   1344   1529
在1400nm周围的波长范围中,尤其是所示的从1300nm至1550nm波长范围中,能保证以至少1Gbit/秒的速率传输1300m的最短距离,需要全波范围内最小带宽为1196MHz.km。为了提供所述的传输容量,光纤的1400nm周围波长中的带宽因此要足够高。
例7 
形成如例6中所述的多模光纤,除了分布形状参数α的值为2.28,氟的最小浓度为5.4wt.%。 
利用FOTP-204法,在1450nm处和1200nm附近的多个波长处测定所述光纤的带宽。测量结果适于下面的表10中。另外,在1300nm处测得DMD,该DMD脉冲响应在中心部分不显示任何扰动。 
表10 
  波长L(nm)   850   1200   1230   1300   1360   1400   1450
  带宽(MHz.km)   546   1217   1356   1267   1369   1382   1275
在1400nm周围的波长范围中,尤其是所示的从1200nm至1450nm波长范围中,能保证以至少1Gbit/秒的速率传输1300m的最短距离,需要全波范围内最小带宽为1100MHz.km。为了提供所述的传输容量,光纤的1400nm周围波长中的带宽因此要足够高。 

Claims (8)

1.一种用于制造包括光导梯度折射率纤芯的多模光纤的方法,所述光导梯度折射率纤芯具有按照下列公式(1)的折射率分布:
Figure 2011100440436100001DEST_PATH_IMAGE001
                                       (1)
其中:
n 1 =光纤纤芯的折射率值
r =在光纤纤芯中的径向位置
△=光纤的折射率差
α=分布形状参数
a=光纤纤芯半径
其中利用活性混合气体通过化学汽相沉积技术,使掺杂或非掺杂玻璃层沉积于基管内部,并且在沉积之后紧缩所述基管,以获得精确地限定了折射率分布的预成型件,通过加热预成型件的一端从预成形件抽取多模光纤,其中至少两种掺杂物用于构建所述多模光纤的梯度折射率纤芯,其特征在于,
所述至少两种掺杂物的浓度在纤芯半径上逐渐改变,其中对在多模光纤的光导纤芯内的浓度进行调整,以使得在光纤轴(r=0)上的作为所述掺杂物的氟的浓度低于光导纤芯区域中的作为掺杂物的氟的浓度,并且
其中所述氟的浓度在光导纤芯上具有一个最大值,该最大值位于距离r max 处, r max 范围是在r=0与r=a之间,其中在r=a处作为掺杂物的氟的浓度为零
2.根据权利要求1的方法,其特征在于在光导纤芯中的折射率改变掺杂物的浓度从0至6.5wt.%,在光轴上的掺杂物浓度为0wt.%
3.根据权利要求1的方法,其特征在于折射率改变掺杂物是从由GeO 2 、F、B 2 O 3 、P 2 O 5 、N、TiO 2 、ZrO 2 、SnO 2 和Al 2 O 3 组成的组中选择的。
4.根据权利要求3的方法,其特征在于使用的掺杂物包括GeO 2 和F。
5.一种具有折射率分布的多模光纤,包括由至少两种掺杂物形成的光导梯度折射率纤芯,所述光导梯度折射率纤芯具有按照下列公式(1)的折射率分布:
Figure 2011100440436100001DEST_PATH_IMAGE003
                                       (1)
其中:
n 1 =光纤纤芯的折射率值
r =在光纤纤芯中的径向位置
△=光纤的折射率差
α=分布形状参数
a=光纤纤芯半径
其特征在于,
所述至少两种掺杂物的浓度在纤芯半径上逐渐改变,其中对在多模光纤的光导纤芯中的浓度进行调整,以使得光纤轴(r=0)上的作为所述掺杂物的氟的浓度低于光导纤芯范围中的作为掺杂物的氟的浓度,其中
所述氟的浓度在光导纤芯上具有一个最大值,该最大值位于距离r max 处, r max 范围是在r=0与r=a之间,
其中在r=a处作为掺杂物的氟的浓度为零。
6.根据权利要求5的多模光纤,其特征在于,光导纤芯中的折射率改变掺杂物的浓度从0至6.5wt.%,在光纤轴上掺杂物的浓度为0 wt.%。
7.根据权利要求5的多模光纤,其特征在于折射率改变掺杂物是从由GeO 2 、F、B 2 O 3 、P 2 O 5 、N、TiO 2 、ZrO 2 、SnO 2 和Al 2 O 3 组成的组中选择的。
8.根据权利要求7的多模光纤,其特征在于所述掺杂物包括GeO 2 和F。
CN2011100440436A 2003-07-28 2004-07-28 有折射率分布的多模光纤、应用的光通信系统、制造方法 Active CN102156322B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1024015A NL1024015C2 (nl) 2003-07-28 2003-07-28 Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
NL1024015 2003-07-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2004100684125A Division CN1591061B (zh) 2003-07-28 2004-07-28 有折射率分布的多模光纤、应用的光通信系统、制造方法

Publications (2)

Publication Number Publication Date
CN102156322A CN102156322A (zh) 2011-08-17
CN102156322B true CN102156322B (zh) 2013-09-11

Family

ID=33536508

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011100440436A Active CN102156322B (zh) 2003-07-28 2004-07-28 有折射率分布的多模光纤、应用的光通信系统、制造方法
CN2004100684125A Active CN1591061B (zh) 2003-07-28 2004-07-28 有折射率分布的多模光纤、应用的光通信系统、制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2004100684125A Active CN1591061B (zh) 2003-07-28 2004-07-28 有折射率分布的多模光纤、应用的光通信系统、制造方法

Country Status (9)

Country Link
US (3) US7421172B2 (zh)
EP (1) EP1503230B1 (zh)
JP (1) JP2005049873A (zh)
KR (2) KR20050013951A (zh)
CN (2) CN102156322B (zh)
BR (1) BRPI0403031B8 (zh)
NL (1) NL1024015C2 (zh)
RU (1) RU2356076C2 (zh)
ZA (1) ZA200405972B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853741B2 (en) 2015-11-30 2017-12-26 International Business Machines Corporation Fiber optic encryption
US9887771B2 (en) 2015-10-23 2018-02-06 International Business Machines Corporation Bandwidth throttling
US9998255B2 (en) 2016-05-11 2018-06-12 International Business Machines Corporation Fiber optic light intensity encryption

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1024015C2 (nl) 2003-07-28 2005-02-01 Draka Fibre Technology Bv Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
US20070140634A1 (en) 2005-12-16 2007-06-21 Robert Scott Windeler Gain-producing, large-mode-area, multimode, hybrid optical fibers and devices using same
US7421174B2 (en) 2006-08-28 2008-09-02 Furakawa Electric North America; Inc. Multi-wavelength, multimode optical fibers
US7315677B1 (en) 2006-09-14 2008-01-01 Corning Incorporated Dual dopant dual alpha multimode optical fiber
FR2922657B1 (fr) 2007-10-23 2010-02-12 Draka Comteq France Fibre multimode.
NL1035403C2 (nl) * 2008-05-08 2009-11-11 Draka Comteq Bv Datacommunicatiekabel.
FR2932932B1 (fr) * 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
FR2940839B1 (fr) 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
FR2946436B1 (fr) 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2953606B1 (fr) * 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2949870B1 (fr) * 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2957153B1 (fr) * 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953605B1 (fr) * 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953030B1 (fr) * 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2950156B1 (fr) * 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
CN102791643B (zh) * 2010-03-10 2015-04-01 赫罗伊斯石英玻璃股份有限两合公司 用于生产光纤的方法以及管状半成品
AU2011249017B2 (en) 2010-05-04 2013-12-05 Sensortran, Inc. Mitigation of radiation induced attenuation losses in optic fibers
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
DK2482106T5 (da) 2011-01-31 2014-09-22 Draka Comteq Bv Multimode-fiber
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
US8965163B2 (en) 2011-11-04 2015-02-24 Corning Incorporated Ge-P co-doped multimode optical fiber
US8588568B2 (en) 2011-11-04 2013-11-19 Corning Incorporated Bend loss resistant multi-mode fiber
US8837890B2 (en) * 2012-05-31 2014-09-16 Corning Incorporated Multimode optical fiber and system comprising such fiber
US9417382B2 (en) * 2013-02-26 2016-08-16 Panduit Corp. Multimode optical fibers and methods of manufacture thereof
EP3100087B1 (en) 2014-01-31 2022-04-13 OFS Fitel, LLC Design and manufacture of multi-mode optical fibers
US9329335B2 (en) 2014-01-31 2016-05-03 Ofs Fitel, Llc Broadband multi-mode optical fibers with flat-zone in dopant concentration profile
US9804325B2 (en) 2014-01-31 2017-10-31 Ofs Fitel, Llc Framework for the design of optimum and near-optimum broadband multi-mode optical fibers by core doping
US9835796B2 (en) 2014-02-28 2017-12-05 Draka Comteq, B.V. Multimode optical fiber with high bandwidth over an extended wavelength range, and corresponding multimode optical system
DK3111260T3 (en) * 2014-02-28 2018-03-19 Draka Comteq Bv Multimode optical fiber with high bandwidth over an extended wavelength range and corresponding multimode optical system
US20150331181A1 (en) * 2014-05-16 2015-11-19 Corning Incorporated Multimode optical fiber and system including such
US9678269B2 (en) 2014-05-16 2017-06-13 Corning Incorporated Multimode optical fiber transmission system including single mode fiber
WO2016038414A1 (en) 2014-09-12 2016-03-17 Draka Comteq Bv Multimode optical fiber with high bandwidth, and corresponding multimode optical system
US9804324B2 (en) * 2015-01-30 2017-10-31 Sumitomo Electric Industries, Ltd. Multimode optical fiber
CN113009619B (zh) 2015-04-15 2024-01-16 康宁股份有限公司 具有氟和氯共掺杂芯区域的低损耗光纤
US9964701B2 (en) 2016-06-15 2018-05-08 Corning Incorporated Methods of manufacturing wide-band multi-mode optical fibers and core preforms for the same using specific fluorine doping parameter and 850 nm alpha profile
PL3577499T3 (pl) * 2017-02-03 2023-10-30 Draka Comteq France Multimodalny światłowód zoptymalizowany do pracy około 1060 nm i odpowidajacy mu system optyczny
US10447423B2 (en) * 2017-11-03 2019-10-15 The Boeing Company Bidirectional, multi-wavelength gigabit optical fiber network
US11022750B2 (en) 2018-09-13 2021-06-01 Corning Incorporated Wideband multimode co-doped optical fiber employing GeO2 and Al2O3 dopants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111525A (en) * 1976-10-12 1978-09-05 Bell Telephone Laboratories, Incorporated Silica based optical fiber waveguide using phosphorus pentoxide and germanium dioxide
US4723828A (en) * 1984-11-09 1988-02-09 Northern Telecom Limited Bandwidth enhancement of multimode optical transmisson lines
CN1285008A (zh) * 1997-12-31 2001-02-21 等离子光纤维股份有限公司 等离子体化学汽相淀积装置和制造光纤、预制棒及套管的方法以及由此制造的光纤

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989350A (en) 1975-09-12 1976-11-02 Bell Telephone Laboratories, Incorporated Multimode optical fiber
JPS5258547A (en) * 1975-11-10 1977-05-14 Hitachi Ltd Light transmission fiber
US4194807A (en) * 1976-04-09 1980-03-25 Georg Gliemeroth Optical fiber wave-guides for signal transmission comprising multiple component glass with an adjusted expansion co-efficient between the core and mantle
US4114980A (en) * 1976-05-10 1978-09-19 International Telephone And Telegraph Corporation Low loss multilayer optical fiber
US4222631A (en) 1978-03-03 1980-09-16 Corning Glass Works Multicomponent optical waveguide having index gradient
US4230396A (en) * 1978-07-31 1980-10-28 Corning Glass Works High bandwidth optical waveguides and method of fabrication
US4229070A (en) * 1978-07-31 1980-10-21 Corning Glass Works High bandwidth optical waveguide having B2 O3 free core and method of fabrication
US4406517A (en) * 1979-01-02 1983-09-27 Corning Glass Works Optical waveguide having optimal index profile for multicomponent nonlinear glass
US4372647A (en) * 1979-10-08 1983-02-08 Nippon Telegraph & Telephone Public Corporation Single mode optical fibers
US4339174A (en) 1980-02-01 1982-07-13 Corning Glass Works High bandwidth optical waveguide
JPS5719701A (en) * 1980-07-11 1982-02-02 Nippon Telegr & Teleph Corp <Ntt> Multimode optical fiber
US4432606A (en) * 1981-09-24 1984-02-21 Hughes Aircraft Company Optical fiber insensitive to temperature variations
US4616901A (en) * 1982-04-09 1986-10-14 At&T Bell Laboratories Doped optical fiber
US4465335A (en) * 1982-10-12 1984-08-14 The United States Of America As Represented By The Secretary Of The Army Concentric core optical fiber coupler
GB2129152B (en) * 1982-10-30 1986-08-13 Standard Telephones Cables Ltd Optical fibres
JPS59232302A (ja) * 1983-06-15 1984-12-27 Sumitomo Electric Ind Ltd 光伝送用フアイバ
US4840653A (en) * 1983-12-22 1989-06-20 American Telephone And Telegraph Company, At&T Bell Laboratories Fabrication of high-silica glass article
DE3447081A1 (de) * 1984-05-26 1985-12-19 AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern
DE3447082A1 (de) * 1984-05-26 1985-12-19 AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern
DE3500672A1 (de) * 1985-01-11 1986-07-17 Philips Patentverwaltung Lichtleitfaser mit fluordotierung und verfahren zu deren herstellung
GB8810286D0 (en) * 1988-04-29 1988-06-02 British Telecomm Connecting optical waveguides
AU662625B2 (en) * 1992-08-19 1995-09-07 Nippon Telegraph & Telephone Corporation Mode field diameter conversion fiber
JPH06216440A (ja) 1993-01-20 1994-08-05 Hitachi Cable Ltd 希土類元素添加マルチコアファイバ
KR0162604B1 (ko) * 1994-10-07 1999-04-15 김광호 광 섬유 모재 제조 방법
JP3719735B2 (ja) 1995-04-28 2005-11-24 康博 小池 光ファイバー
JPH0948629A (ja) * 1995-08-01 1997-02-18 Sumitomo Electric Ind Ltd 光ファイバおよびその製造方法
US5841933A (en) * 1996-07-09 1998-11-24 Hoaglin; Christine L. Optical waveguide fiber containing titania and germania
US5878182A (en) 1997-06-05 1999-03-02 Lucent Technologies Inc. Optical fiber having a low-dispersion slope in the erbium amplifier region
JPH1164665A (ja) 1997-06-13 1999-03-05 Sumitomo Electric Ind Ltd 光ファイバ
US6002818A (en) * 1997-12-05 1999-12-14 Lucent Technologies Inc Free-space optical signal switch arrangement
BR9907052A (pt) * 1998-10-23 2000-10-17 Furukawa Electric Co Ltd Fibra ótica compensadora de dispersão e linha de transmissão ótica com comprimento de onda multiplexado compreendendo fibra ótica compensadora de dispersão
DE19852704A1 (de) * 1998-11-16 2000-05-18 Heraeus Quarzglas Verfahren zur Herstellung einer Vorform für eine optische Faser und für die Durchführung des Verfahrens geeignetes Substratrohr
US6185346B1 (en) * 1998-12-04 2001-02-06 Charles K. Asawa Propagation in lowest order modes of multimode graded index fiber, resulting in: very low transmission loss, low modal noise, high data security, and high data rate capabilities
AU780177B2 (en) * 1998-12-18 2005-03-03 Prysmian Cavi E Sistemi Energia S.R.L. Optical fiber for metropolitan and access network systems
US6434309B1 (en) * 1999-02-22 2002-08-13 Corning Incorporated Laser optimized multimode fiber and method for use with laser and LED sources and system employing same
EP1083446B1 (en) * 1999-02-22 2009-09-23 The Furukawa Electric Co., Ltd. Optical transmission line, negative dispersion optical fiber used for the optical transmission line, and optical transmission system comprising optical transmission line
WO2000050941A1 (en) 1999-02-22 2000-08-31 Corning Incorporated Laser optimized multimode fiber and method for use with laser and led sources and system employing same
US6438303B1 (en) 1999-02-22 2002-08-20 Corning Incorporated Laser optimized multimode fiber and method for use with laser and LED sources and system employing same
JP4101429B2 (ja) 1999-03-31 2008-06-18 株式会社フジクラ 高次モード除去機能を有する多モード光ファイバ
US6292612B1 (en) * 1999-06-07 2001-09-18 Lucent Technologies Inc. Multi-mode optical fiber having improved refractive index profile and devices comprising same
JP4494691B2 (ja) * 1999-06-28 2010-06-30 古河電気工業株式会社 光伝送路
US6574403B1 (en) 2000-05-17 2003-06-03 Fitel Usa Corp. Apparatus and method for improving bandwidth of multimode optical fibers
TW552435B (en) * 2000-06-12 2003-09-11 Asahi Glass Co Ltd Plastic optical fiber
NL1017523C2 (nl) * 2001-03-07 2002-09-10 Draka Fibre Technology Bv Werkwijze ter vervaardiging van een optische vezel die geschikt is voor hoge transmissiesnelheden.
CA2371285A1 (en) * 2001-03-16 2002-09-16 The Furukawa Electric Co., Ltd Optical fiber and wavelength division multiplex transmission line
JP3653724B2 (ja) 2001-04-23 2005-06-02 住友電気工業株式会社 光ファイバ、及びその製造方法
US20030024276A1 (en) * 2001-05-30 2003-02-06 3M Innovative Properties Company Method of manufacture of an optical waveguide article including a fluorine-containing zone
NL1019004C2 (nl) 2001-09-20 2003-03-26 Draka Fibre Technology Bv Multimodevezel voorzien van een brekingsindexprofiel.
US6580863B2 (en) * 2001-10-31 2003-06-17 Intel Corporation System and method for providing integrated optical waveguide device
US6735985B2 (en) * 2001-12-20 2004-05-18 Furukawa Electric North America Inc Method of impressing a twist on a multimode fiber during drawing
US6771865B2 (en) * 2002-03-20 2004-08-03 Corning Incorporated Low bend loss optical fiber and components made therefrom
CN1403843A (zh) * 2002-10-10 2003-03-19 上海交通大学 宽带拉曼放大和色散补偿模块
NL1022315C2 (nl) 2003-01-07 2004-07-13 Draka Fibre Technology Bv Werkwijze ter vervaardiging van een optische vezel voorzien van variaties in de brekingsindex.
US6904218B2 (en) * 2003-05-12 2005-06-07 Fitel U.S.A. Corporation Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
FR2855619B1 (fr) * 2003-05-27 2005-07-22 Cit Alcatel Fibre optique pour amplification ou pour emission laser
CN1226211C (zh) * 2003-06-27 2005-11-09 长飞光纤光缆有限公司 一种低水峰单模光纤的制造方法
KR100526516B1 (ko) * 2003-07-11 2005-11-08 삼성전자주식회사 고속, 근거리 통신망을 위한 언덕형 광섬유
JP4141914B2 (ja) * 2003-07-18 2008-08-27 株式会社フジクラ グレーテッドインデックス型マルチモードファイバおよびその製造方法
DE602004016706D1 (de) * 2003-07-18 2008-11-06 Fujikura Ltd Multimode-Gradientenindex-Faser und Herstellungsmethode
NL1024015C2 (nl) 2003-07-28 2005-02-01 Draka Fibre Technology Bv Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
EP1515169B1 (en) * 2003-09-09 2008-04-23 Fujikura Ltd. Graded-index multimode fiber and manufacturing method therefor
US20050063712A1 (en) * 2003-09-22 2005-03-24 Rice Robert R. High speed large core multimode fiber optic transmission system and method therefore
WO2005106544A1 (en) 2004-04-28 2005-11-10 Ls Cable Ltd. Optical fiber with improved bending behavior
US7646955B2 (en) * 2004-07-26 2010-01-12 Corning Incorporated Multimode optical fiber with low differential mode delay
JP4684593B2 (ja) 2004-08-05 2011-05-18 株式会社フジクラ 低曲げ損失マルチモードファイバ
JP4358073B2 (ja) 2004-09-07 2009-11-04 株式会社フジクラ 低曲げ損失トレンチ型マルチモードファイバ
JP2006227173A (ja) 2005-02-16 2006-08-31 Fujikura Ltd マルチモード分散補償ファイバ、モード分散の補償方法、光導波路、光伝送路及び光通信システム
NL1028978C2 (nl) * 2005-05-04 2006-11-07 Draka Comteq Bv Optisch communicatiesysteem alsmede aansluitnetwerk voorzien daarvan.
US7783149B2 (en) * 2005-12-27 2010-08-24 Furukawa Electric North America, Inc. Large-mode-area optical fibers with reduced bend distortion
US7421174B2 (en) * 2006-08-28 2008-09-02 Furakawa Electric North America; Inc. Multi-wavelength, multimode optical fibers
US7315677B1 (en) * 2006-09-14 2008-01-01 Corning Incorporated Dual dopant dual alpha multimode optical fiber
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US7539381B2 (en) * 2007-05-11 2009-05-26 Corning Incorporated Low bend loss coated optical fiber
JPWO2009022479A1 (ja) * 2007-08-13 2010-11-11 古河電気工業株式会社 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
US9042695B2 (en) * 2007-10-05 2015-05-26 Optacore D.O.O. Optical Fibers Low bending loss multimode fiber transmission system
FR2922657B1 (fr) * 2007-10-23 2010-02-12 Draka Comteq France Fibre multimode.
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
FR2932932B1 (fr) * 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) * 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US8768131B2 (en) * 2008-08-13 2014-07-01 Corning Incorporated Multimode fiber with at least dual cladding
US8520994B2 (en) * 2008-09-17 2013-08-27 Ofs Fitel, Llc Bandwidth-maintaining multimode optical fibers
CN102203647B (zh) 2008-09-26 2014-04-30 康宁股份有限公司 高数值孔径多模光纤
FR2940839B1 (fr) * 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
US20100220966A1 (en) * 2009-02-27 2010-09-02 Kevin Wallace Bennett Reliability Multimode Optical Fiber
FR2946436B1 (fr) * 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
CN102483486B (zh) * 2009-08-17 2015-05-27 泛达公司 自补偿多模光纤
US8184936B2 (en) * 2009-08-18 2012-05-22 Yangtze Optical Fibre And Cable Company, Ltd. Multi-mode bending-resistant fiber and production method thereof
WO2011022545A1 (en) * 2009-08-19 2011-02-24 Panduit Corp. Modified refractive index profile for low-dispersion multi-mode fiber
US8489369B2 (en) * 2009-08-28 2013-07-16 Panduit Corp. Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber
US20110054862A1 (en) * 2009-09-02 2011-03-03 Panduit Corp. Multimode Fiber Having Improved Reach
FR2949870B1 (fr) * 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2950156B1 (fr) * 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
EP2484030B1 (en) 2009-09-30 2018-04-18 Corning Incorporated Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods
US7903918B1 (en) * 2010-02-22 2011-03-08 Corning Incorporated Large numerical aperture bend resistant multimode optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111525A (en) * 1976-10-12 1978-09-05 Bell Telephone Laboratories, Incorporated Silica based optical fiber waveguide using phosphorus pentoxide and germanium dioxide
US4723828A (en) * 1984-11-09 1988-02-09 Northern Telecom Limited Bandwidth enhancement of multimode optical transmisson lines
CN1285008A (zh) * 1997-12-31 2001-02-21 等离子光纤维股份有限公司 等离子体化学汽相淀积装置和制造光纤、预制棒及套管的方法以及由此制造的光纤

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887771B2 (en) 2015-10-23 2018-02-06 International Business Machines Corporation Bandwidth throttling
US10135526B2 (en) 2015-10-23 2018-11-20 International Business Machines Corporation Bandwidth throttling
US10230461B2 (en) 2015-10-23 2019-03-12 International Business Machines Corporation Bandwidth throttling
US9853741B2 (en) 2015-11-30 2017-12-26 International Business Machines Corporation Fiber optic encryption
US9998255B2 (en) 2016-05-11 2018-06-12 International Business Machines Corporation Fiber optic light intensity encryption

Also Published As

Publication number Publication date
BRPI0403031B1 (pt) 2018-03-13
US9459400B2 (en) 2016-10-04
CN1591061B (zh) 2011-05-04
CN1591061A (zh) 2005-03-09
BRPI0403031B8 (pt) 2019-01-15
KR20120061785A (ko) 2012-06-13
RU2356076C2 (ru) 2009-05-20
EP1503230A1 (en) 2005-02-02
US20050063653A1 (en) 2005-03-24
CN102156322A (zh) 2011-08-17
KR101267578B1 (ko) 2013-05-27
BRPI0403031A (pt) 2005-05-31
US20140341520A1 (en) 2014-11-20
ZA200405972B (en) 2005-07-27
US8794038B2 (en) 2014-08-05
EP1503230B1 (en) 2012-10-17
KR20050013951A (ko) 2005-02-05
JP2005049873A (ja) 2005-02-24
US7421172B2 (en) 2008-09-02
NL1024015C2 (nl) 2005-02-01
US20090019894A1 (en) 2009-01-22
RU2004123221A (ru) 2006-01-27

Similar Documents

Publication Publication Date Title
CN102156322B (zh) 有折射率分布的多模光纤、应用的光通信系统、制造方法
CA1116449A (en) High bandwidth optical waveguide having b.sub.2o.sub.3 free core and method of fabrication
US4230396A (en) High bandwidth optical waveguides and method of fabrication
CA1124118A (en) Multicomponent optical waveguide having index gradient
US5995695A (en) Dispersion compensating optical fiber
CN101101354B (zh) 掺氟光纤
EP2629126B1 (en) Low loss optical fiber designs
US4339174A (en) High bandwidth optical waveguide
EP2299303B1 (en) Multimode optical fibre with reduced bending losses
EP2299302A1 (en) Multimode optical fibre having improved bending losses
EP0434237A2 (en) Method of producing optical fiber, and fiber produced by the method
JP2002131570A (ja) 分散値が大きい負数である分散平坦光ファイバー及びその製造方法
CN101861537A (zh) 光纤及其制造方法
KR20040014669A (ko) 분산 기울기 보상 광섬유 및 그 광섬유를 포함한 전송 링크
WO2007125540A1 (en) Dispersion optimized optical fiber for wideband optical transmission
EP0083843B1 (en) Low dispersion, low-loss single-mode optical waveguide
JP2023536451A (ja) シングルモード動作のための低クロストークのマルチコア光ファイバ
CN110981183B (zh) 一种宽带多模光纤预制棒的制造方法
GB2071351A (en) Manufacture of monomode fibers
GB2096351A (en) Monomode optical fibre
CN113625390A (zh) 一种色散优化弯曲不敏感光纤
JPS62275207A (ja) シングルモ−ド光フアイバ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant