CN102148582A - 电力变换装置 - Google Patents

电力变换装置 Download PDF

Info

Publication number
CN102148582A
CN102148582A CN2011100364112A CN201110036411A CN102148582A CN 102148582 A CN102148582 A CN 102148582A CN 2011100364112 A CN2011100364112 A CN 2011100364112A CN 201110036411 A CN201110036411 A CN 201110036411A CN 102148582 A CN102148582 A CN 102148582A
Authority
CN
China
Prior art keywords
phase
control
power
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100364112A
Other languages
English (en)
Inventor
大山和人
三井利贞
西口慎吾
古川公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN102148582A publication Critical patent/CN102148582A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提供一种电力变换装置,该电力变换装置基于规定的条件切换HM控制模式和正弦波PWM控制模式,所述HM控制模式为,根据电角度交替地形成在不同的相上使上臂用的开关元件和下臂用的开关元件分别导通而从直流电源向电动机供给电流的第一期间、和在全相上使上臂用的开关元件或下臂用的开关元件中的任一者导通,并用蓄积于电动机的能量维持转矩的第二期间;所述正弦波PWM控制模式为,根据基于正弦波指令信号和载波的比较结果而确定的脉冲宽度,使开关元件导通,从直流电源向电动机供给电流。

Description

电力变换装置
下面的优先权基础申请的公开内容在此作为引文被编入。国际专利申请PCT/JP2010/051963(2010年2月10日)
技术领域
本发明涉及将直流电力变换为交流电力、或将交流电力变换为直流电力的电力变换装置。
背景技术
接受直流电力且变换为用于将上述直流电力供给旋转电机的交流电力的电力变换装置具备多个开关元件。通过上述开关元件反复开关动作,所供给的直流电力被变换为交流电力。上述电力变换装置大部分还为通过上述开关元件的开关动作将感应于旋转电机的交流电力变换为直流电力而使用。上述的开关元件通常是基于使用以规定频率进行变化的载波的脉冲宽度调制方式(下记为PWM方式)进行控制的。通过提高载波的频率,控制精度提高,而且具有使旋转电机的产生转矩趋于平稳的倾向。
但是,上述开关元件在从切断状态向导通状态的切换时、或从导通状态向切断状态的切换时,电力损失增大,发热量增大。
电力变换装置的一个例子公开于特开昭63-234878号公报。
在上述的开关元件从切断状态向导通状态、或从导通状态向切断状态的开关动作的切换时,优选降低产生于开关元件的电力损失。通过降低电力损失,可以降低开关元件的发热量。因此,优选降低上述开关元件的开关次数。如上所述,在通常使用的PWM方式中,为了降低上述开关元件的每单位时间的开关动作的次数,需要降低载波的频率。但是,当降低载波的频率时,从电力变换装置输出的交流电流的失真增大。这会导致基于该交流电流的供给而三相交流电动机产生的转矩的波动增大。
发明内容
本发明的目的在于,提供一种电力变换装置,其可实现交流电力的供给,所述交流电力可以尽可能地抑制接受来自电力变换装置的交流电力产生转矩的三相交流电动机的输出转矩的波动增大,并且能够实现开关损失的降低。下面说明的实施方式反映了作为产品而优选的研究成果,解决了作为产品而优选的更具体的各种课题。通过下面的实施方式的具体构成及作用解决的具体课题用下面的实施方式一栏进行说明。
本发明至少具备一个以下记述的特征。
根据本发明的特征之一,电力变换装置具有:为接收直流电力的供给并变换为向三相交流电动机等电感负荷供给的交流电力而具有多个开关元件的逆变电路、和用于控制上述开关元件的导通及切断的控制电路。控制电路基于即将变换的交流电力的角度即相位,控制上述开关元件的导通动作或切断动作。通过这种构成,能够降低上述开关元件的开关次数。
根据本发明的另一特征之一,在具有上述特征说明的构成的电力变换装置中,控制电路控制逆变电路具有的开关元件的导通开始时刻,以使其与要输出的交流电力的相位同步。另外,以开关元件的导通状态持续的角度(下记为导通持续角)以调制度比调制度小的第一调制度大的调制度大的第二调制度增大,且开关元件的切断状态持续的角度(下记为切断持续角)以比上述第一调制度使第二调制度减小的方式进行控制。另外,在调制度比上述第二调制度还大的调制度大的第三调制度,当上述切断持续角减小到比上述开关元件可以动作的角度小的规定的角度时,失去切断期间,以延续下一导通持续角的方式进行控制。通过这样控制,除能够降低上述开关元件的开关次数以外,还能够提高可靠性。
根据本发明的再另一特征之一,电力变换装置具有:具有用于接收直流电力的供给并变换为向三相交流电动机等电感负荷供给的交流电力的多个开关元件的逆变电路、和输出用于控制上述开关元件的导通动作及切断动作的控制信号的控制电路。上述控制电路基于要输出的交流电力的相位,控制上述开关元件的导通动作或切断动作。上述控制电路在大致相同的调制度的状态下,例如,在作为电感负荷而动作的永久磁铁式同步旋转电机或感应旋转电机那样的旋转电机的转速增大的情况下,或者,在上述旋转电机的转矩指令值增大的情况下,以上述开关元件的开关动作的时间间隔缩短的方式控制上述开关元件。即,在大致相同的调制度的状态下,在用于向电感负荷供给的交流电力的频率在比第一频率高出1.5倍或2倍程度的范围内进行变化的情况下,或者,在转矩指令值在所定范围内即增加宽度小的情况下,以用于产生上述交流电力的每一循环的逆变电路的开关动作次数不变的方式,控制开关元件。通过将上述逆变电路导通并将基于直流电力的电流供给于负荷的导通动作位置设为适合抑制谐波的相位位置,可以抑制谐波。这样,既能够尽可能地抑制要变换的交流电力的失真,又能够实现开关损失的降低。
根据本发明的再另一特征,电力变换装置可以选择即将消除的谐波的次数,通过消除即使不消除也可以的次数的谐波(或不选择),能够防止开关元件的每单位相位的开关次数增加。例如,在可以降低对旋转电机影响大的第5次谐波的交流输出的相位位置,使逆变电路导通,在上述相位位置将直流电力的电流供给于负荷。通过这种构成、控制方法,可以降低对旋转电机影响大的第5次谐波供给于负荷。
根据本发明的再另一特征,电力变换装置按每单位相位、例如按每0〔rad〕~π〔rad〕使即将消除的次数的谐波重合并进行消除,因此能够降低开关元件的每单位相位的开关次数。
根据本发明的再另一特征之一,电力变换装置为将所供给的直流电力变换为用于驱动旋转电机的三相交流电力而具备:具有构成上臂和下臂的多个开关元件的桥式电路、用于控制所述开关元件的导通及切断的控制电路、和产生使开关元件导通及切断的驱动信号的驱动电路。在第一期间,基于即将输出的交流电力的相位,将驱动信号从所述驱动电路供给到所述开关元件,基于所述驱动信号,使所述开关元件导通,向所述旋转电机供给交流电流。在事先用所述控制电路求出的期间,使所述开关元件导通,向所述旋转电机蓄积能量,接着,在第二期间,使所述桥式电路的上臂或下臂内的一方全部切断,并且使另一方全部导通,基于所述蓄积的能量,使流动于旋转电机的电流持续流动。通过交替地设置所述第一期间和第二期间,可以降低开关次数。
根据本发明的再另一特征之一,电力变换装置在第一运转区域,基于即将输出的交流电力的相位,将控制开关元件的开关动作的驱动信号供给到开关元件,对应于即将输出的交流电力的相位,使开关元件导通。另外,在所述即将输出的交流电力的频率比第一运转区域低的第二区域,基于载波,进行控制开关元件的导通及切断的PWM控制。通过这种构成,可以降低第二区域的失真增大,并且降低第一区域的开关次数,可以降低电力损失。
本发明的再另一特征,除上述的各特征以外,还具有如下特征,即,基于电动机的转速或即将输出的交流信号切换HM控制模式和正弦波PWM控制模式,所述HM控制模式是,对应于输出的交流波形的相位,控制开关元件;所述正弦波PWM控制模式是,基于一定周期的载波,控制开关元件。
本发明的再另一特征之一,除上述的各特征以外,还具有如下特征,即,HM控制模式还包含矩形波控制模式,该矩形波控制模式是,按电动机的每一转,使各相的开关元件分别导通及切断一次。
根据本发明的再另一特征,所述电力变换装置中,在HM控制模式时,使形成第一期间的电角度位置、和第一期间的长度中的至少一方变化,从而使在电动机内流动的交流电流的谐波成分变化为期望值,通过该谐波成分的变化,移至矩形波控制模式。
本发明的再另一特征之一,电力变换装置还具备过渡电流补偿单元,该过渡电流补偿单元输出用于补偿在电动机内流动的交流电流产生的过渡电流的补偿脉冲。该过渡电流补偿单元在切换HM控制模式和正弦波PWM控制模式时,输出补偿脉冲。
本发明的再另一特征,所述过渡电流补偿单元在HM控制模式和正弦波PWM控制模式的切换时,或除此以外,在满足规定的条件时,输出补偿脉冲。
本发明的再另一特征之一,电力变换装置还具备判定装置和斩波控制装置,所述判定装置判定是否可检测电动机的旋转状态;所述斩波控制装置基于判定装置的判定结果,输出用于在各相上与电角度无关地交替地形成第一期间和第二期间的规定的单相斩波控制用信号。
本发明的再另一特征,单相斩波控制用信号的周期根据电动机的电感来确定。
本发明的再另一特征之一,电力变换装置具有:具备构成上臂及下臂的多个开关元件的桥式电路、输出用于使上述开关元件导通或切断的驱动信号的驱动电路、和用于控制所述驱动电路的控制器,对应于从直流电力变换的交流电力的相位,使所述开关元件动作,并且基于调制度,控制所述开关元件的导通或切断期间。
本发明的再另一特征之一是,在上述特长中,还使在电动机内流动的交流电流的谐波成分变化为期望值,在调制度最大时,进行按电动机的每一转使各相的开关元件分别导通及切断一次的矩形波控制。
根据本发明,在电力变换装置中,可以某种程度地抑制转矩波动的增大,还可以降低开关损失。
另外,在下面的实施方式中,如后所述,解决了作为产品而优选的各种课题。
附图说明
图1是表示混合动力车的控制块的图。
图2是表示电气电路的构成的图。
图3是表示控制模式的切换的图。
图4是说明PWM控制和矩形波控制的图。
图5是表示在矩形波控制中产生的谐波成分的例子的图。
图6是表示第一实施方式的控制电路形成的电动机控制系统的图。
图7是表示脉冲生成器的构成的图。
图8是表示图表搜索的脉冲生成顺序的流程图。
图9是表示实时运算的脉冲生成顺序的流程图。
图10是表示脉冲波形运算顺序的流程图。
图11是表示相位计数器的脉冲生成方法的图。
图12是表示HM控制模式的线间电压波形之一例的图。
图13是线间电压的脉冲宽度与其他脉冲列不相等时的说明图。
图14是表示HM控制模式的线间电压波形之一例的图。
图15是表示HM控制模式的相电压波形之一例的图。
图16是表示线间电压和相端子电压的变换表的图。
图17是表示将矩形波控制模式的线间电压脉冲变换成相电压脉冲的例子的图。
图18是表示将HM控制模式的线间电压脉冲变换成相电压脉冲的例子的图。
图19是表示改变了调制度时的线间电压脉冲的基本波和消除对象谐波成分的振幅的大小的图。
图20是表示HM控制模式的线间电压波形之一例的图。
图21是表示HM控制模式的相电压波形之一例的图。
图22是用于说明PWM脉冲信号的生成方法的图。
图23是表示PWM控制模式的线间电压波形之一例的图。
图24是表示PWM控制模式的相电压波形之一例的图。
图25是将HM脉冲信号的线间电压脉冲波形和PWM脉冲信号的线间电压脉冲波形进行比较的图。
图26是表示将PWM控制模式和HM控制模式切换后的情形的图。
图27是用于对PWM控制和HM控制的脉冲形状的差别进行说明的图。
图28是表示电动机转速和HM脉冲信号的线间电压脉冲波形的关系的图。
图29是表示在HM控制和PWM控制中生成的线间电压脉冲数和电动机转速的关系的图。
图30是表示由第一实施方式的控制电路进行的电动机控制的流程图。
图31是表示第二实施方式的控制电路形成的电动机控制系统的图。
图32是用于说明补偿电流的产生的图。
图33是分别将相电流波形和补偿脉冲波形的局部放大后的图。
图34是表示由第二实施方式的控制电路进行的电动机控制的流程图。
图35是表示过渡电流补偿的顺序的流程图。
图36是表示用于相电压附加时间的计算的电路模型的图。
图37是表示第三实施方式的控制电路形成的电动机控制系统的图。
图38是表示单相斩波控制之一例的图。
图39是表示由第三实施方式的控制电路进行的电动机控制的流程图。
图40是说明降低谐波的动作原理的说明图。
图41是对用于降低谐波的开关元件的开关时刻进行说明的说明图。
图42是基于傅里叶级数展开说明谐波的消除方法的思路的说明图。
图43是对消除了3次、5次、7次谐波时的U相和V相的线间电压的波形进行说明的说明图。
图44是表示用于进行PWM控制的脉冲调制器的构成的图。
具体实施方式
除上述记载的内容以外,在下面的实施方式中,可以解决在产品化上优选的课题,还实现在产品化上优选的效果。也有与上述记载的内容重复的内容或密切相关的内容,下面记述其中几个课题,并且对具体课题的解决及具体的效果进行说明。
〔开关元件的开关频度的降低〕
在下面的实施方式说明的电力变换装置中,基于从直流电力变换的交流电力的波形的角度即相位,从通过来自控制电路的控制信号而动作的驱动电路向开关元件供给驱动信号,所述控制电路用于控制逆变电路具有的开关元件的开关动作,上述开关元件对应于变换的交流电力的相位进行导通或切断动作。这样,通过具有利用来自控制电路的控制信号来对应于相位角控制上述逆变电路具有的开关元件的导通动作的构成及作用,与一般的PWM方式相比,可以降低上述开关元件的开关动作的每单位时间的次数或交流电力的每一循环的开关次数。另外,在上述构成中,尽管降低了逆变电路的开关元件的开关频度,但仍然具有可以抑制输出的交流波形的失真增大,且可以降低伴随开关动作的损失的效果。这会影响到构成逆变电路的电源开关电路的开关元件的发热的降低。
在下面说明的实施方式中,特别是在图10、图40及图41说明的实施方式中,选择即将消除的谐波的次数。这样,由于可以按照本发明的应用对象选择消除的次数,因此可以防止要消除的次数的种类过于增多,由此,可降低电源开关电路的开关元件的每单位相位的开关次数。在包含供给交流电力的同步电动机及感应电动机的旋转电机中,次数低的谐波的不良影响大,减少要输出的交流电力的称为第5次谐波及第7次谐波的较低次的谐波会带来较大的效果。在本发明的实施方式中,至少在适合降低第5次谐波的相位位置,通过基于逆变器的导通的来自直流电力源的电流供给到上述旋转电机,可以降低第5次谐波。在此,作为直流电源,不局限于储蓄直流电力的电池,可以是平滑用电容器,例如,图2所示的电容模块500。
另外,作为开关元件,优选动作速度快且还可以基于控制信号控制导通及切断动作双方的元件,作为这种元件,例如,具有绝缘栅双极型晶体管(insulated gatebipolar transistor下记为IGBT)及场效应晶体管(MOS晶体管),从响应性及控制性这点出发,优选这些元件。
从上述电力变换装置输出的交流电力供给到由旋转电机等构成的电感电路,交流电流基于电感作用而流动。在下面的实施方式中,作为电感电路,以形成电动机及发电机作用的旋转电机为例进行说明。为产生驱动旋转电机的交流电力而使用本发明从效果这一点出发是最佳的,但也可以作为向旋转电机以外的电感电路供给交流电力的电力变换装置而使用。
在下面的实施方式中,在旋转电机的转速快的第一动作范围内,基于即将输出的交流波形的相位,产生开关元件的开关动作,另一方面,在旋转电机的转速比上述第一动作范围慢的第二动作区域内,基于一定频率的载波,以控制开关元件的动作的PWM方式,控制上述开关元件。在上述第二动作区域,上述旋转电机的转子可以包含停止状态。另外,在下面的实施方式中,作为旋转电机,以作为电动机及发电机使用的电动发电机为例进行说明。
〔输出的交流电力的失真降低〕
在基于要输出的电力的交流波形的角度即相位位置而将逆变器具有的开关元件导通或切断的方式中,在输出的交流电力的频率低的区域内,具有交流波形的失真增大的倾向。在上述的说明中,交流输出频率低的第二区域使用PWM方式,基于经过的时间,控制开关元件,在输出的交流电力的频率比第二区域高的第一区域内,基于角度即相位位置,控制开关元件(下记为HM控制)。这样,通过利用不同的方式控制逆变电路的开关元件,就会产生可以降低输出的交流电力的失真的效果。
〔基本控制〕
在下面说明的实施方式中,作为基本控制,在供给交流电力的旋转电机的低速运转状态下,通过PWM控制,产生上述交流电力,在旋转电机的转速上升的状态下,转移至下面说明的HM控制的交流电力的产生控制。由此,可以尽可能地抑制失真的影响,实现效率提高。
另外,在上述的基本控制中,在旋转电机的停止状态下,如图3及图39所示,进行斩波控制,然后从斩波控制移至PWM控制。
另外,在与上述基本控制不同的观点上,如下面的实施方式所述,在旋转电机的高速运转状态下,移至HM控制内的矩形波控制。在下面说明的HM控制中,对应于输出的交流波形的相位,控制开关时刻,随着增高调制度,交流电力的半周期(电角度的0~π或π~2π)的开关次数逐渐减少,最后,移至在半周期内只有一次导通的矩形波控制。这样,在下面的实施方式中,具有可以平稳地移至矩形波控制的优点,因此,控制性优异。
下面,参照附图对本发明实施方式的电力变换装置进行详细说明。本发明实施方式的电力变换装置是应用于混合动力汽车(下记为HEV)及纯电动汽车(下记为EV)的产生用于驱动旋转电机的交流电力的电力变换装置的例子。HEV用的电力变换装置也好,EV用的电力变换装置也好,在基本构成及控制中,共同之处较多,作为代表例,利用图1和图2对将本发明实施方式的电力变换装置应用于混合动力汽车时的控制构成和电力变换装置的电路构成进行说明。图1是表示混合动力汽车的控制块的图。
在本发明实施方式的电力变换装置中,对搭载于汽车的车载电机系统的车载用电力变换装置进行说明。特别例举用于车辆驱动用电机系统且搭载环境及工作环境等很差的车辆驱动用电力变换装置进行说明。车辆驱动用电力变换装置作为驱动车辆驱动用旋转电机的控制装置装设于车辆驱动用电机系统。该车辆驱动用电力变换装置将从构成车载电源的车载蓄电池或车载发电装置供给的直流电力变换为规定的交流电力,将得到的交流电力供给到上述旋转电机,驱动上述旋转电机。另外,上述旋转电机除具有电动机的功能以外,还具有作为发电机的功能,因此上述电力变换装置,根据运转模式,不仅进行将直流电力变换为交流电力的动作,而且还进行将上述旋转电机产生的交流电力变换为直流电力的动作。所变换的直流电力供给到车载蓄电池。
另外,本实施方式的构成作为汽车或卡车等车辆驱动用电力变换装置是最佳的。但是,也可应用于此以外的电力变换装置,例如:电车及船舶、飞机等的电力变换装置、还有用于产生向驱动工厂设备的旋转电机供给的交流电力的工业用电力变换装置、或驱动家用太阳能发电系统及家用电化学制品的旋转电机的控制装置所使用的电力变换装置。
下面,利用附图进行说明。在图1中,HEV110是一辆电动车辆,具备二个车辆驱动用系统。其中一个是以内燃机即发动机120为动力源的发动机系统。发动机系统主要作为HEV的驱动源而使用。另一个是以电动发电机192、194为动力源的车载电机系统。车载电机系统主要作为HEV的驱动源及HEV的电力发生源使用。电动发电机192、194是例如同步机或感应机等旋转电机的一个例子,通过运转方法,既作为电动机进行动作,也作为发电机进行动作,因此,在此记述为电动发电机。
在车身的前部可旋转地轴支有前轴114。在前轴114的两端设有一对前轮112。在车身的后部可旋转地轴支有后轴(省略图示)。在后轴的两端设有一对后轮。在本实施方式的HEV中,采用将由动力驱动的主动轮设为前轮112、将牵动的从动轮设为后轮的所谓的前轮驱动方式,反之,即,采用后轮驱动方式也可以。
在前轴114的中央部设有前轮侧差动齿轮装置(下记为“前轮侧DEF”)116。前轴114机械地连接于前轮侧DEF116的输出侧。在前轮侧DEF116的输入侧机械地连接有变速机118的输出轴。前轮侧DEF116是将由变速机118变速传递的旋转驱动力分配给左右的前轴114的差动式动力分配机构。在变速机118的输入侧机械地连接有电动发电机192的输出侧。在电动发电机192的输入侧经由动力分配机构122机械地连接有发动机120的输出侧及电动发电机194的输出侧。另外,电动发电机192、194及动力分配机构122收纳于变速机118的壳体内部。
电动发电机192、194是转子上装设有永久磁铁的同步机。通过由电力变换装置140、142控制供给于定子的电枢线圈的交流电力,控制电动发电机192、194的驱动。电力变换装置140、142电连接有蓄电池136。在蓄电池136和电力变换装置140、142的彼此之间,可进行电力的变换。
本实施方式的车载电机系统具备由电动发电机192及电力变换装置140构成的第一电动发电单元、由电动发电机194及电力变换装置142构成的第二电动发电单元等两个单元,根据运转状态,分别使用这两个单元。即,在通过来自发动机120的动力来驱动车辆的情况下,在有助于加大车辆的驱动转矩时,通过发动机120的动力,使第二电动发电单元作为发电单元而工作进行发电,通过由其发电得到的电力,使第一电动发电单元作为电动单元而工作。另外,在同样的情况下,在有助于加大车辆的车速时,通过发动机120的动力,使第一电动发电单元作为发电单元而工作进行发电,通过由其发电得到的电力,使第二电动发电单元作为电动单元而工作。
另外,在本实施方式中,通过利用蓄电池136的电力使第一电动发电单元作为电动单元而工作,则仅通过电动发电机192的动力,就可以驱动车辆。另外,在本实施方式中,通过利用发动机120的动力或来自车轮的动力使第一电动发电单元或第二电动发电单元作为发电单元而工作进行发电,可以将蓄电池136充电。
蓄电池136还作为用于驱动辅机用电动机195的电源而使用。作为辅机用电动机,例如,驱动空气调节器的压缩机的电动机、或驱动控制用液压泵的电动机。从蓄电池136向电力变换装置43供给直流电力,由电力变换装置43变换为交流电力,并供给到电动机195。电力变换装置43与电力变换装置140及142具有同样的功能,控制供给到电动机195的交流的相位及频率、电力。例如,通过对电动机195的转子的旋转供给超前相位的交流电力,电动机195产生转矩。另一方面,通过产生滞后相位的交流电力,电动机195作为发电机起作用,成为再生制动状态的运转。这种电力变换装置43的控制功能与电力变换装置140及142的控制功能相同。电动机195的容量比电动发电机192及194的容量小,因此电力变换装置43的最大变换电力比电力变换装置140及142小。但是,电力变换装置43的电路构成及动作基本上与电力变换装置140及142的电路构成及动作相类似。
电力变换装置140及142及电力变换装置43还有电容模块500处于电性的密切关系。另外,需要对发热的对策这一点共同。另外,优选尽可能小地制作装置的体积。从这几点出发,下面详述的电力变换装置将电力变换装置140及142及电力变换装置43还有电容模块500内装于电力变换装置壳体内。通过该构成,可以实现小型且可靠性高的装置。
另外,通过将电力变换装置140及142及电力变换装置43还有电容模块500内装于一个壳体内,在配线的简化及噪音对策上有效。另外,可以降低电容模块500与电力变换装置140及142及电力变换装置43的连接电路的电感,可以降低尖峰电压,并且可以实现发热的降低及放热效率的提高。
接着,利用图2对电力变换装置140及142或电力变换装置43的电气电路的构成进行说明。另外,在图1~图2所示的实施方式中,以分别单独地构成电力变换装置140及142或电力变换装置43的情况为例进行说明。电力变换装置140及142或电力变换装置43以同样的构成形成同样的作用,具有同样的功能。在此,作为代表例,进行电力变换装置140的说明。
本实施方式的电力变换装置200具备电力变换装置140和电容模块500。电力变换装置140具有电源开关电路144和控制部170。另外,电源开关电路144具有作为上臂而动作的开关元件和作为下臂而动作的开关元件。在该实施方式中,作为开关元件,使用IGBT(绝缘栅双极晶体管)。作为上臂而动作的IGBT328与二极管156并联连接,作为下臂而动作的IGBT330与二极管166并联连接。构成为,具有多个上下臂的串联电路150(在图2的例子中,三个上下臂的串联电路150、150、150),与从各上下臂的串联电路150的节点部分(节点169)穿过交流端子159通向电动发电机192的交流电力线(交流汇流条)186连接。另外,控制部170具有驱动控制电源开关电路144的驱动电路174、和经由信号线176向驱动电路174供给控制信号的控制电路172。
上臂和下臂的IGBT328及330是开关元件,接收从控制部170输出的驱动信号而动作,将由蓄电池136供给的直流电力变换为三相交流电力。该变换的电力供给到电动发电机192的电枢线圈。如上所述,电力变换装置140也进行将电动发电机192产生的三相交流电力变换为直流电力的动作。
如图1所示,本实施方式的电力变换装置200具有电力变换装置140和142还有电力变换装置43和电容模块500。如上所述,电力变换装置140和142还有电力变换装置43由同样的电路构成,因此,在此以电力变换装置140为代表进行讲述,如上所述,已经省略了电力变换装置142和电力变换装置43。
电源开关电路144由三相电桥电路构成。在蓄电池136的正极侧和负极侧电连接有直流正极端子314和直流负极端子316。在直流正极端子314和直流负极端子316之间分别并联地电连接有对应于各相的上下臂的串联电路150、150、150。在此,将上下臂的串联电路150讲述为臂。各臂具备上臂侧开关元件328及二极管156、和下臂侧开关元件330及二极管166。
在本实施方式中,作为开关元件,例示了使用IGBT328及330的例子。IGBT328及330具备集电极153、163、发射极(信号用发射极端子155、165)、和栅极(栅极端子154、164)。如图所示,在IGBT328、330的集电极153、163和发射极之间并联地电连接有二极管156、166。二极管156、166具备阴极及阳极二个电极。以从IGBT328、330的发射极向集电极的方向为顺方向的方式,阴极分别电连接于IGBT328、330的集电极;阳极分别电连接于IGBT328、330的发射极。作为开关元件,也可以使用MOSFET(金属氧化物半导体型场效应晶体管)。在这种情况下,不需要二极管156及二极管166。
上下臂的串联电路150对应于向三相电动发电机192供给的交流电力的各相,各串联电路150、150、150用于在将IGBT328的发射极和IGBT330的集电极163连接的节点169上分别输出U相、V相、W相的交流电力。各相的上述节点169分别经由交流端子159和连接器188与电动发电机192的U相、V相、W相的电枢线圈(在同步电动机中,定子线圈)连接,向上述电枢线圈流动U相、V相、W相电流。上述上下臂的串联电路彼此电并联连接。上臂的IGBT328的集电极153经由直流汇流条并经由正极端子(P端子)157电连接于电容模块500的正极侧电容电极,下臂的IGBT330的发射极经由直流汇流条并经由负极端子(N端子)158电连接于电容模块500的负极侧电容电极。
电容模块500用于构成平滑电路,所述平滑电路抑制通过IGBT328、330的开关动作而产生的直流电压的波动。电容模块500的正极侧电容电极经由直流连接器138电连接有蓄电池136的正极侧;电容模块500的负极侧电容电极经由直流连接器138电连接有蓄电池136的负极侧。由此,电容模块500连接在上臂IGBT328的集电极153和蓄电池136的正极侧之间、和下臂IGBT330的发射极和蓄电池136的负极侧之间,相对于蓄电池136和上下臂的串联电路150电并联连接。
控制部170发挥控制将IGBT328、330导通及切断的动作的作用,控制部170具备控制电路172和驱动电路174,所述控制电路172基于来自另一控制装置及传感器等的输入信息,生成用于控制IGBT328、330的开关时刻的时刻信号;所述驱动电路174基于从控制电路172输出的时刻信号,生成用于使IGBT328、330进行开关动作的驱动信号。
控制电路172具备用于对IGBT328、330的开关时刻进行运算处理的微型计算机。作为输入信息,向该微型计算机输入对电动发电机192要求的目标转矩值、从上下臂的串联电路150向电动发电机192的电枢线圈供给的电流值、及电动发电机192的转子的磁极位置。目标转矩值是基于从未图示的上位控制装置输出的指令信号的转矩值。电流值是基于从电流传感器180输出的检测信号而检测到的值。磁极位置是基于从设于电动发电机192的旋转磁极传感器(未图示)输出的检测信号而检测到的位置。在本实施方式中,以检测三相电流值的情况为例进行说明,但也可以检测二相的电流值。
控制电路172内的微型计算机基于所输入的目标转矩值运算电动发电机192的d、q轴的电流指令值,基于该运算的d、q轴的电流指令值和检测到的d、q轴的电流值的差值,运算d、q轴的电压指令值,根据该d、q轴的电压指令值生成脉冲状的驱动信号。如后所述,控制电路172具有产生二种方式的驱动信号的功能。该二种方式的驱动信号基于电感负荷即电动发电机192的状态、或即将变换的交流电力的频率等而选择。
上述二种方式内的一种是基于即将输出的交流波形的相位控制开关元件即IGBT328、330的开关动作的调制方式(作为HM方式,后面进行叙述)。上述二种方式内的另一种是通常称为PWM(Pulse WidthModulation)的调制方式。
驱动电路174在驱动下臂的情况下,将脉冲状的调制波信号放大,且将此作为驱动信号输出到对应的下臂的IGBT330的栅极。另外,在驱动上臂的情况下,将脉冲状的调制波信号的基准电位电位移至上臂的基准电位电平以后,再将脉冲状的调制波信号放大,且将此作为驱动信号输出到对应的上臂的IGBT328的栅极。由此,各IGBT328、330基于所输入的驱动信号进行开关动作。这样,通过根据来自控制部170的驱动信号(驱动信号)进行的各IGBT328、330的开关动作,电力变换装置140将从直流电源即蓄电池136供给的电压变换为以电角度计按每2π/3rad错开的U相、V相、W相的各输出电压,供给于三相交流电动机即电动发电机192。另外,电角度对应于电动发电机192的旋转状态,具体而言,对应于转子的位置,在0~2π之间进行周期性的变化。通过将该电角度设为参数而使用,可以根据电动发电机192的旋转状态,确定各IGBT328、330的开关状态、即U相、V相、W相的各输出电压。
另外,控制部170进行异常检测(过电流、过电压、过温度等),保护上下臂的串联电路150。因此,在控制部170输入有传感信息。例如,从各臂的信号用发射极端子155、165流到各IGBT328、330的发射极的电流的信息输入到对应的驱动部(IC)。由此,各驱动部(IC)进行过电流检测,在检测到过电流的情况下,使对应的1GBT328、330的开关动作停止,从过电流方面保护对应的IGBT328、330。从设于上下臂的串联电路150的温度传感器(未图示)向微型计算机输入有上下臂的串联电路150的温度信息。另外,在微型计算机内输入有上下臂的串联电路150的直流正极侧的电压信息。微型计算机基于这些信息,进行过温度检测及过电压检测,在检测到过温度或过电压的情况下,使全部的IGBT328、330开关动作停止,从过温度或过电压方面保护上下臂的串联电路150,进而,保护包含该电路150的半导体模块。
在图2中,上下臂的串联电路150是上臂的IGBT328及上臂的二极管156、和下臂的IGBT330及下臂的二极管166的串联电路。IGBT328、330是开关用半导体元件。按一定顺序切换电源开关电路144的上下臂的IGBT328、330的导通及切断动作。该切换时的电动发电机192的定子线圈的电流在由二极管156、166构成的电路内流动。
如图所示,上下臂的串联电路150具备Positive端子(P端子、正极端子)157、Negative端子(N端子158、负极端子)、来自上下臂的节点169的交流端子159、上臂的信号用端子(信号用发射极端子)155、上臂的栅极端子154、下臂的信号用端子(信号用发射极端子)165、和下臂的栅极端子164。另外,电力变换装置200在输入侧具有直流连接器138,在输出侧具有交流连接器188,穿过各自的连接器138和188,分别连接于蓄电池136和电动发电机192连接。另外,作为产生向电动发电机输出的三相交流的各相输出的电路,也可以是将二个上下臂的串联电路并联连接于各相的电路构成的电力变换装置。
图3是表示旋转电机可以输出的最大转矩和旋转电机的转速的关系的曲线图。利用图3对电力变换装置140进行的控制模式的切换进行说明。电力变换装置140根据电动机即电动发电机192的转速、或输出的交流电力的频率,切换使用PWM控制方式和后述的HM控制方式。图3表示电力变换装置140的控制模式切换的情形。另外,切换控制模式的转速可任意变更。例如,在汽车从停止状态开始行驶的情况下,上述电动发电机192需要在停止状态产生较大的转矩。另外,为了显示出车辆的高档感,优选平稳地起步和加速。另一方面,在旋转停止时状态下,对应于要求的转矩进行PWM控制或斩波控制,控制转子向定子供给的交流电流。随着上述电动发电机192的转速上升,移至PWM控制。
在车辆的起步时及加速时,为了实现平稳的加速,优选减少供给于上述电动发电机192的交流电力的失真,以PWM控制方式控制电源开关电路144具有的开关元件的开关动作。下面说明的HM控制在电动发电机192的转速包含停止状态的超低速状态下,在控制性上存在问题,另外,处于交流电力波形的失真增大的倾向,通过与PWM控制方式的控制组合,或者,通过再加上斩波控制,可以弥补这种缺点。
在上述电动发电机192的低速运转状态下,可以供给的交流电流有限,进行抑制了最大产生转矩的控制。成为随着上述电动发电机192的转速增大而内部感应电压升高且电流的供给量减少的倾向。因此,上述电动发电机192的输出转矩变为转速一增大就降低的倾向。近年来,电动发电机所要求的最高转速处于进一步升高的倾向,有时希望达到超过每分钟1万5千转的速度,在中速及高速运转下,HM控制是有效的。
PWM方式的控制和HM控制的切换的电动发电机的转速不作特别限制,考虑例如,在700rpm以下的状态下,用PWM方式进行控制,在高于700rpm的转速下,进行HM控制。1500rpm~5000rpm的范围是非常适合HM方式控制的运转区域,在该区域,相对于PWM方式的控制而言,HM方式控制的开关元件的开关损失的降低效果显著。该运转区域是在市区行驶时易利用的运转区域,HM方式的控制在密切关系生活的运转区域发挥较好的效果。
在本实施例中,用PWM控制方式控制的模式(下面,称PWM控制模式)在电动发电机192的转速较低的区域使用,另一方面,在转速较高的区域,使用后述的HM控制模式。在PWM控制模式下,电力变换装置140进行利用如上所述的PWM信号的控制。即,利用控制电路172内的微型计算机,基于输入的目标转矩值,运算电动发电机192的d、q轴的电压指令值,将此变换为U相、V相、W相的电压指令值。而且,以各相的电压指令值相应的正弦波为基本波,将该基本波与载波即规定周期的三角波进行比较,将具有基于其比较结果确定的脉冲宽度度的脉冲状调制波输出到驱动电路174。通过将该调制波相应的驱动信号从驱动电路174向分别对应于各相的上下臂的IGBT328、330输出,从蓄电池136输出的直流电压被变换为三相交流电压,且向电动发电机192供给。
关于HM的内容,后面进行详细说明。在HM控制模式下,由控制电路172生成的调制波输出到驱动电路174。由此,该调制波相应的驱动信号从驱动电路174向各相的对应的IGBT328、330输出。其结果是,从蓄电池136输出的直流电压被变换为三相交流电压,向电动发电机192供给。
如电力变换装置140那样,在利用开关元件将直流电力变换为交流电力的情况下,当减少每单位时间或交流电力的每规定相位的开关次数时,就可以降低开关损失,另一方面,由于存在变换的交流电力大多包含谐波成分的倾向,因此转矩波动增大,电动机的控制响应性有可能变差。因此,在本发明中,如上所述,通过根据即将变换的交流电力的频率或与该频率有关的电动机的转速切换PWM控制模式和HM控制模式,在不易受低次谐波的影响的电动机旋转区域、即高速旋转区域,适用HM控制方式,在易产生转矩波动的低速旋转区域,适用PWM控制方式。这样就可以较低地抑制转矩波动的增大,可以降低开关损失。
另外,作为每单位时间或被输出的交流电力的每单位周期的开关次数成为最小的电动机的控制状态,具有供给于电动机的交流电力的每半周期开关一次各相的开关元件的矩形波的控制状态。在上述的HM控制方式中,该矩形波的控制状态可以设为随着变换的交流电力波形的调制度的增大而减少的每半周期的开关次数的最终状态,并可以当作HM控制方式的一个控制方式。后面对这点进行详细说明。
接着,为了说明HM控制方式,首先参照图4对PWM控制和矩形波控制进行说明。PWM控制的情况是基于一定频率的载波和即将输出的交流波形的大小比较确定开关元件的导通及切断的时刻且控制开关元件的方式。通过利用PWM控制,可以将波动小的交流电力供给到电动机,可进行转矩波动小的电动机控制。另一方面,由于每单位时间或交流波形的每周期的开关次数多,因此具有开关损失大的缺点。与此相对,作为一个极端的例子,在利用一个脉冲的矩形波控制开关元件的情况下,由于开关次数少,因此可以减少开关损失。另一方面,变换的交流波形当忽略电感负荷的影响时,成为矩形波状,相对于正弦波,可以看作是包含5次、7次、11次、…等谐波成分的状态。当将矩形波进行傅里叶展开时,除基本正弦波以外,呈现5次、7次、11次、…等谐波成分。该谐波成分产生成为转矩波动的原因的电流失真。这样,PWM控制和矩形波控制彼此处于配极关系。
图5表示在假定将开关元件的导通及切断控制成矩形波状时产生于交流电力的谐波成分的例子。图5(a)是将矩形波状地变化的交流波形分解成基本波即正弦波和5次、7次、11次、…等谐波成分的例子。图5(a)所示的矩形波的傅里叶级数展开表示为式(1)。
f(ωt)=4/π×{sinωt+(sin3ωt)/3+(sin5ωt)/5+(sin7ωt〕/7+…}····(1)
式(1)表示由4/π·(sinωt)所示的基本波之正弦波和这些谐波成分即3次、5次、7次…各成分形成图5(a)所示的矩形波。这样,可知通过相对于基本波合成更高次的谐波,接近矩形波。
图5(b)表示分别将基本波、3次谐波、5次谐波的各振幅进行比较的情形。当设图5(a)的矩形波的振幅为1时,基本波的振幅表达为1.27,3次谐波的振幅表达为0.42,5次谐波的振幅表达为0.25。这样,可知谐波的次数越高,其振幅就越小,因此矩形波控制的影响变小。特别是,谐波对旋转电机的影响是,次数低的5次谐波的影响较大。在此,次数最低的3次谐波在三相交流电动机中形成相互消除影响的作用,3的倍数的次数的谐波的影响不会成为障碍。因此,振幅大的5次谐波的影响较大。其次影响的谐波是7次谐波,再其次是11次谐波,依此类推。处于次数越高影响越小的倾向。但是,根据要控制的旋转电机的特性,有时7次谐波及11次谐波比5次谐波的影响还大。
从矩形波形状地导通及切断开关元件时有可能产生的转矩波动的观点出发,消除影响大的低次谐波成分,另一方面,对影响小的高次谐波成分,忽略其影响,通过包含这些谐波成分,可以实现开关损失小并且能够较低地抑制转矩波动增大的电力变换器。在本实施方式使用的HM控制中,通过将根据控制的状态对矩形波交流电流具有的谐波成分进行了某种程度消减的交流电力输出,由此,减小电动机控制的转矩波动的影响,另一方面,设为在使用上没有问题的范围内包含谐波成分的状态,来降低开关损失。如上所述,在该说明书中,将这种控制方式记述为HM控制方式。
另外,在下面的实施方式中,在输出了HM控制方式的谐波的影响大或控制性差的低频交流电力的状态下,使用PWM控制方式。具体而言,根据电动机的转速,切换PWM控制和HM控制,通过在转速低的区域使用PWM方式进行控制,在低速旋转区域和高速旋转区域的各区域,进行优选的电动机控制。
接着,对用于实现上述控制的控制电路172的构成进行说明。作为搭载于电力变换装置140的控制电路172的控制方法,对三种电动机控制方法进行说明。下面,将这三种电动机控制方法设为第一、第二、第三实施方式进行记述。另外,控制电路的基本动作利用通过程序进行动作的微型计算机来处理,但按每一功能将微型计算机的动作进行分解,会通俗易懂,因此通过图解为存在对应于功能的电路块的内容进行说明。
-第一实施方式-
图6表示将本发明第一实施方式的控制电路172的电动机控制系统的功能展开为功能块的方框图。从控制车辆的上位控制装置向控制电路172输入电动发电机192的控制指令、例如作为目标转矩值的转矩指令T*。转矩指令、电流指令变换器410基于所输入的转矩指令T*、和基于由旋转磁极传感器193检测到的磁极位置信号θ的转速信息,利用预存储的转矩-转速图的数据,求出d轴电流指令信号Id*及q轴电流指令信号Iq*。转矩指令、电流指令变换器410求出的d轴电流指令信号Id*及q轴电流指令信号Iq*分别输出到电流控制器(ACR)420、421。
电流控制器(ACR)420、421基于从转矩指令、电流指令变换器410输出的d轴电流指令信号Id*及q轴电流指令信号Iq*、和由电流传感器180检测到的电动发电机192的相电流检测信号lu、lv、lw在控制电路172上的未图示的三相二相变换器中通过来自旋转传感器的磁极位置信号在d、q轴上变换而成的Id、Iq电流信号,以在电动发电机192内流动的电流追随d轴电流指令信号Id*及q轴电流指令信号Iq*的方式,分别运算d轴电压指令信号Vd*及q轴电压指令信号Vq*。电流控制器(ACR)420求出的d轴电压指令信号Vd*及q轴电压指令信号Vq*输出到HM控制用的脉冲调制器430。另一方面,电流控制器(ACR)421求出的d轴电压指令信号Vd*及q轴电压指令信号Vq*输出到PWM控制用的脉冲调制器440。
HM控制用的脉冲调制器430由电压相位差运算器431、调制度运算器432、和脉冲生成器434构成。从电流控制器420输出的d轴电压指令信号Vd*及q轴电压指令信号Vq*在脉冲调制器430输入到电压相位差运算器431和调制度运算器432。
电压相位差运算器431计算出电动发电机192的磁极位置和d轴电压指令信号Vd*及q轴电压指令信号Vq*表示的电压相位的相位差、即电压相位差。当设该电压相位差为δ时,电压相位差δ用式(2)表示。
δ=arctan(-Vd*/Vq*)················(2)
电压相位差运算器431还通过上述的电压相位差δ加上来自旋转磁极传感器193的磁极位置信号θ表示的磁极位置的运算,计算出电压相位。然后,将算出的电压相位相应的电压相位信号θv输出到脉冲生成器434。当设磁极位置信号θ表示的磁极位置设为θe时,该电压相位信号θv用式(3)表示。
θv=δ+θe+π·····················(3)
调制度运算器432通过用蓄电池136的电压将d轴电压指令信号Vd*及q轴电压指令信号Vq*表示的矢量的大小标准化,计算出调制度,将其调制度相应的调制度信号a输出到脉冲生成器434。在该实施方式中,上述调制度信号a基于供给到图2所示的电源开关电路144的直流电压即蓄电池电压而定,有蓄电池电压越高调制度a就变得越小的倾向。另外,有指令值的振幅值越大调制度a就变得越大的倾向。具体而言,当设蓄电池电压为Vdc时,调制度信号a用式(4)表示。另外,式(4)中,Vd表示d轴电压指令信号Vd*的振幅值,Vq表示q轴电压指令信号Vq*的振幅值。
a = ( ( 2 / 3 ) ) ( ( Vd ^ 2 + Vq ^ 2 ) ) / ( Vdc / 2 ) . . . ( 4 )
脉冲生成器434基于来自电压相位差运算器431的电压相位信号θv、和来自调制度运算器432的调制度信号a,生成分别对应于构成逆变电路的U相、V相、W相的各上下臂的基于六种HM控制的脉冲信号。然后,将生成的脉冲信号输出到切换器450,从切换器450输出到驱动电路174(已用图2进行了说明),向构成逆变电路的各开关元件输出驱动信号。另外,后面对基于HM控制的脉冲信号(下记为HM脉冲信号)的产生方法进行详细说明。
另一方面,PWM控制用的脉冲调制器440基于从电流控制器421输出的d轴电压指令信号Vd*及q轴电压指令信号Vq*、和来自旋转磁极传感器193的磁极位置信号θ,通过众所周知的PWM方式,生成分别对应于U相、V相、W相的各上下臂的基于六种PWM控制的脉冲信号(下记为PWM脉冲信号)。然后,将生成的PWM脉冲信号输出到切换器450,从切换器450供给到驱动电路174,从驱动电路174(已用图2进行了说明)将驱动信号供给到构成逆变电路的各开关元件。
切换器450选择从HM控制用脉冲调制器430输出的HM脉冲信号或从PWM控制用脉冲调制器440输出的PWM脉冲信号中任一信号。如上所述,该切换器450的脉冲信号的选择根据电动发电机192的转速而进行。即,在电动发电机192的转速低于设定成切换线的规定阈值的情况下,通过选择PWM脉冲信号,在电力变换装置140应用PWM控制方式。另外,在电动发电机192的转速高于阈值的情况下,通过选择HM脉冲信号,在电力变换装置140应用HM控制方式。这样,切换器450选择的HM脉冲信号或PWM脉冲信号输出到驱动电路174。
如上所述,将HM脉冲信号或PWM脉冲信号作为调制波而从控制电路172向驱动电路174输出。根据该调制波,从驱动电路174向电源开关电路144的各IGBT328、330输出驱动信号。另外,如上所述,控制电路172是将由计算机程序执行的微型计算机的处理功能功能有别地方框图化的电路。
在此,对图6的脉冲生成器434的详细情况进行说明。例如,如图7所示,脉冲生成器434通过相位搜索器435和计时计数比较器436来实现。相位搜索器435基于来自电压相位差运算器431的电压相位信号θv、和基于来自调制度运算器432的调制度信号a及磁极位置信号θ的转速信息,从预存储的开关脉冲的相位信息图表,关于U相、V相、W相的上下各臂,搜索要输出开关脉冲的相位,将其搜索结果的信息输出到计时计数比较器436。计时计数比较器436基于从相位搜索器435输出的搜索结果,分别生成作为对U相、V相、W相的上下各臂的开关指令的HM脉冲信号。如上所述,由计时计数比较器436生成的相对于各相的上下各臂的六种HM脉冲信号输出到切换器450。
图8是表示对图7的相位搜索器435及计时计数比较器436的脉冲生成的顺序进行详细说明的流程图。相位搜索器435,在步骤801中,将调制度信号a作为输入信号而输入,在步骤802中,将电压相位信号θv作为输入信号而输入。接着,在步骤803中,相位搜索器435基于所输入的当时的电压相位信号θv,考虑控制滞后时间和转速,运算对应于下一控制周期的电压相位的范围。其后,在步骤804中,相位搜索器435进行ROM搜索。在该ROM搜索中,基于所输入的调制度信号a,在步骤803中运算的电压相位的范围内,从预存储于ROM(未图示)的图表,搜索开关的开和关的相位。
相位搜索器435在步骤805中将由步骤804的ROM搜索得到的开关的开和关的相位信息输出到计时计数比较器436。计时计数比较器436在步骤806中将该相位信息变换为时间信息,利用与计时计数的比较匹配功能,生成HM脉冲信号。另外,将相位信息变换为时间信息的过程利用转速信号信息。或者,也可以在步骤806中,利用与相位计数的比较匹配功能,将由步骤804的ROM搜索得到的开关的开和关的相位信息生成HM脉冲。
计时计数比较器436在下一步骤807中将步骤806中生成的HM脉冲信号输出到切换器450。通过如上所述的步骤801~807的处理在相位搜索器435及计时计数比较器436中进行,在脉冲生成器434中生成HM脉冲信号。
或者,也可以恢复图8的流程图,通过在脉冲生成器434中执行图9的流程图所示的处理,进行脉冲生成。该处理不使用如图8的流程图所示利用预存储的图表搜索开关相位的图表搜索方式,而是按电流控制器(ACR)的每一控制周期生成开关相位的方式。
脉冲生成器434在步骤801中输入调制度信号a,在步骤802中,输入电压相位信号θv。接着,在步骤820中,脉冲生成器434基于所输入的调制度信号a及电压相位信号θv,考虑控制滞后时间和转速,按电流控制器(ACR)的每一控制周期确定开关的开和关的相位。
图10的流程图表示步骤820的开关相位的确定处理的详细内容。在步骤821中,脉冲生成器434基于转速指定要消除的谐波次数。按照这样指定的谐波次数,接着在步骤822中,脉冲生成器434进行矩阵运算等处理,在步骤823中,输出脉冲基准角度。
步骤821~823的脉冲生成过程按照下面的式(5)~(8)所示的行列式进行运算。
在此,作为一个例子,以消除3次、5次、7次成分的情况为例。
脉冲生成器434当在步骤821中指定3次、5次、7次的谐波成分作为要消除的谐波次数时,在下面的步骤822中,进行矩阵运算。
在此,对3次、5次、7次的消除次数,制作如式(5)那样的行矢量。
[s1 s2 s3]=π/2[k1/3 k2/5 k3/7]
…(5)
式(5)的右边括弧内的各要素为k1/3、k2/5、k3/7。k1、k2、k3可以选择任意奇数。但是,不可选择k1=3、9、15;k2=5、15、25;k3=7、21、35等。在该条件下,3次、5次、7次成分被完全消除。
当更通常地记述上述时,通过设分母值为要消除的谐波次数,且设分子值为分母的奇数倍以外的任意奇数,可以确定式(5)的各要素值。在此,在式(5)的例子中,由于消除次数为三种(3次、5次、7次),因此将行矢量的要素数设为三个。同样地,对N种消除次数设定要素数N的行矢量,可以确定各要素的值。
另外,在式(5)中,取而代之,通过将各要素的分子和分母的值设为上述以外的值,来消除谐波成分,也可以将其频谱整形。因此,并非以谐波成分的消除而是以频谱整形为主要目的,任意选择各要素的分子和分母的值。在这种情况下,分子和分母的值不必是整数,作为分子值,不可选择分母的奇数倍。另外,分子和分母的值不必是常数,也可以是随时间变化的值。
如上所述,在用分母和分子的组合确定其值的要素为三个的情况下,如式(5)所示,可以设定三列矢量。同样地,可以设定用分母和分子的组合确定其值的要素数N的矢量、即N列矢量。在下述中,将该N列矢量称为谐波基准相位矢量。
在谐波基准相位矢量如式(5)所示为3列矢量的情况下,将其谐波基准相位矢量转置,进行式(6)的运算。其结果是,可以得到S1~S4的脉冲基准角度。
脉冲基准角度S1~S4是表示电压脉冲的中心位置的参数,且是与后述的三角载波进行比较的参数。这样,在脉冲基准角度为4个(S1~S4)的情况下,通常,线间电压每一周期的脉冲数为16个。
S 1 S 2 S 3 S 4 = { 2 1 0 0 1 0 1 1 1 0 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 } x 1 x 2 x 3 . . . ( 6 )
另外,代替式(5),如式(7)所示,在谐波基准相位矢量为4列的情况下,实施矩阵运算式(8)。
[s1 s2 s3 s4]=π/2[k1/3 k2/5k 3/7k4/11]
…(7)
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 = { 2 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 } x 1 x 2 x 3 x 4 . . . ( 8 )
其结果是,可以得到S1~S8的脉冲基准角度输出。此时,线间电压每一周期的脉冲数为32个。
要消除的谐波成分数和脉冲数的关系通常如下所述。即,在要消除的谐波成分为2个的情况下,线间电压每一周期的脉冲数为8个脉冲,在要消除的谐波成分为3个的情况下,线间电压每一周期的脉冲数为16个脉冲,在要消除的谐波成分为4个的情况下,线间电压每一周期的脉冲数为32个脉冲,在要消除的谐波成分为5个的情况下,线间电压每一周期的脉冲数为64个脉冲。同样地,随着要消除的谐波成分数增加一个,线间电压每一周期的脉冲数变成2倍。
但是,在线间电压且正脉冲和负脉冲重叠那样的脉冲配置的情况下,脉冲数有时与上述不同。
如上所述,通过脉冲生成器434生成的HM脉冲信号,在UV线间电压、VW线间电压、WU线间电压的三种线间电压中,分别形成脉冲波形。这些各线间电压的脉冲波形分别是具有2π/3的相位差的同一脉冲波形。因此,在下述中,以各线间电压为代表,仅对UV线间电压进行说明。
在此,在UV线间电压的基准相位θuv1和电压相位信号θv及磁极位置θe之间具有式(9)的关系。
θuv1=θv+π/6=θe+δ+7π/6[rad]···············(9)
式(9)表示的UV线间电压的波形是,以θuv1=π/2、3π/2的位置为中心呈线对称,且,以θuv1=0、π的位置为中心呈点对称。因此,UV线间电压脉冲的一个周期(θuv1为0~2π)的波形可以通过以θuv1为0~π/2之间的脉冲波形为基础且将此每π/2左右对称或上下对称地配置来表达。
实现该波形的一个方法为如下算法,即,将0≤θuv1≤π/2的范围的UV线间电压脉冲的中心相位与四波道的相位计数值进行比较,基于其比较结果,在一周期、即0≤θuv1≤2π的范围内,生成UV线间电压脉冲。图11表示其概念图。
图11是表示0≤θuv1≤π/2范围的线间电压脉冲为四个的情况的例子。在图11中,脉冲基准角度S1~S4表示其四个脉冲的中心相位。
carr1(θuv1)、carr2(θuv1)、carr3(θuv1)、carr4(θuv1)表示四个波道的各相位计数值。这些各相位计数都是相对于基准相位θuv1具有2πrad周期的三角波。另外,carr1(θuv1)和carr2(θuv1)在振幅方向具有dθ偏差,carr3(θuv1)和carr4(θuv1)的关系也同样。
dθ表示线间电压脉冲的宽度。基本波的振幅相对于该脉冲宽度dθ进行线性变化。
线间电压脉冲形成于各相位计数值carr1(θuv1)、carr2(θuv1)、carr3(θuv1)、carr4(θuv1)和表示0≤θuv1≤π/2范围的脉冲的中心相位的脉冲基准角度S1~S4的各交点。由此,生成每90度对称的波形的脉冲信号。
更详细而言,在carr1(θuv1)、carr2(θuv1)和S1~S4分别一致的点上,生成具有正振幅且宽度为dθ的脉冲。另一方面,在carr3(θuv1)、carr4(θuv1)和S1~S4分别一致的点上,生成具有负振幅且宽度为dθ的脉冲。
图12是表示按每一调制度画有利用如上所述的方法生成的线间电压的波形的一个例子。在图12中表示了如下的例子,即,作为式(5)的k1、k2、k3的值,分别选择k1=1、k2=1、k3=3,使调制度从0变化到1.0时的线间电压脉冲波形。由图12可知,脉冲宽度与调制度的增加大致成正比地增加。这样,通过使脉冲宽度增加,可以使电压的实效值增加。但是,θuv1=0、π、2π附近的脉冲在调制度为0.4以上时,即使调制度变化,脉冲宽度也不变化。这种现象是由于具有正振幅的脉冲和具有负振幅的脉冲重合而产生的。
如上所述,在上述实施方式中,通过从驱动电路174将驱动信号送到电源开关电路144的各开关元件,各开关元件基于即将输出的交流电力的相位进行开关动作。交流电力的一周期的开关元件的开关次数成为即将除去的谐波的种类越多开关次数越多的倾向。在此,在输出向三相交流的旋转电机供给的三相交流电力的情况下,3的倍数的高次谐波会相互消除,因此也可以不包含于即将除去的谐波。
另外,从另一观点看,当供给的直流电力的电压下降时,调制度就增加,成为导通的各开关动作的导通时间延长的倾向。另外,在驱动电动机等旋转电机时加大旋转电机的产生转矩的情况下,调制度增大,结果是各开关动作的导通时间延长,在减小旋转电机的产生转矩的情况下,各开关动作的导通时间缩短。在导通时间延长且切断时间缩短的情况下,即在开关间隔某种程度缩短的情况下,有可能不能安全地切断开关元件,在那种情况下,进行不使其切断而在导通状态下延续导通时间的控制。
另外,从另一观点看,在被输出的交流电力的失真影响大的频率低的状态下,特别是在旋转电机处于停止状态或转速非常低的状态下,并非以HM方式的控制而是以利用一定周期的载波的PWM方式控制电源开关电路144,在转速增大后的状态下,切换为HM方式,控制电源开关电路144。在将本发明应用于汽车驱动用电力变换装置的情况下,在车从停止状态起步加速的阶段,因影响车的高档感等理由而特别优选减少转矩波动的影响。因此,至少在车从停止状态到起步的状态,以PWM方式控制电源开关电路144,在某种程度加速之后,切换为MH方式的控制。这样,至少在起步时可以实现转矩波动小的控制,至少在通常的运转即匀速行驶的状态下,可用开关损失小的HM方式进行控制,可以实现抑制转矩波动的影响且损失小的控制。
根据本发明使用的HM脉冲信号,特征为,如上所述,在固定了调制度时,除例外的情况以外,形成脉冲宽度相等的脉冲列的线间电压波形。另外,如上所述,线间电压的脉冲宽度例外地与其他脉冲列不相等的情况是具有正振幅的脉冲和具有负振幅的脉冲重叠的情况。在这种情况下,当将脉冲重叠的部分分解为具有正振幅的脉冲和具有负振幅的脉冲时,脉冲宽度在整个区域内必定相等。即,调制度因脉冲宽度的变化而变化。
在此,进一步利用图13对线间电压的脉冲宽度例外地与其他脉冲列不相等的情况进行详细说明。图13的上部表示的是图12中调制度为1.0时的线间电压脉冲波形中、扩大了π/2≤θuv1≤3π/2的范围的波形。在该线间电压脉冲波形中,中心附近的两个脉冲具有与其他脉冲不同的脉冲宽度。
图13的下部表示的是将这样的脉冲宽度与其他不同的部分分解后的情形。由该图可知,在该部分,分别具有与其他脉冲相同的脉冲宽度的具有正振幅的脉冲和具有负振幅的脉冲重叠,通过这些脉冲合成,形成与其他不同的脉冲宽度的脉冲。即,可知,通过这样分解脉冲的重叠部分,根据HM脉冲信号而形成的线间电压的脉冲波形由具有一定的脉冲宽度的脉冲构成。
图14表示由本发明生成的HM脉冲信号的线间电压脉冲波形的另一例。在此表示了如下的例子,即,作为式(5)的k1、k2、k3的值,分别选择k1=1、k2=1、k3=5,使调制度从0变化到1.27时的线间电压脉冲波形。在图14中,当调制度达到1.17以上时,在θuv1=π/2、3π/2的位置,彼此邻接的左右对称的两个脉冲间的间隙消失。因此,可知在调制度不足1.17的范围内,可以消除作为目标的谐波成分,但在调制度为其以上时,不能有效地消除谐波成分。另外,当逐渐增大调制度时,即使在其他位置,邻接的脉冲间的间隙也消失,最终在调制度为1.27时成为矩形波的线间电压脉冲波形。当加大调制度时,输出的电力的峰值增大,且输出电力增大。当电动发电机的指令值即目标转矩及目标转速增大时,调制度增大。当调制度增大时,可以产生峰值比供给的直流电源的电压高的交流输出,在矩形波控制中,以理论值计,可产生直流电源电压的1.27倍的峰值的交流电压。如图14所示,通过变换调制度,可以连续地变换到最大的、直流电源电压的1.27倍的峰值。
图15表示的是用对应的相电压脉冲波形表示图14所示的线间电压脉冲波形的例子。以图14及图15为首,在本说明书中,脉冲是表示逆变电路的导通期间,且在该期间,从直流电源向旋转电机等负荷供给电流。图15也与图14同样地,可知当调制度达到1.17以上时,邻接的两个脉冲间的间隙消失。另外,在图15的相电压脉冲波形和图14的线间电压脉冲波形之间具有π/6的相位差。如该图14及图15所示,当调制度增大时,由逆变电路切断直流电源和负荷的期间即逆变电路的非导通期间缩短。在该例子中,在调制度为1.17以上时,如图的虚线所示,逆变电路的非导通期间缩短,逆变电路具有的开关元件不可能执行切断动作。在这种情况下,继续导通动作。因此,随着调制度增大,半循环内的切断期间的次数减少,最终,在半循环内一次导通的矩形波成为控制模式。
接着,对将线间电压脉冲变换为相电压脉冲的方法进行说明。图16是表示从线间电压脉冲向相电压脉冲的变换中使用的变换表的例子。在该表中,左端列记载的1~6的各模式按每一取得的开关状态配有号码。在模式1~6中,从线间电压向输出电压的关系规定为1对1。这些各模式对应于在直流侧和三相交流侧之间具有能量交换的有效时间。另外,图16的表中记载的线间电压是用蓄电池电压Vdc将作为不同的相的电位差取得的波形标准化整理而成的。
图16表示保持于存储器的、控制中使用的相和线间的脉冲即相和线间的导通状态。在图16中,例如,在模式1中,表示了Vuv→1、Vvw→0、Vu→-1,这是将成为Vu-Vv=Vdc、Vv-Vw=0、Vw-Vu=-Vdc的情况标准化而表示的。根据图16的表,此时的相电压即相端子电压(与栅极电压成正比)成为Vu→1(将U相的上臂导通、将下臂切断)、Vv→0(将V相的上臂切断、将下臂导通)、Vw→0(将W相的上臂切断、将下臂导通)。即,在图16的表中,是将成为Vu=Vdc、Vv=0、Vw=0的情况标准化而表示的。用与模式1同样的思考方法,模式2~6也成立。
图17表示的是利用图16的变换表将以矩形波的状态控制电源开关电路144的模式的线间电压脉冲变换为相电压脉冲的例子。在图17中,上部作为线间电压的代表例表示了UV线间电压Vuv,其下方表示的是U相端子电压Vu、V相端子电压Vv、W相端子电压Vw。如图17所示,在矩形波控制模式中,图16的变换表所示的模式从1依次变化到6。另外,在矩形波控制模式中,不存在后述的三相短路期间。
图18表示按照图16的变换表将图12例示的线间电压脉冲波形变换为相电压脉冲的情形。在图18中,上部作为线间电压的代表例表示了UV线间电压脉冲,其下方表示的是U相端子电压Vu、V相端子电压Vv、W相端子电压Vw。
图18的上部表示的是模式(在直流侧和三相交流侧之间具有能量交换的有效期间)的号码、及成为三相短路的期间。表示的是在三相短路期间使三相的上臂全部导通、或使三相的下臂全部导通的任一种,但只要根据开关损失及导通损失的状况选择某一种开关模式即可。
例如,在UV线间电压Vuv为1时,U相端子电压Vu为1,V相端子电压Vv为0(模式1、6)。在UV线间电压Vuv为0时,U相端子电压Vu和V相端子电压Vv为同一值、即Vu为1且Vv为1(模式2、三相短路)、或Vu为0且Vv为0(模式5、三相短路)的任一种。在UV线间电压Vuv为-1时,U相端子电压Vu为0,V相端子电压Vv为1(模式3、4)。基于这种关系,生成相电压即相端子电压的各脉冲(栅极电压脉冲)。
在图18中,线间电压脉冲和各相的相端子电压脉冲的波形是相对于相位θuv1以π/3为最小单位而准周期性地反复的波形。即,使0≤θuv1≤π/3期间的U相端子电压的1和0反相后的波形与π/3≤θuv1≤2π/3的W相端子电压的波形相同。另外,使0≤θuv1≤π/3期间的V相端子电压的1和0反相后的波形与π/3≤θuv1≤2π/3的U相端子电压的波形相同,使0≤θuv1≤π/3期间的W相端子电压的1和0反相的波形与π/3≤θuv1≤2π/3的V相端子电压的波形相同。在电动机的转速和输出一定的正常状态下,这种特征表现得特别显著。
在此,将上述的模式1~6定义为在不同的相上使上臂用的IGBT328和下臂用的IGBT330分别导通而从直流电源即蓄电池136向电动发电机192供给电流的第一期间。另外,将三相短路期间定义为在全部相上使上臂用的IGBT328或下臂用的IGBT330任一方导通而用蓄积于电动发电机192的能量维持转矩的第二期间。在图18所示的例子中,可知根据电角度交替地形成有这两个第一期间和第二期间。
另外,在图18中,例如,在0≤θuv1≤π/3期间,使作为第一期间的模式6及5在作为第二期间的三相短路期间夹在其间而交替地反复。在此,由图16可知,在模式6中,在V相上使下臂用的IGBT330导通,另一方面,在另外的U相、W相上,使与V相不同的一侧、即上臂用的IGBT328导通。另一方面,在模式5中,在W相上使上臂用的IGBT328导通,另一方面,在另外的U相、V相上,使与W相不同的一侧、即下臂用的IGBT330导通。即,在第一期间内,选择U相、V相、W相中任一相(在模式6中,为V相;在模式5中,为W相),关于所选择的一相,使上臂用的IGBT328或下臂用的IGBT330导通,并且关于另外的二相(在模式6中,为U相及W相;在模式5中,为U相及V相),使与所选择的一相不同的一侧的臂用的IGBT328、330导通。另外,按每在第一期间,交替地选择一相(V相、W相)。
在0≤θuv1≤π/3以外的期间,与上述同样地,使作为第一期间的模式1~6的任一模式在作为第二期间的三相短路期间夹在其间而交替地反复。即,在π/3≤θuv1≤2π/3期间,使模式1及6交替地反复;在2π/3≤θuv1≤π期间,使模式2及1交替地反复;在π≤θuv1≤4π/3期间,使模式3及2交替地反复;在4π/3≤θuv1≤5π期间,使模式4及3交替地反复;在5π/3≤θuv1≤2π期间,使模式5及4交替地反复。由此,与上述同样地,在第一期间内,选择U相、V相、W相中的任一相,关于所选择的一相,使上臂用的IGBT328或下臂用的IGBT330导通,并且,关于另外的二相,使与所选择的一相不同的一侧的臂用的IGBT328、330导通,另外,按每第一期间,交替地选择一相。
但是,形成上述的第一期间即模式1~6的时间的电角度位置和该时间的长度可以随着对电动发电机192的转矩及转速等要求指令而变化。即,如上所述,为了使要消除的谐波的次数随着电动机的转速及转矩的变化而变化,使形成第一期间的特定的电角度位置变化。或者,随着电动机的转速及转矩的变化,使第一期间的长度即脉冲宽度变化,且使调制度变化。由此,使在电动机内流动的交流电流的波形、更具体而言交流电流的谐波成分变化为期望值,通过该变化,可以控制从蓄电池136供给到电动发电机192的电力。另外,特定的电角度位置和第一期间的长度,既可以仅使任一方变化,也可以使双方同时变化。
在此,在脉冲的形状和电压上存在下面的关系。未图示的脉冲的宽度具有使电压的实效值变化的效果,在线间电压的脉冲宽度大时,电压的实效值大,在线间电压的脉冲宽度小时,电压的实效值小。另外,在要消除的谐波的个数少的情况下,电压的实效值高,因此调制度的上限接近矩形波。该效果在旋转电机(电动发电机192〕进行高速旋转时是有效的,可以使其超出以通常的PWM控制时的输出的上限而输出。即,通过使从直流电源即蓄电池136向电动发电机192供给电力的第一期间的长度、和形成该第一期间的特定的电角度位置变化,可以使附加于电动发电机192的交流电压的实效值变化,可以得到电动发电机192的旋转状态相应的输出。
另外,就U相、V相及W相的各相而言,图18所示的驱动信号的脉冲形状以任意的θuv1即电角度为中心呈左右非对称。另外,脉冲的导通期间或切断期间中至少一方包含以θuv1(电角度)计横跨π/3以上而连续的期间。例如,在U相上具有以θuv1=π/2附近为中心在前后分别为π/6以上的导通期间、和以θuv1=3π/2附近为中心在前后分别为π/6以上的切断期间。同样地,在V相上具有以θuv1=π/6附近为中心在前后分别为π/6以上的切断期间、和以θuv1=7π/6附近为中心在前后分别为π/6以上的导通期间,在W相上具有以θuv1=5π/6附近为中心在前后分别为π/6以上的切断期间、和以θuv1=11π/6附近为中心在前后分别为π/6以上的导通期间。具有这种脉冲形状的特征。
如上所述,根据本实施方式的电力变换装置,在选择了HM控制模式时,在电角度相应的特定时刻,交替地产生从直流电源向电动机供给电力的第一期间、和使三相全桥的全相上臂导通或全相下臂导通的第二期间。由此,与选择了PWM控制模式的情况相比,开关的频度可以从1/7下降到1/10以下。因此,能够降低开关损失。此外,也能够减轻EMC(电磁噪音)。
接着,对如图14所示使调制度变化时的线间电压脉冲波形的谐波成分的消除的情形进行说明。图19是表示使调制度变化时的线间电压脉冲的基本波和消除对象的谐波成分的振幅的大小的图。
图19(a)表示的是以3次及5次谐波为消除对象的线间电压脉冲的基本波和各谐波的振幅的例子。由该图可知,在调制度为1.2以上的范围内,呈现出不能彻底消除5次谐波。图19(b)表示的是以3次、5次及7次谐波为消除对象的线间电压脉冲的基本波和各谐波的振幅的例子。由该图可知,在调制度为1.17以上的范围内,呈现出不能彻底消除5次及7次谐波。
另外,图20、21分别表示的是对应于图19(a)的线间电压脉冲波形和相电压脉冲波形的例子。在此表示的是,设定要素数为2的行矢量,作为各要素(k1/3、k2/5)的k1、k2的值,分别选择k1=1、k2=3,使调制度从0变化到1.27时的线间电压脉冲波形和相电压波形的例子。另外,图19(b)对应于图14、15分别表示的线间电压脉冲波形和相电压脉冲波形。
由上述的说明可知,当调制度超过某规定值时,开始呈现出不能彻底消除作为消除对象的谐波。另外可知,作为消除对象的谐波的种类(数)越多,越不能在低的调制度下彻底消除谐波。
接着,参照图44及图22对图6所示的PWM控制用的脉冲调制器440的PWM脉冲信号的生成方法进行说明。图44是表示PWM控制用的脉冲调制器440的构成的图。PWM控制用脉冲调制器440具有:接受d轴电压指令及q轴指令电压且将两轴的指令电压变换为三相电压指令信号的二相三相变换器490、产生特定频率的三角载波的载波产生器492、和将三相电压指令信号和三角载波进行比较且将各相的开关元件的导通或切断的脉冲信号输出到驱动电路的比较电路491。图22(a)表示U相、V相、W相各相的电压指令信号和PWM脉冲的生成使用的三角载波的波形。各相的电压指令信号是使相位相互错开2π/3的正弦波的指令信号,振幅随着调制度而变化。就U、V、W各相而言,分别将该电压指令信号和三角载波信号进行比较,通过将两者的交点设为脉冲通断的时刻,生成相对于图22(b)、(c)、(d)分别表示的U相、V相、W相各相的电压脉冲波形。另外,这些脉冲波形的脉冲数都与三角载波的三角波脉冲数相等。
图22(e)表示UV线间电压的波形。该脉冲数与三角载波的三角波脉冲数的2倍、即上述的电压脉冲波形相对于各相的脉冲数的2倍相等。另外,其他线间电压、即VW线间电压及WU线间电压也同样。
图23表示按每一调制度画有由PWM脉冲信号形成的线间电压的波形的一个例子。在此表示的是使调制度从0变化到1.27时的线间电压脉冲波形的例子。在图23中,当调制度为1.17以上时,相互邻接的二个脉冲间的间隙消失,合成一个脉冲。这种脉冲信号被称为过调制PWM脉冲。最终,在调制度为1.27时,成为矩形波的线间电压脉冲波形。
图24表示的是用对应的相电压脉冲波形表示图23所示的线间电压脉冲波形的例子。图24也与图23同样地,可知,当调制度为1.17以上时,邻接的二个脉冲间的间隙消失。另外,在图24的相电压脉冲波形和图23的线间电压脉冲波形之间存在π/6的相位差。
在此,将HM脉冲信号的线间电压脉冲波形和PWM脉冲信号的线间电压脉冲波形进行比较。图25(a)表示HM脉冲信号的线间电压脉冲波形的一个例子。这相当于图12中调制度0.4的线间电压脉冲波形。另一方面,图25(b)表示PWM脉冲信号的线间电压脉冲波形的一个例子。这相当于图23中调制度0.4的线间电压脉冲波形。
当就脉冲数而言将图25(a)和图25(b)进行比较时,可知,与图25(b)所示的PWM脉冲信号的线间电压脉冲波形相比,图25(a)所示的HM脉冲信号的线间电压脉冲波形的脉冲数相当地少。因此,当使用HM脉冲信号时,生成的线间电压脉冲数少,因此与PWM信号的情况相比,控制响应性下降,但与使用PWM信号的情况相比,能够大幅度地减少开关次数。其结果是,能够大幅度地降低开关损失。
图26表示通过切换器450的切换动作且根据电动机转速切换PWM控制模式和HM控制模式时的情形。在此表示的是在θuv1=π时通过将切换器450的选择端从PWM脉冲信号切换到HM脉冲信号而将控制模式从PWM控制模式切换到HM控制模式时的线间电压脉冲波形的例子。
接着,参照图27对PWM控制和HM控制的脉冲形状的差别进行说明。图27(a)表示PWM脉冲信号的生成所使用的三角载波、和由该PWM脉冲信号生成的U相电压、V相电压及UV线间电压。图27(b)表示由HM脉冲信号生成的U相电压、V相电压及UV线间电压。当将这些图进行比较时,可知,在使用PWM脉冲信号的情况下,UV线间电压的各脉冲的脉冲宽度不一定,与此相对,在使用HM脉冲信号的情况下,UV线间电压的各脉冲的脉冲宽度一定。另外,如上所述,脉冲宽度有时也不一定,这是因具有正振幅的脉冲和具有负振幅的脉冲重叠而造成的,如果分解脉冲的重叠部分,则全部脉冲都成为相同的脉冲宽度。另外可知,在使用PWM脉冲信号的情况下,三角载波无论电动机转速如何波动是一定的,因此UV线间电压的各脉冲的间隔也无论电动机转速如何是一定的,与此相对,在使用HM脉冲信号的情况下,UV线间电压的各脉冲的间隔随着电动机转速而变化。
图28表示电动机转速和HM脉冲信号的线间电压脉冲波形的关系。图28(a)表示规定的电动机转速的HM脉冲信号的线间电压脉冲波形的一个例子。这相当于图12中调制度为0.4的线间电压脉冲波形,每电角度(UV线间电压的基准相位θuv1)2π具有16个脉冲。
图28(b)表示图28(a)的使电动机转速成为2倍时的HM脉冲信号的线间电压脉冲波形的一个例子。另外,图28(b)的横轴的长度对时间轴而言与图28(a)等效。当将图28(a)和图28(b)进行比较时,每电角度2π的脉冲数没有变化仍然为16个脉冲,但同一时间内的脉冲数在图28(b)中成为2倍。
图28(c)表示图28(a)的使电动机转速成为1/2倍时的HM脉冲信号的线间电压脉冲波形的一个例子。另外,图28(c)的横轴的长度也与图28(b〕同样地对时间轴而言与图28(a)等效。当将图28(a)和图28(c)进行比较时,可知,在图28(c)中,每电角度π的脉冲数为8个脉冲,因此在每电角度2π的脉冲数中,没有变化仍然为16个脉冲,但同一时间内的脉冲数在图28(c)中成为1/2倍。
如上所述,在使用HM脉冲信号的情况下,线间电压脉冲的每单位时间的脉冲数与电动机转速成正比地变化。即,当考虑每电角度2π的脉冲数时,该脉冲数无论电动机转速如何是一定的。另一方面,在使用PWM脉冲信号的情况下,如用图27所述,无论电动机转速如何,线间电压脉冲的脉冲数是一定的。即,当考虑每电角度2π的脉冲数时,该脉冲数随着电动机转速上升而下降。
图29表示在HM控制和PWM控制中分别生成的每电角度2π(即,线间电压每一周期)的线间电压脉冲数、和电动机转速的关系。另外,图29表示的是,使用8极电动机(极对数为4),在HM控制中,将作为消除对象的谐波成分设为3、5、7次三个,将正弦波PWM控制使用的三角载波的频率设为10kHz时的例子。这样可知,每电角度2π的线间电压脉冲数,在PWM控制时,电动机转速越上升越减少,与此相对,在HM控制时,无论电动机转速如何是一定的。另外,PWM控制的线间电压脉冲数可以用式(10)求出。
(线间电压脉冲数)
=(三角载波的频率)/{(极对数)×(电动机转速)/60}×2
……(10)
另外,图29是表示在HM控制中将作为消除对象的谐波成分设为三个时的线间电压每一周期的线间电压脉冲数为16个的图,如上所述,该值随着作为消除对象的谐波成分数而变化。即,以在消除对象即谐波成分为二个时脉冲数为8个、消除对象即谐波成分为4个时脉冲数为32、消除对象即谐波成分为5个时脉冲数为64个的方式,随着作为削除对象的谐波成分数增加一个,线间电压每一周期的脉冲数变成2倍。
图30表示的是以上说明的第一实施方式的由控制电路172进行的电动机控制的流程图。在步骤901中,控制电路172取得电动机的转速信息。该转速信息基于从旋转磁极传感器193输出的磁极位置信号θ而求出。
在步骤902中,控制电路172基于步骤901取得的转速信息,判定电动机转速是否为规定的切换转速以上。如果电动机转速为切换转速以上,则移至步骤903,如果不足切换转速,则移至步骤906。
在步骤S903中,控制电路172基于步骤901取得的转速信息,判定电动发电机192是否在进行高速旋转。在电动发电机192正在进行高速旋转的情况下,即,在电动机转速为规定转速以上的情况下,移至步骤907,如果不是那样,则移至步骤904。
在步骤904中,控制电路172在HM控制中确定作为消除对象的谐波的次数。在此,如上所述,可以确定3次、5次、7次等谐波为消除对象。另外,也可以根据电动机转速,使作为削除对象的谐波数变化。例如,在电动机转速比较低的情况下,以3次、5次及7次谐波为消除对象,在电动机转速比较高的情况下,以3次及5次谐波为消除对象。这样,通过电动机转速越高越减少作为消除对象的谐波数,可以在不易受谐波造成的转矩波动影响的高速旋转区域减少HM脉冲信号的脉冲数,可以进一步高效地减少开关损失。
在步骤905中,控制电路172进行以步骤904确定的次数的谐波为消除对象的HM控制。这时,按照如上所述的生成方法,由脉冲调制器430生成消除对象谐波的次数相应的HM脉冲信号,并且其HM脉冲信号由切换器450来选择,然后从控制电路172输出到驱动电路174。如果执行了步骤905,则控制电路172返回到步骤901,反复如上所述的处理。
在步骤906中,控制电路172进行PWM控制。这时,基于规定的三角载波和电压指令信号的比较结果,利用如上所述的生成方法,在脉冲调制器440中生成PWM脉冲信号,并且其PWM脉冲信号由切换器450来选择,然后从控制电路172输出到驱动电路174。如果执行了步骤906,则控制电路172返回到步骤901,反复如上所述的处理。
在步骤907中,控制电路172进行矩形波控制。如上所述,矩形波控制可以认为是HM控制的一个方式、即在HM控制中使调制度成为最大的方式。在矩形波控制中,不能消除谐波,但可以使开关次数最少。另外,与HM控制的情况同样,矩形波控制所使用的脉冲信号可以由脉冲调制器430生成。该脉冲信号由切换器450来选择,然后从控制电路172输出到驱动电路174。如果执行了步骤907,则控制电路172返回到901,反复如上所述的处理。
根据以上说明的第一实施方式,可以实现上述的作用效果,另外,还可以实现下述的作用效果。
(1)电力变换装置140具备:具备上臂用及下臂用的IGBT328、330的三相全桥式电源开关电路144、向各相的IGBT328、330输出驱动信号的控制部170,通过驱动信号相应的IGBT328、330的开关动作,将从蓄电池136供给的电压变换为以电角度计按每2π/3rad错开的输出电压,且供给到电动发电机192。该电力变换装置140基于规定的条件切换HM控制模式和正弦波PWM控制模式。在HM控制模式中,根据电角度,交替地形成第一期间和第二期间,所述第一期间为,在不同的相上,使上臂用的IGBT328和下臂用的IGBT330分别导通,并从蓄电池136向电动发电机192供给电流;所述第二期间为,在全相上,使上臂用的IGBT328或下臂用的IGBT330任一方导通,并用蓄积于电动发电机192的能量维持转矩。在正弦波PWM控制模式中,根据基于正弦波指令信号和载波的比较结果确定的脉冲宽度,使IGBT328、330导通,从蓄电池136向电动发电机192供给电流。这样,就能够降低转矩波动和开关损失,且能够进行与电动发电机192的状态相应的适当控制。
(2)电力变换装置140基于电动发电机192的转速切换HM控制模式和正弦波PWM控制模式(图30的步骤902、905、906)。由此,可以根据电动发电机192的转速切换到适当的控制模式。
(3)HM控制模式还包含按电动发电机192的每一转使各相的IGBT328、330分别导通及切断一次的矩形波控制模式。由此,在电动发电机192为转矩波动影响小的高旋转状态时等,可以将开关损失最小化。矩形波控制模式是如图3所示的转速最高的区域使用的控制模式,但要求高调制度的高输出区域也使用该模式。在本实施方式中,通过提高调制度,每半周期的开关次数可逐渐减少,可平稳地移至上述矩形波控制模式。
(4)在HM控制模式中,使形成第一期间的电角度位置和第一期间的长度中的至少一方变化,从而使在电动发电机192内流动的交流电流的谐波成分变化为期望值。通过该谐波成分的变化,从HM控制模式移至矩形波控制模式。更具体而言,使第一期间的长度随着调制度而变化,在调制度为最大时,进行矩形波控制。由此,可以容易地实现从HM控制模式向矩形波控制模式的过渡。
-第二实施方式-
图31表示的是本发明第二实施方式的控制电路172的电动机控制系统。与图6所示的第一实施方式的电动机控制系统相比,该电动机控制系统还具有过渡电流补偿器460。
过渡电流补偿器460在从PWM控制向HM控制、或从HM控制向PWM控制切换控制模式时,产生用于补偿在电动发电机192内流动的相电流中产生的过渡电流的补偿电流。该补偿电流的产生通过检测控制模式切换时的相电压,且将用于生成消除所检测到的相电压那样的补偿脉冲的脉冲状调制波从过渡电流补偿器460输出到驱动电路174来进行。通过基于从过渡电流补偿器460输出的调制波的驱动信号从驱动电路174输出到电源开关电路144的各IGBT328、330,可以生成补偿脉冲,产生补偿电流。
参照图32对上述的过渡电流补偿器460的补偿电流的产生进行说明。在图32中,从上往下依次分别表示PWM脉冲信号的线间电压波形及相电压波形、控制模式切换时的相电流波形、补偿脉冲波形、控制模式切换后的HM脉冲信号的线间电压波形及相电压波形的各例。另外,在图32中,除表示了PWM脉冲信号的线间电压波形及相电压波形以外,还表示了在图中的电角度(基准相位)π内进行从PWM控制模式向HM控制模式的切换时的例子。
在进行控制模式的切换时,如图所示,检测相电流。基于该相电流的检测结果,确定补偿脉冲的脉冲宽度,输出具有与相电压相反的符号(在此,为负)的振幅Vdc/2的补偿脉冲。由此,如图所示,消除控制模式的切换之后产生的过渡电流那样的补偿电流在相电流中流动。在补偿脉冲的输出结束以后,输出HM脉冲信号。
图33是表示以控制模式的切换时点为起点分别将图32所示的相电流波形和补偿脉冲波形的一部分放大后的图。如图33所示,在输出过渡电流的补偿脉冲Vun-p期间,补偿电流lup向负侧增大。当在时刻t0过渡电流lut和补偿电流lup的大小一致时,在该时刻,补偿脉冲Vun-p的输出结束。其后,过渡电流lut和补偿电流lup以同样斜度分别收敛为0。由此,可以使过渡电流lut和补偿电流lup的合成即相电流lua在时刻t0以后收敛为0。
如上所述,通过在过渡电流lut和补偿电流lup的大小一致的时刻、即对照过渡电流lut由补偿电流lup完全消除的时刻来确定补偿脉冲Vun_p的脉冲宽度,可以使相电流lua迅速地收敛成0。另外,这种脉冲宽度可以基于控制模式切换时的相电流lua的检测结果,考虑电路的时间常数来确定。
另外,用图32、33对从PWM控制模式向HM控制模式的切换时进行了说明,相反,在从HM控制模式向PWM控制模式切换的情况下,也可以通过同样的方法,从过渡电流补偿器460输出补偿脉冲,在相电流中产生消除过渡电流那样的补偿电流。
图34表示的是由以上说明的第二实施方式的控制电路172进行的电动机控制的流程图。在步骤901~907中,控制电路172进行与图30的流程图所示的第一实施方式的处理同样的处理。
在步骤908中,控制电路172判定是否有控制模式的切换。在进行了从PWM控制向HM控制或从HM控制向PWM控制的控制模式的切换时,控制电路172移至步骤909。另一方面,在不进行控制模式的切换时,控制电路172返回到步骤901,反复处理。另外,步骤908的判定结果通过从HM控制用脉冲调制器430或PWM控制用的脉冲调制器440输出补偿器中断信号而传递到过渡电流补偿器460。
在步骤909中,控制电路172通过利用如上所述的方法生成补偿脉冲来产生补偿电流,在过渡电流补偿器460中进行产生于相电流的过渡电流的补偿。如果执行了步骤909,则控制电路172返回到步骤901,反复处理。
在此,参照图35的流程图进一步对步骤909的过渡电流补偿进行详细说明。首先,过渡电流补偿器460检测切换控制模式之前的U相、V相、W相各相的过渡电流。该过渡电流的检测利用电流传感器180进行。接着,过渡电流补偿器460利用预定的电路时间常数τ,以补偿电流为消除所检测到的过渡电流的方向的方式,对各相计算相电压附加时间t0。
相电压附加时间t0的计算基于图36所示的电路模型进行。即,根据预设定的电路电感L和电路电阻r,计算出电路时间常数τ=L/r,基于该电路时间常数τ和规定的感应电压Eu,以消除作为过渡电流而检测到的U相电流lua的方式,确定作为U相电压脉冲Vu的脉冲宽度的相电压附加时间t0。在此,在希望完全消除过渡电流的情况下,只要将相电压附加时间t0维持到补偿电流与过渡电流平衡即可。另外,在图36中,以U相的电路模型为例进行了表示,V相、W相也同样。
接着,过渡电流补偿器460按照计算出的相电压附加时间t0开始各相的相电压的附加。在此,在消除过渡电流的方向上,附加振幅为Vdc/2的相电压,且附加相电压附加时间t0那样长的时间。如果开始相电压的附加之后的时间达到了目标附加时间(相电压附加时间)t0,则过渡电流补偿器460停止相电压的附加。在这种过渡电流补偿器460的相电压的附加结束之后,补偿电流边消除过渡电流边按照时间常数τ进行衰减。按照以上说明的那样,进行步骤909的过渡电流补偿。
根据以上说明的第二实施方式,在HM切换控制模式和PWM控制模式时,利用过渡电流补偿器460,从电力变换装置140输出补偿脉冲,所述补偿脉冲用于补偿在电动发电机192内流动的交流电流产生的过渡电流。由此,在控制模式的切换时,能够使电动发电机192的旋转迅速稳定。
另外,除如上所述的控制模式的切换时以外,也可以输出补偿脉冲,补偿过渡电流。例如,在HM控制模式下,在变更要消除的谐波次数的情况、及在调制度或电动机转速急剧地变化之后的情况等下,在认为产生过渡电流那样的状态过渡时,也可以利用过渡电流补偿器460,输出补偿脉冲,补偿过渡电流。或者,也可以基于相电流的检测结果,判断过渡电流的有无,确定是否输出补偿脉冲。这种补偿脉冲的输出既可以在切换控制模式时以外进行,也可以代替在切换控制模式时进行。
-第三实施方式-
图37表示的是本发明第三实施方式的控制电路172的电动机控制系统。与图31所示的第二实施方式的电动机控制系统相比,该电动机控制系统还具有电流控制器(ACR)422、斩波周期产生器470、和单相斩波控制用的脉冲调制器480。
电流控制器(ACR)422与电流控制器(ACR)420、421同样,基于从转矩指令、电流指令变换器410输出的d轴电流指令信号Id*及q轴电流指令信号Iq*、和由电流传感器180检测到的电动发电机192的相电流检测信号lu、lv、lw,分别运算d轴电压指令信号Vd*及q轴电压指令信号Vq*。电流控制器(ACR)422求出的d轴电压指令信号Vd*及q轴电压指令信号Vq*输出到单相斩波控制用的脉冲调制器480。
斩波周期产生器470相对于脉冲调制器480输出以规定周期反复的斩波周期信号。斩波周期信号的周期考虑电动发电机192的电感而预先设定。脉冲调制器480基于来自斩波周期产生器470的斩波周期信号,生成单相斩波控制用的脉冲信号,输出到切换器450。即,脉冲调制器480输出的单相斩波控制用脉冲信号的周期根据电动发电机192的电感来确定。
切换器450在判断为电动发电机192处于停止或极低速的旋转状态时,选择从脉冲调制器480输出的单相斩波控制用脉冲信号,输出到驱动电路174(未图示)。由此,在电力变换装置140中进行单相斩波控制。
脉冲调制器480输出的单相斩波控制用脉冲信号是,在电动发电机192为停止或极低速的旋转状态且不进行适当的电动机控制的情况下,用于使电动发电机192的转速上升到可进行适当的电动机控制的信号。另外,当电动发电机192处于停止或极低速的旋转状态时,不能从旋转磁极传感器193得到表示其旋转状态的正确的磁极位置信号θ,因此不能进行适当的电动机控制。单相斩波控制用脉冲信号的周期根据来自斩波周期产生器470的斩波周期信号来确定。
如上所述,在电动发电机192为停止或极低速的旋转状态时,当进行HM控制时,会长时间维持上述的第一期间或第二期间中任一方。另外,第一期间是在各相上分别使上臂用IGBT328或下臂用IGBT330导通而从蓄电池136向电动发电机192供给电流的通电期间,在任一单相上导通的臂和在另外两相上导通的臂不同。另外,第二期间是在全相上使上臂用IGBT328或下臂用IGBT330共同导通并用蓄积于电动发电机192的能量维持转矩的三相短路期间。
当长时间维持第一期间时,在其间导通的IGBT328或330内持续流动闭锁电流(直流电流),因此成为引起异常发热及损坏的原因。另一方面,当长时间维持第二期间时,由于不向电动发电机192供给电力,因此不能使电动发电机192起动,在本实施方式中,为了避免陷入这种状况,在电动发电机192处于停止或极低速的旋转状态且判断为不进行PWM控制时,使用单相斩波控制模式,将单相斩波控制用的脉冲信号作为调制波从控制电路172向驱动电路174输出。根据该调制波,从驱动电路174向电源开关电路144的各IGBT328、330输出驱动信号。
图38表示的是利用从脉冲调制器480输出的脉冲信号的单相斩波控制的一个例子。在图38中,表示的是按U相、V相、W相的顺序进行单相斩波控制时的各相电压波形的例子。首先,使U相电压在Vdc/2和-Vdc/2之间脉冲状地变化,且将V相及W相的电压设为-Vdc/2。此时的脉冲宽度根据斩波周期产生器470输出的斩波周期信号来确定。这样,在U相电压为Vdc/2的期间,U相的上臂导通,并且V相及W相的下臂分别导通,因此形成在U相上流动电流的U相通电期间。另外,在U相电压为-Vdc/2的期间,U相、V相及W相的下臂分别导通,因此形成三相短路期间。
接着,相同地,使U相电压在Vdc/2和-Vdc/2之间脉冲状地变化,且将V相及W相的电压设为Vdc/2。此时,在U相电压为-Vdc/2的期间,U相的下臂导通,并且V相及W相的上臂分别导通,因此形成在U相上流动电流的U相通电期间。另外,在U相电压为Vdc/2的期间,U相、V相及W相的上臂分别导通,因此形成三相短路期间。
以后,V相及W相也同样地,使V相电压在Vdc/2和-Vdc/2之间脉冲状地变化,且将U相及W相的电压先设为-Vdc/2,其次设为Vdc/2。另外,使W相电压在Vdc/2和-Vdc/2之间脉冲状地变化,且将U相及V相的电压先设为-Vdc/2,其次设为Vdc/2。通过反复进行单相斩波控制,关于U相、V相、W相的各相,与电角度无关地能够分别交替地形成通电期间和三相短路期间。由此,即使电动发电机192为停止或极低速的旋转状态,也能够使电动发电机192的转速从其状态上升。
另外,通过如上所述进行单相斩波控制,在电动发电机192的转速上升而脱离了停止或极低速的旋转状态的情况下,从单相斩波控制切换到其他控制、即PWM控制或HM控制。其后,通过与上述的第二实施方式说明的同样的方法,进行电动机控制。
图39表示的是由以上说明的第三实施方式的控制电路172进行的电动机控制的流程图。在步骤901~909中,控制电路172进行与图34的程序图所示的第二实施方式的处理同样的处理。
在步骤910中,控制电路172基于步骤901取得的旋转速度信息,通过判定电动发电机192是否为停止或极低速的旋转状态,判定是否进行PWM控制。在判断为电动发电机192处于停止或极低速的旋转状态那样的不足规定转速的情况下,即,在判定为未从旋转磁极传感器193得到正确的磁极位置信号θ而不能检测电动发电机192的旋转状态的状况的情况下,判定为不进行PWM控制则移至步骤911。如果不是那样,则判定为进行PWM控制则移至步骤906。进行如上所述的PWM控制。
步骤911为图3的转速最低的区域的控制,控制电路172进行单相斩波控制。在此,基于来自斩波周期产生器470的斩波周期信号,通过如上所述的生成方法,在脉冲调制器480中生成单相斩波控制用脉冲信号,并且其脉冲信号由切换器450来选择,从控制电路172输出到驱动电路174。如果执行了步骤911,则控制电路172移至步骤908。
另外,在以上说明的第三实施方式中,以在图31所示的第二实施方式的电动机控制系统的基础上还具备电流控制器(ACR)422、斩波周期产生器470、及单相斩波控制用脉冲调制器480的各构成的电动机控制系统为例进行了说明。但是,也可以设为在图6所示的第一实施方式的电动机控制系统的基础上还具备这些各构成的电动机控制系统。
根据以上说明的第三实施方式,判定是否可检测电动发电机192的旋转状态且是否进行PWM控制(图39的步骤910),基于其判定结果,在各相中,从单相斩波控制用脉冲调制器480输出用于与电角度无关地交替地形成第一期间和第二期间的规定的单相斩波控制用脉冲信号(步骤911)。这样,在电动发电机192为停止或极低速的旋转状态且不能进行适当的电动机控制的情况下,能够使电动发电机192的转速上升到可进行适当的电动机控制。
-变形例-
以上说明的各实施方式也可以如下所述进行变形。
(1)在上述各实施方式中,如果电动机转速为规定的切换转速以上,则进行包含矩形波控制的HM控制,如果不足切换转速,则进行PWM控制,由此在电力变换装置140中进行控制模式的切换。但是,这种控制模式的切换不局限于各实施方式说明的方式,可以在任意的电动机转速下使用。例如,在电动机转速为0~10000r/min的情况下,可以在0~1500r/min的范围内,进行PWM控制;在1500~4000r/min的范围内,进行HM控制;在4000~6000r/min的范围内,进行PWM控制;6000~10000r/min的范围内,进行HM控制。这样,根据电动机转速,利用最佳的控制模式,可以实现更细致的电动机控制。
(2)在上述各实施方式中,在电动机转速不足规定的切换转速时,进行PWM控制。但是,在将本发明应用于混合动力汽车等的情况下,为了促使步行者等引起注意,在电动机转速低时,代替PWM控制,进行HM控制。当在电动机转速低时进行HM控制时,不能彻底除去谐波成分,因此产生电流失真,这成为电动机动作音的原因。因此,通过有意产生这种电动机动作音,可以唤起车辆周围的步行者等引起注意。另外,利用这种HM控制的电动机动作音的产生也可以通过车辆的驾驶员操作开关等可以有效化或无效化。或者,车辆检测周围的步行者等,并自动地应用HM控制,也可以产生电动机动作音。在这种情况下,步行者的检测可以使用例如红外线传感器及图像判定等众所周知的各种方法。另外,也可以基于预存储的地图信息等,判定车辆的所在地是否为市区,如果是市区,则应用HM控制,产生电动机动作音。
利用图4~图6对上述的图6记载的HM控制用脉冲调制器430的动作原理进行了说明,并且利用使用微处理机实现脉冲调制器430的情况的图8进行了说明。利用图4~图8对动作原理及实现方法已经进行了充分说明,在此再次进行说明。
利用图40~图43再次对上述的脉冲调制器430的动作的基本原理进行说明。如上所述,当假想要从直流电力变换的交流电力的每单位相位的、例如每一周期的开关次数非常少的极端状态时,考虑上述的矩形波控制的状态。在该矩形波控制的状态中,如图40(a)所示,以在半周期内开关一次、即在一周期内开关两次的方式,控制电源开关电路144的开关元件328和330。在该控制中,与PWM方式相比,开关次数格外少,因此开关的损失大大降低。但另一方面,较多地含有谐波成分(5次、7次、11次、…),这些谐波成分会产生失真。因而,在通常的控制中,为了减少上述谐波的失真,优选从上述图40(a)所示的控制状态起,增加电源开关电路144的开关元件的开关次数,尽可能地除去上述谐波成分。要除去的谐波成分因变换的交流电力的使用目的而不同,不必除去全部的谐波成分,因此与PWM方式相比,开关次数减少。例如,在供给于三相旋转电机的交流电力中,成为3的倍数的谐波成分相互抵消,因此即使不除去,也没有大问题。
接着,以除去谐波成分内的5次谐波成分的方法为例对上述谐波成分的除去进行说明。如图40(a)及(b)所示,5次谐波成分是在交流电力波形的半周期即电角度π的期间具有五次峰值的振动波形。在图40(a)中,矩形波42除包含正弦波即基本波以外,还包含用傅里叶展开求出的许多谐波成分,其谐波成分中的一个为上述的5次谐波45。如图40(b)所示,当使该5次谐波45按每单位相位、例如按每半周期重合时,成为重合波形55。当然,当将重合波形55进行傅里叶展开时,又成为上述的5次谐波。在消除原矩形波所含的5次谐波成分的情况下,从尽可能地降低电源开关元件的开关次数的观点出发,优选尽可能地集中消除希望消除的谐波。因此,如图所示,在特定位置将与消除前的矩形波所含的5次谐波成分相同的面积的重合波形55消除。在该实施方式中,消除每半周期合拢成一个的重合波形55。这样,如上所述,就能够减少电源开关电路144的开关元件328和330的开关次数。
当从图40(a)记载的矩形波42消除上述重合波形55时,消除后的波形不含5次谐波。从图40(a)所示的矩形波42消除了5次谐波的重合波形55的图40(c)的波形62不含5次谐波。图40(c)所示的波形65的面积表示消除了重合波形55的面积,该波形65以与重合波形55相同的面积呈倒波形。即,表示符号相反的同一形状的波形。
图41表示为制作图40(c)所示的波形62而对电源开关电路144的开关元件328和330进行开关控制的波形。图41(a)是与图40(c)所示的波形62相同的波形,通过使图41(a)所示的电流波形流动,供给消除了5次谐波的交流波形的电流。图41(b)的波形是表示用于使图41(a)所示的电流波形流动的动作时刻的波形。通过图41(b)所示的波形75,制作上述的消除5次谐波的波形65。
用同样的方法也可以消除其他谐波。图42是基于傅里叶级数展开思考图40及图41所示的谐波的消除方法的思路时的流程所示的图。在此,设线间电压波形为f(ωt),表示的是线间电压波形的脉冲成形流程。表示的是考虑脉冲波形的对称性再加上f(ωt)=-f(ωt+π)及f(ωt)=f(π-ωt)的条件求脉冲波形的方法。脉冲波形用求解将f(ωt)进行傅里叶级数展开且将要消除的谐波次数的成分设为0的方程式的方法求出。
作为一个例子,图43是表示消除了3次、5次、7次谐波的U相和V相的线间电压的波形的生成过程以及特征的图。其中,线间电压是各相的端子的电位差,当设U相的相电压为Vu,设V相的相电压为Vv时,线间电压Vuv用Vuv=Vu-Vv表示。由于V相和W相的线间电压、W相和U相的线间电压也同样,因此,下面以U相和V相的线间电压的波形的生成为代表例进行说明。
图43的横轴以U相和V相之间的线间电压的基本波为基准取轴,以下简称为UV线间电压基准相位θuv1。该UV线间电压基准相位θuv1对应于图40的横轴即电角度。另外,π≤θuv1≤2π的区间是使图示的0≤θuv1≤π的电压脉冲列的波形的符号反相而成的对称形状的区间,因此在此省略。如图43所示,电压脉冲的基本波设为以θuv1为基准的正弦波电压。生成的脉冲分别以该基本波的π/2为中心按照图示的顺序相对于θuv1配置在如图所示的位置。在此,如上所述,θuv1对应于电角度,因此可以利用电角度来表示图43的脉冲的配置位置。因此,在下述中,将该脉冲的配置位置定义为特定的电角度位置。由此,可以形成S1~S4、S1′~S4′的脉冲列。该脉冲列具有不含相对于基本波的3次、5次、7次谐波的频谱分布。换言之,该脉冲列是从以0≤θuv1≤2π为定义区域的矩形波消除了3次、5次、7次谐波的波形。另外,要消除的谐波的次数也可以为3次、5次、7次以外的次数。要消除的谐波按如下的方法使要消除的次数变化,即,在基本波频率小时,一直消除到高次,在基本波频率大时,仅消除低次即可。例如,在转速低时,消除5次、7次、11次,随着转速上升,变更为5次、7次的消除,在转速进一步上升的情况下,仅进行5次的消除。这是在高旋转区域电动机的线圈阻抗增大,且电流波动变小的缘故。
同样地,有时也根据转矩的大小,使要消除的谐波的次数变化。例如,在某转速一定的条件下使转矩增大时,按如下的方法使要消除的次数变化,即,在转矩小的情况下,选择消除5次、7次、11次的波形,随着转矩的增大,设为5次、7次的消除,在转矩进一步增大的情况下,仅消除5次。
另外,不仅如上所述随着转矩及转速的增大使要消除的次数减少,而且有时反之使其增加,或者可能有不管转矩及转速的增减不使要消除的次数产生变化的情况。这些要考察电动机的转矩波动、噪音、EMC等指标的大小来确定,因此不一定相对于转速及转矩单调地变化。
如上所述,在图40~图43所示的实施方式中,考虑失真对控制对象的影响,可以选择希望消除的次数的谐波。如上所述,要消除的谐波的次数的种类越多,电源开关电路144的开关元件328和330的开关次数越多。在上述实施方式中,考虑失真对控制对象的影响,可以选择希望消除的次数的谐波,因此能够防止消除过多种类的谐波,考虑失真对控制对象的影响,可以适当地降低上述开关元件328和330的开关次数。
如上述的实施方式所述,在线间电压的控制中,以使要输出的交流电力的半循环即相位0〔rad〕~π〔rad〕的开关时刻和相位π〔rad〕~2π〔rad〕的开关时刻相同的方式进行控制,可以简化控制,控制性提高。另外,在相位0〔rad〕~π〔rad〕或相位π〔rad〕~2π〔rad〕的期间,也以相位π/2或3π/2为中心,在相同的开关时刻进行控制,可以简化控制,控制性提高。
另外,如用图40(b)所述,使希望消除的次数的谐波重合,如用图40(c)所述,在重合的状态下进行驱除,能够降低电源开关电路144的开关元件328和330的开关次数。
以上的说明只不过是一个例子,本发明是不对上述各实施方式的构成作任何限定的。

Claims (19)

1.一种电力变换装置,其特征在于,具备:
直流端子,用于接受直流电力;
电源开关电路,具有多个将作为上臂发挥作用的开关元件和作为下臂发挥作用的开关元件串联地连接而成的串联电路,接受直流电力并输出交流电力;
交流端子,用于输出交流电力;
驱动电路,用于控制所述电源开关电路所具有的开关元件的开关动作;和
控制电路,用于控制所述驱动电路,
所述电源开关电路构成为,使多个所述串联电路分别相对于所述直流端子为并联连接的状态,并使在作为所述上臂发挥作用的开关元件和作为所述下臂发挥作用的开关元件的连接部产生的交流电压施加在所述交流端子上,
所述控制电路,在即将输出的交流电力的频率低的第一动作区域,为了以PWM方式控制所述开关元件的开关动作,产生信号并将其供给到所述驱动电路,
所述控制电路,在即将输出的交流电力的频率比所述第一动作区域高的动作区域,为了以在基于所述即将输出的交流电力的相位的时刻进行所述开关元件的开关动作的方式进行控制,产生信号并将其供给到所述驱动电路,
所述驱动电路基于来自所述控制电路的信号,控制所述开关元件的开关动作。
2.如权利要求1所述的电力变换装置,其特征在于:
在基于所述即将输出的交流电力的相位的时刻控制所述开关元件的开关动作的状态下,
所述电源开关电路产生具有U相、V相和W相的三相交流电力,
为了产生所述相间的交流电压,从所述驱动电路对所述电源开关电路,供给表示基于所述交流电压的相位角0~π的开关时刻的信号,并且将表示与基于所述相位角0~π的开关时刻相同的开关时刻的信号,以相位角π~2π的相位,供给到所述电源开关电路。
3.如权利要求1所述的电力变换装置,其特征在于:
在基于所述即将输出的交流电力的相位的时刻控制所述开关元件的开关动作的状态下,
所述控制电路,在要除去的谐波的种类存在多种的第一谐波除去控制中,产生对基于应除去的所述谐波而定的交流波形的每半周期的开关动作进行控制的第一信号,并将其供给到所述驱动电路,
所述控制电路,在要除去的谐波的种类比第一谐波除去控制多的第二谐波除去控制中,产生对基于应除去的所述谐波而定的交流波形的每半周期的开关动作进行控制的第二信号,并将其供给到所述驱动电路,
通过所述驱动电路的控制,所述电源开关电路进行所述第二谐波除去控制的每半周期的开关次数比所述第一谐波除去控制的每半周期的开关次数多的开关动作。
4.一种电力变换装置,其特征在于,具备:
三相全桥式电力变换单元,具备上臂用及下臂用的开关元件;和
控制器,对各相的所述开关元件输出驱动信号,
所述电力变换装置,
通过与所述驱动信号相应的所述开关元件的开关动作,将从直流电源供给的电压变换为以电角度计按每2π/3rad错开的输出电压,并将其供给到三相交流电动机,
基于规定的条件切换HM控制模式和正弦波PWM控制模式:
所述HM控制模式为,根据电角度交替地形成在不同的相上使所述上臂用的开关元件和所述下臂用的开关元件分别导通而从所述直流电源向所述电动机供给电流的第一期间,和在全相上使所述上臂用的开关元件与所述下臂用的开关元件中的任一者导通而用蓄积于所述电动机的能量维持转矩的第二期间;
所述正弦波PWM控制模式为,根据基于正弦波指令信号和载波的比较结果而确定的脉冲宽度,使所述开关元件导通,由此从所述直流电源向所述电动机供给电流。
5.如权利要求4所述的电力变换装置,其特征在于:
基于所述电动机的转速,切换所述HM控制模式和所述正弦波PWM控制模式。
6.如权利要求4或5所述的电力变换装置,其特征在于:
所述HM控制模式还包含按所述电动机的每一转使各相的所述开关元件分别导通及切断一次的矩形波控制模式。
7.如权利要求6所述的电力变换装置,其特征在于:
在所述HM控制模式中,使形成所述第一期间的电角度位置和所述第一期间的长度的至少一者变化,从而使在所述电动机流动的交流电流的谐波成分变化为期望值,
通过所述谐波成分的变化,转移至所述矩形波控制模式。
8.如权利要求4、5或7所述的电力变换装置,其特征在于:
还具备过渡电流补偿单元,所述过渡电流补偿单元输出用于补偿由在所述电动机流动的交流电流产生的过渡电流的补偿脉冲,
所述过渡电流补偿单元,在切换所述HM控制模式和所述正弦波PWM控制模式时,输出所述补偿脉冲。
9.如权利要求8所述的电力变换装置,其特征在于:
所述过渡电流补偿单元,代替在切换所述HM控制模式和所述正弦波PWM控制模式时,在满足规定的条件时,输出所述补偿脉冲,或者,除了在切换所述HM控制模式和所述正弦波PWM控制模式时以外,在满足规定的条件时,输出所述补偿脉冲。
10.如权利要求4、5、7或9所述的电力变换装置,其特征在于,还具备:
判定单元,判定是否能够检测所述电动机的旋转状态;和
斩波控制单元,基于所述判定单元的判定结果,输出用于在各相上与电角度无关地交替地形成所述第一期间和所述第二期间的规定的单相斩波控制用信号。
11.如权利要求10所述的电力变换装置,其特征在于:
所述单相斩波控制用信号的周期根据所述电动机的电感来确定。
12.一种电力变换装置,其特征在于,具备:
三相全桥式电力变换单元,具备上臂用及下臂用的开关元件;和
控制器,对各相的所述开关元件输出驱动信号,
所述电力变换装置,
通过与所述驱动信号相应的所述开关元件的开关动作,将从直流电源供给的电压变换为以电角度计按每2π/3rad错开的输出电压,并将其供给到三相交流电动机,
根据电角度交替地形成在不同的相上使所述上臂用的开关元件和所述下臂用的开关元件分别导通而从所述直流电源向所述电动机供给电流的第一期间,和在全相上使所述上臂用的开关元件与所述下臂用的开关元件中的任一者导通而用蓄积于所述电动机的能量维持转矩的第二期间,
通过根据调制度使所述第一期间的长度变化,使在所述电动机流动的交流电流的谐波成分变化为期望值,
在所述调制度为最大时,进行按所述电动机的每一转使各相的所述开关元件分别导通及切断一次的矩形波控制。
13.一种电力变换装置,其特征在于,具备:
逆变电路,具备用于将直流电力变换为用于向三相交流电动机供给的三相交流电力的多个开关元件;和
控制电路,接收用于控制所述三相交流电动机的控制指令,产生控制所述逆变电路的所述多个开关元件的开关动作的控制信号,
所述控制电路具有第一控制模式和第二控制模式:
所述第一控制模式为,产生载波,基于所述载波和即将输出的交流信号,控制所述逆变电路的多个开关元件的导通动作;
所述第二控制模式为,为了抑制所述三相交流电力的谐波,输出表示所述逆变电路导通的相位位置的相位位置信号,基于所述相位位置信号,控制所述逆变电路的多个开关元件的导通动作,
当所述三相交流电动机为第一转速区域时,以所述第一控制模式控制逆变电路,当所述三相交流电动机为转速比所述第一转速区域高的第二运转区域时,以所述第二控制模式控制逆变电路。
14.如权利要求13所述的电力变换装置,其特征在于:
所述控制电路具备:
载波产生部,接收用于控制所述三相交流电动机的指令值和所述三相交流电动机的转速信号,产生载波;
第一脉冲生成部,根据基于所述指令值和转速信号生成的即将输出的交流信号和所述载波,输出控制所述逆变电路的多个开关元件的导通动作的信号;
相位位置信号输出部,输出所述相位位置信号;和
第二脉冲生成部,基于所述相位位置信号,输出控制所述逆变电路的多个开关元件的导通动作的信号,
在所述三相交流电动机的转速比所述第一转速区域高的第二运转区域,所述控制电路,通过所述第二脉冲生成部的输出,控制所述逆变电路的多个开关元件的导通动作。
15.如权利要求13所述的电力变换装置,其特征在于:
所述逆变电路包括分别具备多个开关元件的串联电路的U相电路、V相电路和W相电路,
在作为所述U相电路、V相电路和W相电路的各自的所述串联电路的所述多个开关元件的节点的U相节点、V相节点和W相节点的各节点之间,通过控制所述多个开关元件的导通动作,产生向所述三相交流电动机供给的交流的相间电压,
在所述第二控制模式,所述控制电路,在向所述三相交流电动机供给的各相间的交流电力的半周期中,以使经由所述逆变电路供给所述直流电力的所述逆变电路的导通次数成为多次的方式,控制所述开关元件的导通动作。
16.如权利要求15所述的电力变换装置,其特征在于:
所述控制电路还具有矩形波控制模式,所述矩形波控制模式为,在向所述三相交流电动机供给的交流电力的半周期中,使所述逆变电路导通一次,将所述直流电力供给到所述三相交流电动机,
所述控制电路,在所述三相交流电动机的转速比所述第二运转区域更高的区域,选择所述矩形波控制模式,控制所述多个开关元件。
17.如权利要求15所述的电力变换装置,其特征在于:
所述控制电路接收转矩指令值作为所述控制指令,
在所述三相交流电动机的转速为所述第二运转区域,以第二控制模式控制所述逆变电路的多个开关元件的导通动作的状态下,基于所述转矩指令值的增大,所述逆变电路导通而向所述三相交流电动机供给直流电力的逆变电路的导通宽度增大,该逆变电路的断路期间减小,进而,所述逆变电路的断路宽度基于所述转矩指令值的增大而减小,从而所述逆变电路的导通宽度与下一导通宽度相连,所述控制电路以使所述U相节点、V相节点和W相节点的各节点间产生的相间电压的半周期中的所述逆变电路的导通次数减少的方式,控制所述逆变电路的所述多个开关元件的导通动作。
18.如权利要求17所述的电力变换装置,其特征在于:
所述控制电路,基于所述转矩指令值的增大,以所述U相节点、V相节点和W相节点的各节点间产生的相间电压的半周期中的所述逆变电路的导通次数减少的方式,控制所述逆变电路的所述多个开关元件的导通动作,
在所述转矩指令值最大时,所述控制电路,以在所述相间电压的半周期中所述逆变电路导通一次而从所述节点间供给一次所述直流电力的矩形波控制模式,控制所述逆变电路的各开关元件。
19.如权利要求15所述的电力变换装置,其特征在于:
在所述三相交流电动机的转速处于比所述第一转速区域小的转速区域的情况下,
所述控制电路进行斩波控制,该斩波控制为,将构成所述U相电路、所述V相电路和所述W相电路中的一个电路所具有的串联电路的多个开关元件的一者,和构成所述U相电路、所述V相电路和所述W相电路中的另一电路所具有的串联电路的多个开关元件的另一者交替地反复导通。
CN2011100364112A 2010-02-10 2011-02-10 电力变换装置 Pending CN102148582A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/051963 2010-02-10
PCT/JP2010/051963 WO2011099122A1 (ja) 2010-02-10 2010-02-10 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310492137.9A Division CN103560688A (zh) 2010-02-10 2011-02-10 电力变换装置

Publications (1)

Publication Number Publication Date
CN102148582A true CN102148582A (zh) 2011-08-10

Family

ID=44123505

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011100364112A Pending CN102148582A (zh) 2010-02-10 2011-02-10 电力变换装置
CN201310492137.9A Pending CN103560688A (zh) 2010-02-10 2011-02-10 电力变换装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201310492137.9A Pending CN103560688A (zh) 2010-02-10 2011-02-10 电力变换装置

Country Status (4)

Country Link
US (2) US20110193509A1 (zh)
EP (1) EP2355319A2 (zh)
CN (2) CN102148582A (zh)
WO (1) WO2011099122A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181074A (zh) * 2011-10-17 2013-06-26 松下电器产业株式会社 马达驱动系统及其控制方法
CN103187907A (zh) * 2011-12-27 2013-07-03 北京中纺锐力机电有限公司 一种开关磁阻电机控制方式切换方法及装置
CN103474962A (zh) * 2013-09-02 2013-12-25 南京航空航天大学 一种分步式双级矩阵变换器停机保护控制方法
CN103625299A (zh) * 2013-12-05 2014-03-12 中国重汽集团济南动力有限公司 一种双源无轨电车控制系统
CN103918175A (zh) * 2011-11-07 2014-07-09 西门子公司 用于运行同步电机的方法和装置
CN103986377A (zh) * 2014-06-04 2014-08-13 国家电网公司 一种直流无刷电动机控制方法
CN104377980A (zh) * 2014-12-01 2015-02-25 永济新时速电机电器有限责任公司 用于地铁辅助逆变器控制的脉冲生成方法
CN105392660A (zh) * 2013-07-09 2016-03-09 日立汽车系统株式会社 逆变器装置及电动车辆
CN106033947A (zh) * 2015-03-10 2016-10-19 乐金电子研发中心(上海)有限公司 驱动三相交流电机的三相逆变电路及其矢量调制控制方法
RU2628765C1 (ru) * 2013-08-21 2017-08-22 Тойота Дзидося Кабусики Кайся Аппаратура управления электродвигателя
CN107210655A (zh) * 2015-01-23 2017-09-26 三菱电机株式会社 电动驱动装置
CN107251412A (zh) * 2015-03-24 2017-10-13 株式会社日立产机系统 电动机控制装置
CN107453670A (zh) * 2016-04-28 2017-12-08 丰田自动车株式会社 汽车
CN107896076A (zh) * 2016-10-01 2018-04-10 操纵技术Ip控股公司 包含电源电压限制约束的扭矩波动消除算法
CN110171296A (zh) * 2018-02-15 2019-08-27 丰田自动车株式会社 电动车辆的控制器
CN110797965A (zh) * 2019-10-11 2020-02-14 中国直升机设计研究所 一种转电结构及方法
CN111527691A (zh) * 2018-01-04 2020-08-11 罗伯特·博世有限公司 用于运行同步电机的方法
CN111585495A (zh) * 2019-02-18 2020-08-25 本田技研工业株式会社 控制装置、车辆系统及控制方法
CN111669102A (zh) * 2019-03-05 2020-09-15 丰田自动车株式会社 电动机的控制装置
CN113039715A (zh) * 2018-11-05 2021-06-25 株式会社电装 驱动系统

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053179A1 (ja) * 2008-11-10 2010-05-14 住友重機械工業株式会社 ハイブリッド型建設機械
JP2011200103A (ja) * 2010-02-10 2011-10-06 Hitachi Ltd 電力変換装置
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
US8937822B2 (en) 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
JP5387774B2 (ja) * 2011-10-26 2014-01-15 トヨタ自動車株式会社 モータ制御装置
US8669728B2 (en) * 2012-01-17 2014-03-11 System General Corp. Angle detection apparatus and method for rotor of motor
JP5392361B2 (ja) * 2012-01-19 2014-01-22 トヨタ自動車株式会社 車両および車両の制御方法
US8583265B1 (en) * 2012-05-22 2013-11-12 GM Global Technology Operations LLC Methods, systems and apparatus for computing a voltage advance used in controlling operation of an electric machine
US8649887B2 (en) 2012-05-22 2014-02-11 GM Global Technology Operations LLC Methods, systems and apparatus for implementing dithering in motor drive system for controlling operation of an electric machine
JP5768770B2 (ja) * 2012-06-29 2015-08-26 株式会社デンソー 回転機の制御装置
US8866326B1 (en) * 2013-04-10 2014-10-21 Hamilton Sundstrand Corporation Interleaved motor controllers for an electric taxi system
US10103675B2 (en) 2013-04-23 2018-10-16 Mitsubishi Electric Corporation Control device of alternating-current electric motor
DE112013006977T5 (de) 2013-04-23 2016-01-07 Mitsubishi Electric Corporation Stromrichter
CN105634250B (zh) * 2014-11-28 2018-06-22 力博特公司 一种整流器中晶闸管的驱动方法及装置
JP6477397B2 (ja) * 2015-09-30 2019-03-06 日産自動車株式会社 電力制御方法、及び、電力制御装置
US10243476B2 (en) * 2015-12-24 2019-03-26 Kabushiki Kaisha Yaskawa Denki Power conversion device and power conversion method
JP6507305B2 (ja) * 2016-02-24 2019-04-24 本田技研工業株式会社 電源装置、機器及び制御方法
JP6500872B2 (ja) * 2016-10-19 2019-04-17 トヨタ自動車株式会社 駆動装置および自動車
JP2018074794A (ja) * 2016-10-31 2018-05-10 ファナック株式会社 共通の順変換器を有するモータ駆動装置
JP6838469B2 (ja) * 2017-04-10 2021-03-03 トヨタ自動車株式会社 駆動装置
KR102422140B1 (ko) * 2017-11-07 2022-07-18 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
JPWO2019155918A1 (ja) * 2018-02-06 2021-01-28 日本電産株式会社 電力変換装置、モータおよび電動パワーステアリング装置
EP3846332A4 (en) * 2018-08-30 2022-06-01 Hitachi Astemo, Ltd. INVERTER DEVICE
JP6994488B2 (ja) * 2019-09-25 2022-01-14 本田技研工業株式会社 制御装置、車両システム及び制御方法
JP7358059B2 (ja) * 2019-03-22 2023-10-10 ミネベアミツミ株式会社 モータ駆動制御装置
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム
US11456680B2 (en) * 2020-05-08 2022-09-27 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
JP7201952B2 (ja) * 2021-03-31 2023-01-11 ダイキン工業株式会社 モータ制御装置、モータ、圧縮機、冷凍装置及び車両
JP7257449B2 (ja) * 2021-06-08 2023-04-13 本田技研工業株式会社 電力変換装置、電力変換装置の制御方法、およびプログラム
CN117478021B (zh) * 2023-12-27 2024-04-09 深圳威洛博机器人有限公司 一种机器人传动时电机速度波动的调节控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014497A (en) * 1997-10-01 2000-01-11 Allen-Bradley Company, Llc Method and apparatus for determining a critical dwell time for use in motor controls
CN101288222A (zh) * 2005-05-10 2008-10-15 丰田自动车株式会社 用于电动机驱动系统的控制设备和包括该控制设备的电动车辆
JP2009095144A (ja) * 2007-10-09 2009-04-30 Toyota Motor Corp 交流モータの制御装置および交流モータの制御方法
JP2009100548A (ja) * 2007-10-16 2009-05-07 Hitachi Ltd 電気車制御装置
US20090128069A1 (en) * 2007-11-16 2009-05-21 Hitachi, Ltd. Motor Control Apparatus and Control Apparatus for hybrid Electric Vehicles
CN100514826C (zh) * 2004-09-09 2009-07-15 爱信艾达株式会社 电动驱动控制装置及电动驱动控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108097B2 (ja) 1987-03-20 1995-11-15 株式会社日立製作所 パルス幅変調インバ−タの制御装置
WO2004039735A1 (ja) 2002-04-26 2004-05-13 Miz Co., Ltd. 抗酸化方法、抗酸化機能水およびその用途
CN101667808B (zh) * 2006-04-20 2012-10-17 株式会社电装 多相旋转电机的控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014497A (en) * 1997-10-01 2000-01-11 Allen-Bradley Company, Llc Method and apparatus for determining a critical dwell time for use in motor controls
CN100514826C (zh) * 2004-09-09 2009-07-15 爱信艾达株式会社 电动驱动控制装置及电动驱动控制方法
CN101288222A (zh) * 2005-05-10 2008-10-15 丰田自动车株式会社 用于电动机驱动系统的控制设备和包括该控制设备的电动车辆
JP2009095144A (ja) * 2007-10-09 2009-04-30 Toyota Motor Corp 交流モータの制御装置および交流モータの制御方法
JP2009100548A (ja) * 2007-10-16 2009-05-07 Hitachi Ltd 電気車制御装置
US20090128069A1 (en) * 2007-11-16 2009-05-21 Hitachi, Ltd. Motor Control Apparatus and Control Apparatus for hybrid Electric Vehicles

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181074A (zh) * 2011-10-17 2013-06-26 松下电器产业株式会社 马达驱动系统及其控制方法
US8773063B2 (en) 2011-10-17 2014-07-08 Panasonic Corporation Motor drive system and control method thereof
CN103918175A (zh) * 2011-11-07 2014-07-09 西门子公司 用于运行同步电机的方法和装置
CN103918175B (zh) * 2011-11-07 2016-11-09 西门子公司 用于运行同步电机的方法和装置
CN103187907A (zh) * 2011-12-27 2013-07-03 北京中纺锐力机电有限公司 一种开关磁阻电机控制方式切换方法及装置
CN105392660A (zh) * 2013-07-09 2016-03-09 日立汽车系统株式会社 逆变器装置及电动车辆
CN105392660B (zh) * 2013-07-09 2018-06-19 日立汽车系统株式会社 逆变器装置及电动车辆
RU2628765C1 (ru) * 2013-08-21 2017-08-22 Тойота Дзидося Кабусики Кайся Аппаратура управления электродвигателя
CN103474962B (zh) * 2013-09-02 2016-01-20 南京航空航天大学 一种分步式双级矩阵变换器停机保护控制方法
CN103474962A (zh) * 2013-09-02 2013-12-25 南京航空航天大学 一种分步式双级矩阵变换器停机保护控制方法
CN103625299A (zh) * 2013-12-05 2014-03-12 中国重汽集团济南动力有限公司 一种双源无轨电车控制系统
CN103986377A (zh) * 2014-06-04 2014-08-13 国家电网公司 一种直流无刷电动机控制方法
CN104377980A (zh) * 2014-12-01 2015-02-25 永济新时速电机电器有限责任公司 用于地铁辅助逆变器控制的脉冲生成方法
CN107210655A (zh) * 2015-01-23 2017-09-26 三菱电机株式会社 电动驱动装置
CN106033947A (zh) * 2015-03-10 2016-10-19 乐金电子研发中心(上海)有限公司 驱动三相交流电机的三相逆变电路及其矢量调制控制方法
CN106033947B (zh) * 2015-03-10 2019-04-05 乐金电子研发中心(上海)有限公司 驱动三相交流电机的三相逆变电路及其矢量调制控制方法
CN107251412B (zh) * 2015-03-24 2019-07-19 株式会社日立产机系统 电动机控制装置
CN107251412A (zh) * 2015-03-24 2017-10-13 株式会社日立产机系统 电动机控制装置
CN107453670A (zh) * 2016-04-28 2017-12-08 丰田自动车株式会社 汽车
CN107896076A (zh) * 2016-10-01 2018-04-10 操纵技术Ip控股公司 包含电源电压限制约束的扭矩波动消除算法
CN107896076B (zh) * 2016-10-01 2020-11-27 操纵技术Ip控股公司 包含电源电压限制约束的扭矩波动消除算法
CN111527691B (zh) * 2018-01-04 2024-05-14 罗伯特·博世有限公司 用于运行同步电机的方法
CN111527691A (zh) * 2018-01-04 2020-08-11 罗伯特·博世有限公司 用于运行同步电机的方法
CN110171296B (zh) * 2018-02-15 2022-06-10 株式会社电装 电动车辆的控制器
CN110171296A (zh) * 2018-02-15 2019-08-27 丰田自动车株式会社 电动车辆的控制器
CN113039715B (zh) * 2018-11-05 2023-12-05 株式会社电装 驱动系统
CN113039715A (zh) * 2018-11-05 2021-06-25 株式会社电装 驱动系统
CN111585495A (zh) * 2019-02-18 2020-08-25 本田技研工业株式会社 控制装置、车辆系统及控制方法
CN111585495B (zh) * 2019-02-18 2023-09-08 本田技研工业株式会社 控制装置、车辆系统及控制方法
CN111669102B (zh) * 2019-03-05 2023-10-20 株式会社电装 电动机的控制装置
CN111669102A (zh) * 2019-03-05 2020-09-15 丰田自动车株式会社 电动机的控制装置
CN110797965B (zh) * 2019-10-11 2023-04-28 中国直升机设计研究所 一种转电结构及方法
CN110797965A (zh) * 2019-10-11 2020-02-14 中国直升机设计研究所 一种转电结构及方法

Also Published As

Publication number Publication date
CN103560688A (zh) 2014-02-05
WO2011099122A1 (ja) 2011-08-18
US20110193509A1 (en) 2011-08-11
US20140049198A1 (en) 2014-02-20
EP2355319A2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
CN102148582A (zh) 电力变换装置
US8547041B2 (en) Power conversion device
US8471518B2 (en) Power conversion device
US20130033205A1 (en) Power Conversion Device
CN101755383B (zh) 电动机控制装置、驱动装置和混合动力驱动装置
JP5172286B2 (ja) モータ制御装置およびハイブリッド自動車用制御装置
CN102983810B (zh) 电力转换装置的控制装置
US20020027789A1 (en) Control device for motor/generators
WO2011135621A1 (ja) 車両
US10723233B2 (en) Controller of electrically powered vehicle
WO2011135695A1 (ja) 電力変換装置
US11909342B2 (en) Rotating electrical machine control device
US20120242272A1 (en) Rotating electrical machine system
CN103141022B (zh) 逆变器控制装置和逆变器控制方法
JP5439352B2 (ja) 電力変換装置
JP2011200103A (ja) 電力変換装置
JP2012165495A (ja) 電力変換装置
CN116648849A (zh) 旋转电机控制系统
JP7192291B2 (ja) 回転電機制御システム
Aihsan et al. A simple duty cycle control technique to minimize torque ripple in open-end winding induction motor
JP5975797B2 (ja) 電力変換装置
US20230378896A1 (en) Rotating electrical machine control system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110810