CN102132166B - 互连基板、偏差测定方法及测试装置 - Google Patents

互连基板、偏差测定方法及测试装置 Download PDF

Info

Publication number
CN102132166B
CN102132166B CN200980133261.8A CN200980133261A CN102132166B CN 102132166 B CN102132166 B CN 102132166B CN 200980133261 A CN200980133261 A CN 200980133261A CN 102132166 B CN102132166 B CN 102132166B
Authority
CN
China
Prior art keywords
signal
output pin
output
deviation
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980133261.8A
Other languages
English (en)
Other versions
CN102132166A (zh
Inventor
泷泽茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of CN102132166A publication Critical patent/CN102132166A/zh
Application granted granted Critical
Publication of CN102132166B publication Critical patent/CN102132166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31725Timing aspects, e.g. clock distribution, skew, propagation delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本发明提供一种布线基板,其用于测定通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试被测试设备的测试装置中的输出管脚之间的偏差,其包括:与应输出第1信号的第1输出管脚耦连的第1端子;与应输出第2信号的第2输出管脚耦连的第2端子;将第1端子和第2端子二者连接起来的连接节点;连接于测量输入信号的过渡定时的定时测量电路的输出节点;连接第1端子和连接节点的第1布线;连接第2端子和连接节点的第2布线;以及连接连接节点和输出节点的第3布线;其中,第1布线和第2布线被形成得长度相同。

Description

互连基板、偏差测定方法及测试装置
技术领域
本发明涉及布线基板、偏差测定方法及测试装置。本申请与下述美国专利申请相关、且主张下述美国专利申请的优先权。对于认可文献通过参照而被并入的指定国,下述专利申请中所记载的内容通过参照的方式而被结合到本申请中,成为本申请的一部分。
申请号12/199,811    申请日2008年8月28日
背景技术
测试半导体设备、电子设备等的被测试设备的测试装置,通过将测试信号提供给被测试设备、将被测试设备的输出信号与预先确定的期望值信号进行比较,对被测试设备实施测试。测试装置在调节测试信号的相位、频率等之后,将测试信号提供给被测试设备。
例如,在专利文献1中记载有通过经差动驱动器将差动信号提供给被测试设备的差动端子、测试输出差动信号的被测试设备的测试装置(参照专利文献1)。专利文献1的测试装置调节差动信号的偏差,以使得在被测试设备的差动端子处差动信号正确地交叉。
专利文献1:特开2005-293808
发明内容
本发明要解决的技术问题
近年来,伴随着半导体设备的高速增长,要求高精度地校正测试装置的输出管脚间的偏差。另外,希望低价地、短时间地对该偏差进行校正。
因此,在本发明的一个方面,其目的是为了提供一种能够解决上述问题的布线基板、偏差测定方法及测试装置。该目的通过在权利要求书中的独立权利要求中所记载的特征的组合而实现,另外,从属权利要求限定了本发明的更有利的具体实施例。
解决本发明的技术问题的技术手段
根据本发明的第1方式,提供一种布线基板,用于测量通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试被测试设备的测试装置中的输出管脚之间的偏差,该布线基板包括:与应输出第1信号的第1输出管脚耦连的第1端子;与应输出第2信号的第2输出管脚耦连的第2端子;将第1端子和第2端子二者连接起来的连接节点;连接于测量输入信号的过渡定时的定时测量电路的输出节点;连接第1端子和连接节点的第1布线;连接第2端子和连接节点的第2布线;和连接连接节点与输出节点的第3布线;其中,第1布线和第2布线被形成得长度相同。上述布线基板中的第1布线和第2布线可以被形成得长度相同且最短。
在上述布线基板中,上述测试装置包括定时测量电路以及与定时测量电路连接的输入端子,上述布线基板的输出节点可以是与上述测试装置的输入端子耦连的第3端子。上述布线基板还包括定时测量电路,输出节点可以是定时测量电路的输入节点。另外,在上述布线基板中,上述测试装置的第1输出管脚输出的第1信号是测试信号的正相信号,上述测试装置的第2输出管脚输出的第2信号可以是测试信号的负相信号。
根据本发明的第2方式,提供一种偏差测定方法,用于测定通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试被测试设备的测试装置中的输出管脚之间的偏差,该偏差测定方法包括:准备上述布线基板的步骤;将输出第1信号的测试装置的第1输出管脚与布线基板的第1端子耦连、以及将输出第2信号的测试装置的第2输出管脚与布线基板的第2端子耦连的步骤;和通过测量输出节点的相对于参考电压的电压,来测量第1输出管脚与第2输出管脚之间的偏差的步骤。
在上述偏差测定方法中,测量偏差的步骤可以包括:在将第2输出管脚维持在高电平或者低电平的状态下,从第1输出管脚输出第1信号,测量输出节点的电压与、基于第2输出管脚的电平和第1信号的过渡状态的关系所确定的第1参考电压、一致时的第1定时的步骤;在将第1输出管脚维持在高电平或者低电平的状态下,从第2输出管脚输出第2信号,测量输出节点的电压与、基于第1输出管脚的电平和第2信号的过渡状态的关系所确定的第2参考电压、一致时的第2定时的步骤;和根据第1定时和第2定时的差测量偏差的步骤。
在上述偏差测定方法中,第1输出管脚输出测试信号的正相信号,第2输出管脚输出测试信号的负相信号,测量偏差的步骤可以根据在输出节点产生的尖峰电压的值测量偏差。在上述偏差测定方法中,第1信号和第2信号分别是同一测试信号的正相信号和负相信号;测量偏差的步骤包括输出同一测试信号的步骤,其可以根据在输出节点产生的尖峰电压的值来测量偏差。
根据本发明的第3方式,提供一种测试装置,用于通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试被测试设备,该测试装置包括:输出第1信号的第1输出管脚;输出第2信号的第2输出管脚;测量输入信号的定时的定时测量电路;和上述布线基板。
上述发明的概要所列举的并不都是本发明的必要特征。另外,这些特征的子组合也可以形成本发明。
附图说明
图1示意了包括根据一个实施方式的布线基板104的测试装置100的构成例;
图2示意了测量测试装置100的输出管脚间的偏差的偏差测定方法的一个例子;
图3示意了关于在图2中说明的测量测试装置100的偏差的方法的一个例子;
图4示意了关于在图3中说明的第1定时的测量过程的一个例子;
图5示意了关于在图3中说明的第2定时的测量过程的一个例子;
图6示意了测量测试装置100的偏差的另一个例子;
图7示意了关于在图6中说明的在第3端子118产生的尖峰电压的一个例子;
图8示意了具有根据其它实施方式的布线基板804的测试装置800的构成例。
具体实施方式
下面,通过本发明的实施方式对本发明的一个方面进行说明,但是以下的实施方式并不限定权利要求书中所涉及的发明。另外,实施方式中所说明的特征的组合的全部不一定都是解决本发明技术问题所必须的。
图1示意了包括根据一个实施方式的布线基板104的测试装置100的构成例。测试装置100包括装置本体102和布线基板104。装置本体102通过提供测试信号给被测试设备而测试被测试设备。布线基板104用于测定或调节测试装置100的输出管脚间的偏差。
测试装置100中装置本体102与被测试设备耦连,测试装置100测试被测试设备。另外,测试装置100中装置本体102与布线基板104耦连,测试装置100调节输出管脚间的偏差。另外,图1由于表示装置本体102与布线基板104耦连的状态,而没表示被测试设备。
装置本体102包括基准时钟产生部130和测试执行部132。测试执行部132包括定时产生部134、图案产生部136、波形整形部138、偏差调节部140、差动驱动器150、第1输出管脚172、和第2输出管脚174。偏差调节部140包括可变延迟电路142和可变延迟电路144。差动驱动器150包括输出阻抗152和输出阻抗154。另外,测试执行部132包括比较器162、图案比较部164、终端阻抗166、和输入端子176。
第1输出管脚172和第2输出管脚174可以是输出管脚的一个例子。比较器162可以是测量输入的信号的过渡定时的定时测量电路的一个例子。另外,装置本体102也可以包括多个测试执行部132。由此,即使在被测试设备包括多个被测试模块的情况下,测试装置100也可以同时测试多个被测试模块。
布线基板104包括与第1输出管脚172耦连的第1端子112、与第2输出管脚174耦连的第2端子114、连接节点116、以及与输入端子176耦连的第3端子118。第3端子118可以是输出节点的一个例子。布线基板104包括连接第1端子112和连接节点116的第1布线122、连接第2端子114和连接节点116的第2布线124、以及连接连接节点116和第3端子118的第3布线126。
以下,在说明测试装置100测试被测试设备的测试动作之后,论述测试装置100的输出管脚间的偏差测定以及偏差调节。之后,说明使用布线基板104的偏差测定方法以及偏差调节方法。
首先,说明测试装置100测试被测试设备的测试动作。以下,测试装置100以测试输出差动信号的被测试设备的情形为例进行说明。即,在本实施方式中,测试装置100的第1输出管脚172输出的测试信号可以是正相信号、测试装置100的第2输出管脚174输出的测试信号可以是负相信号。正相信号可以是第1信号的一个例子。负相信号可以是第2信号的一个例子。
基准时钟产生部130生成测试装置100的基准时钟。基准时钟产生部130将基准时钟提供给定时产生部134和图案产生部136。
定时产生部134生成定时信号,且提供给波形整形部138。定时信号规定将提供给被测试设备的测试信号生成为电压信号的定时。
图案产生部136生成图案信号并提供给波形整形部138。图案信号规定测试信号的测试图案。图案信号可以是数字图案信号。另外,图案产生部136生成与测试信号对应的期望值信号并提供给图案比较部164。
波形整形部138将由图案产生部136所提供的图案信号和由定时产生部所提供的定时信号整形成为适合于测试被测试设备的波形。波形整形部138将整形的波形经偏差调节部140和差动驱动器150提供给被测试设备。另外,波形整形部138生成选通信号(strobe signal)并提供给比较器162。选通信号用于判定由输入端子176输入的信号的定时相位。
偏差调节部140调节由波形整形部138所提供的测试信号的正相信号成分以及负相信号成分之间的偏差。可变延迟电路142调节正相信号成分的相位。可变延迟电路144调节负相信号成分的相位。偏差调节部140将调节偏差后的正相信号成分和负相信号成分提供给差动驱动器150。
差动驱动器150将由偏差调节部140提供的测试信号的正相信号成分,经输出阻抗152,提供给输出测试信号的第1输出管脚172。另外,差动驱动器150将由偏差调节部140提供的测试信号的负相信号成分,经输出阻抗154,提供给输出测试信号的第2输出管脚174。输出阻抗152和输出阻抗154的阻抗率可以相同。
比较器162的一个输入端与输入端子176连接,经输入端子176,被测试设备的输出信号被输入。终端电压源可以经终端阻抗166耦连于比较器162的一个输入端与输入端子176之间的布线。终端电压源施加电压VTT。参考电压源可以耦连于比较器162的另一个输入端。参考电压源施加电压VREF。终端阻抗166可以具有与输出阻抗152和输出阻抗154相同的阻抗率。另外,终端电压源和参考电压源在图1中图示从略。
比较器162将由输入端子176所提供的输出信号的电压和VREF进行比较,并将比较结果提供给图案比较部164。例如,在输出信号的电压比VREF低的情况下,比较器162输出L逻辑作为比较结果。而在输出信号的电压比VREF高的情况下,比较器162输出H逻辑作为比较结果。
比较器162测量被输入的信号的过渡定时。比较器162可以基于由波形整形部138所提供的选通信号、来测量被测试设备的输出信号的过渡定时。
图案比较部164将图案产生部136所提供的期望值信号与比较器162所提供的比较结果进行比较,判定被测试设备的良否。虽然在图1中没有示出,但是图案比较部164可以将测试结果提供给例如装置本体102。
接下来,论述测试装置100的输出管脚间的偏差调节。作为调节测试装置100的输出管脚间的偏差的方法,例如,可以考虑使用具有与机器人手臂连结的宽带探针的探测机器人,直接接触要观测的输出管脚,来观测输出信号。另外,探测机器人在图1中没有示出。
使用探测机器人校正输出管脚间的偏差,例如可以通过以下的方式执行。以下装置本体102包括多个测试执行部132,测试执行部132以输出包含正相信号和负相信号的差动信号的情形为例来说明校正差动信号的偏差的方式。
首先,使宽带探针与要校正的一对输出管脚中的一个输出管脚接触。例如,使宽带探针与第1输出管脚172接触、测定正相信号。例如,在正相信号从L逻辑过渡至H逻辑的情形下,用高精度定时测定器测定正相信号开始的定时。例如,用高精度定时测定器,测定振幅为50%的定时点。
接下来,使宽带探针移动,与要校正的一对输出管脚中的另一个输出管脚接触。例如,使宽带探针与第2输出管脚174接触、测定负相信号。与正相信号的情形同样,用高精度定时测定器测定负相信号结束的定时。差动偏差被求得为测定第1输出管脚172而得到的定时点与测定第2输出管脚174而得到的定时点的差。测试装置100调节偏差调节部140的设定而使得差动偏差落在规定的范围内。由此,结束一对输出管脚间的差动偏差的校正。
一对输出管脚间的差动偏差的校正结束之后,使宽带探针移动,校正另一对输出管脚间的差动偏差。同样地,通过重复进行输出管脚对之间的偏差校正,可以对测试装置100进行校正。
如上所述,通过使用探测机器人,可以校正输出管脚间的偏差。但是,由于一个管脚一个管脚地进行校正,测定时间长。另外,探测机器人的设置和操作费事,缺乏可操作性。在测试装置100输出差动信号的情况下,由于第1输出管脚172和第2输出管脚174的频率响应特性有差异,所以如果输出与实施了校正的频率不同的频率的差动信号,则差动偏差恶化。因此,希望使用测定时间更短、可操作性更强的偏差调节方法和偏差调节装置,每当变更频率时,实施差动偏差的校正。
测试装置100,由于包括布线基板104,所以可以提供在短时间内能够实施的、可操作性强的偏差测定方法和偏差调节方法。布线基板104可以是偏差调节装置的一个例子。输入到布线基板104的第1端子112和第2端子114的信号,在连接节点116被短路,从第3端子118输出。
布线基板104,例如,可以与装置本体102的第1输出管脚172、第2输出管脚174、以及输入端子176的配置相对应地、在印刷布线基板和Si基板之类的基板上形成第1端子112之类的端子和第1布线122之类的布线。
布线基板104被形成得第1布线122和第2布线124等长。由此,可以提高偏差测定的精度。第3布线126优选被形成得尽可能地短以便可以抑制波形的劣化。第1布线122和第2布线124的长度例如可以在1mm以上2mm以下,第3布线126的长度例如可以在2mm以上3mm以下。由此,在宽带中频率特性匹配良好。
另外,在本实施方式中,第1端子112、第2端子114和连接节点116被配置得形成等腰三角形或者正三角形,但是第1端子112、第2端子114和连接节点116的配置并不限于此。布线基板104可以被形成得第1布线122和第2布线124等长且长度最短。例如,连接节点116可以被形成在第1端子112和第2端子114之间的中点。
这里,在本说明书中“第1布线122和第2布线124等长”并不限定是第1布线122和第2布线124长度完全相等的情形,包括第1布线122和第2布线124实质上长度相等的情形。“第1布线122和第2布线124实质上长度相等”指的是,即使在第1布线122的长度和第2布线124的长度不同的情形下,第1布线122的布线延迟时间与第2布线124的布线延迟时间的差,也比偏差的容许误差小的情形。
偏差的容许误差可以通过考虑被测试设备的工作频率和被测试设备的测试所要求的偏差的精度来确定。例如,在被测试设备的工作频率为6.5GHz,且作为偏差的精度,要求-4ps~+4ps的精度的情况下,如果第1布线122的长度和第2布线124的长度之差在0.1mm以内,可以说第1布线122和第2布线124被形成得实质上长度相等。
通过采用以上的构成,通过耦连装置本体102和布线基板104,测试装置100可以测定输出管脚间的偏差。例如,测试装置100可以测定从第1输出管脚172和第2输出管脚174所输出的差动信号的差动偏差。测试装置100可以基于所测定的差动偏差的值来调节偏差调节部140的设定。
由此,使用测试装置100中包括的比较器162,可以高精度地校正输出管脚间的偏差。另外,布线基板104与探测机器人相比较可以非常低价地制造。还有,即使在测试装置100包括多个应调节偏差的输出管脚对的情况下,由于对全部的管脚对可以同时测定偏差,所以可以在短时间内校正偏差。
例如,在测试装置100中,由于所有的测试执行部132都包括第1输出管脚172、第2输出管脚174、输入端子176、和比较器162,所以可以同时校正所有的测试执行部的偏差。由于可以在短时间内简便地校正偏差,所以每当变更测试信号的频率时,容易实施偏差的校正。
另外,在本实施方式中,虽然使用布线基板104说明偏差调节装置,但是偏差调节装置的形状并不限定于基板状。偏差调节装置的形状,虽然没有被特别限定,但是优选为与被测试设备相同的形状。
在本实施方式中,虽然说明的是在输出正相信号的第1输出管脚172和输出负相信号的第2输出管脚174之间测定差动偏差的情况,但是,布线基板104的用途并不限于此。通过根据测定对象来设计端子和布线的配置,布线基板104可以用于测试装置100的任意输出管脚间的偏差测定。
在本实施方式中,虽然说明的是布线基板104不包括定时测量电路,测试装置100使用装置本体102的比较器162来测定输出管脚间的偏差的情况,但是,测试装置100的构成并不限于此。例如,布线基板104包括定时测量电路,测试装置100可以使用该定时测量电路来测定输出管脚间的偏差。由此,即使在装置本体102中没有安装比较器162的情况下,或者装置本体102的比较器162的精度低的情况下,也可以精度良好地测定输出管脚间的偏差。
图2示意了测量测试装置100的输出管脚间的偏差的偏差测定方法的一个例子。如图2所示,首先,在S202,准备布线基板104。即,准备包括第1端子112、第2端子114、连接第1端子112和连接节点116的第1布线122、连接第2端子114和连接节点116且与第1布线122等长的第2布线124、连接连接节点116和输出节点的第3布线126的布线基板104。
接下来,在S204,测试装置100与布线基板104耦连。即,测试装置100的第1输出管脚172与布线基板104的第1端子112耦连,测试装置100的第2输出管脚174与布线基板104的第2端子114耦连。另外,使测试装置100的输入端子176与布线基板104的第3端子118耦连。
接下来,在S206,测量第1输出管脚172与第2输出管脚174之间的偏差。通过测量第3端子118的相对于参考电压VREF的电压,可以测量上述偏差。测试装置100可以基于所测量的偏差的值来调节偏差调节部140的设定,以使得偏差的值落在规定的范围内。
图3示意了关于在图2的S206中说明的测量测试装置100的偏差的方法的一个例子。如图3所示,在S206测量偏差的步骤,首先在S302测量表示、从第1输出管脚输出测试信号而得到的信号的、过渡定时的第1定时。第1定时例如可以通过以下的方式进行测量。
即,在将第2输出管脚174维持在高电平或者低电平的状态下,从第1输出管脚172输出测试信号。布线基板104的第3端子118的电压经输入端子176被输入至比较器162的一个输入端。
在比较器162的另一个输入端,输入基于第2输出管脚174的电平和测试信号的过渡状态的关系而确定的第1参考电压。使用波形整形部138所提供的选通信号,测量第3端子118的电压与第1参考电压一致时的定时作为第1定时。
接下来,在S304,测量表示从第2输出管脚输出测试信号而得到的信号的过渡定时的第2定时。第2定时例如可以通过以下的方式进行测量。
即,在将第1输出管脚172维持在高电平或者低电平的状态下,从第2输出管脚174输出测试信号。布线基板104的第3端子118的电压经输入端子176被输入至比较器162的一个输入端。
在比较器162的另一个输入端,输入基于第1输出管脚172的电平和测试信号的过渡状态的关系而确定的第2参考电压。使用波形整形部138所提供的选通信号,测量第3端子118的电压与第2参考电压一致时的定时作为第2定时。
接下来,在S306,测定第1输出管脚172和第2输出管脚174之间的偏差。上述偏差可以从第1定时和第2定时的差而求得。
图4示意了关于图3中说明的第1定时的测量过程的一个例子。图4用实线表示第1输出管脚172的输出42、第2输出管脚174的输出44、以及输入到比较器162的第3端子118的电压46。
另外,在图4中,输出42和输出44的电压表示为:在第1输出管脚172和第2输出管脚174处没有耦连布线基板104的状态下的电压,即,在开放端的电压。另外,在图4中,输出阻抗152、输出阻抗154、和终端阻抗166的阻抗率相同,施加Vlow作为电压VTT
如图4所示,第1输出管脚172输出从低电平Vlow过渡至高电平Vhigh的测试信号。其间,第2输出管脚174的输出44维持在低电平Vlow。这时,电压46输入到比较器162的一个输入端。电压46的值从Vlow过渡至Vhigh’。在比较器162的另一个输入端,输入第1参考电压VREF1。测量第1定时Tposi’作为电压46与第1参考电压VREF1一致时的定时。
例如,第1参考电压VREF1的值设定为输入振幅的50%的值。这时,第1参考电压VREF1的值由式(1)表示。例如,当Vhigh为1V,Vlow为0V时,Vhi gh’被分压而为1/3V,VREF1为1/6V。
VREF1=(Vhigh’-Vlow)/2    …(1)
图5示意了关于图3中说明的第2定时的测量过程的一个例子。图5用实线表示第1输出管脚172的输出42、第2输出管脚174的输出44、以及被输入到比较器162的第3端子118的电压46。
另外,在图5中,输出42和输出44的电压表示为:在第1输出管脚172和第2输出管脚174处没有耦连布线基板104的状态下的电压,即,在开放端的电压。另外,在图5中,输出阻抗152、输出阻抗154、和终端阻抗166的阻抗率相同,施加Vlow作为电压VTT
如图5所示,第2输出管脚174输出从高电平Vhigh过渡至低电平Vlow的测试信号。其间,第1输出管脚172的输出42维持在低电平Vlow。这时,电压46输入至比较器162的一个输入端。电压46的值从Vhigh’过渡至Vlow。在比较器162的另一个输入端输入第2参考电压VREF2。测量第2定时Tnega’作为电压46与第2参考电压VREF2一致时的定时。例如,设定第2参考电压VREF2的值为输入振幅的50%的值。
测试装置100可以调节偏差调节部140的设定,以使得第1定时Tposi’和第2定时Tnega’的差落在规定的范围内。测试装置100可以调节偏差调节部140的设定,以使得第1定时Tposi’和第2定时Tnega’相等。
图6示意了测量测试装置100的偏差的另一个例子。图7示意出关于图6中说明的在第3端子118产生的尖峰电压的一个例子。利用图6和图7说明,在第1输出管脚172输出测试信号的正相信号62、第2输出管脚174输出测试信号的负相信号64的情况下,通过在第3端子118产生的尖峰电压76的值来测量偏差的方法以及校正偏差的方法。
如图6所示,从时刻t1至时刻t4,正相信号62从低电平Vlow过渡至高电平Vhigh。而负相信号64具有偏差,从时刻t2至时刻t5从高电平Vhigh过渡至低电平Vlow
例如,正相信号62和负相信号64的过渡定时可以用输入振幅的50%的值进行测量。在图6中,正相信号62的过渡定时为t2,负相信号64的过渡定时为t4。偏差被求得为t4和t2的差。另外,在图6中,虚线68表示没有偏差的情况下的负相信号。另外,时刻t3表示正相信号62和负相信号64交叉的时刻。
如图7所示,在正相信号62从第1输出管脚172被输出到布线基板104、负相信号64从第2输出管脚174被输出到布线基板104的情况下,在布线基板104的第3端子118出现尖峰电压76。尖峰电压76的值在时刻t1之前指示为输入振幅的50%的值,一经过时刻t1就慢慢增加,从时刻t2至时刻t4期间指示为大致恒定的值VSPIKE。其后,一经过时刻t4就慢慢减少,在到达时刻t5时回复到输入振幅的50%的值。通过测量尖峰电压76为大致恒定的值VSPIKE的时间,可以测量偏差。
测试装置100可以调节偏差调节部140的设定,以使得尖峰电压76为一定值以下。测试装置100可以调节偏差调节部140的设定,以使得尖峰电压产生的时间在一定值以下。
图8示意了具有根据其它实施方式的布线基板804的测试装置800的构成例。测试装置800包括装置本体802和布线基板804,且具有与测试装置100大致相同的结构。装置本体802具有与装置本体102大致相同的结构。布线基板804具有与布线基板104大致相同的结构。因此,关于测试装置800、装置本体802、以及布线基板804,主要说明与测试装置100、装置本体102、以及布线基板104的区别,关于其它方面,将从略说明。
装置本体802包括基准时钟产生部130和测试执行部832。测试执行部832包括定时产生部134、图案产生部136、波形整形部138、偏差调节部140、差动驱动器150、第1输出管脚172、和第2输出管脚174。偏差调节部140包括可变延迟电路142和可变延迟电路144。差动驱动器150包括输出阻抗152和输出阻抗154。在图8中,虽然省略了图示,但是装置本体802包括多个测试执行部832。
布线基板804对于多个测试执行部832的每一个分别包括第1端子112、第2端子114、连接节点116、第1布线122、以及第2布线124。布线基板804在包括多路复用器810和宽带比较器电路820这一点上与布线基板104不同。宽带比较器电路820可以是定时测量电路的一个例子。
多路复用器810包括输出端子812和多个输入端子818。多路复用器810的输入端子818可以是输出节点的一个例子。在每个输入端子818处分别连接有与多个测试执行部832的各个分别对应的连接节点116。多路复用器810从输入到多个输入端子818的信号中选择输出信号,将选择的一个信号提供给宽带比较器电路820。
布线基板804在第3布线126连接在连接节点116与多路复用器810的输入端子818之间这一点上,与布线基板104不同。另外,在图8中,未示出关于多个测试执行部832与多个连接节点116的连接关系的图示。
宽带比较器电路820与测试装置100的比较器162对应。宽带比较器电路820测量从多路复用器810所提供的信号的过渡定时。另外,在本实施方式中,虽然布线基板804是在采用多路复用器810的输入端子818代替第3端子118作为输出节点的情况下进行的说明,但是并不限定于此。例如,输出节点可以是宽带比较器电路820的输入节点828。
通过采用以上的构成,测试装置800即使在装置本体802上没有安装比较器的情况下也可以测量输出管脚间的偏差。另外,即使在安装于装置本体802上的比较器的精度低的情况下,通过在布线基板804上安装比该比较器精度高的宽带比较器电路820,测试装置800也可以精度良好地测定输出管脚间的偏差。
另外,在本实施方式中,是在第1信号和第2信号由相同的波形整形部生成的情况下进行说明的。尤其,是在第1信号和第2信号分别为同一测试信号的正相信号和负相信号的情况下进行说明的。但是,第1信号和第2信号并不限定于此。例如,第1信号和第2信号也可以由不同的波形整形部生成。另外,在第1信号从高电平或低电平过渡至低电平或高电平期间,第2信号可以开始从低电平或高电平向高电平或低电平的过渡。
以上,虽然利用实施方式对本发明的一个侧面进行了说明,但是本发明的技术范围并不限于上述实施方式中所记载的范围。在上述实施方式中,还可以进行多种变更或者改良。从权利要求书的记载可知,进行这样的变更或改进而得到的实施方式也被包含于本发明的技术范围内。
在权利要求书、说明书、及附图中所示的装置、系统、程序、及方法中的动作、次序、步骤、以及阶段等的各种处理的执行顺序,如果没有特别明示“在......之前”、“先于......”等,或者除非在后面的处理中使用前面的处理的输出,则应该认为可以以任意的顺序来实现。关于权利要求书、说明书、及附图中的动作流程,为了方便虽然使用了“首先”、“其次”等进行说明,但是并不意味着必须以这样的顺序来实施。
如从上述说明所明白的,根据本发明的一个实施方式,可以实现简便地测定测试装置的输出管脚间的偏差的布线基板、偏差测定方法以及测试装置。

Claims (10)

1.一种布线基板,用于测定通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试所述被测试设备的测试装置中的输出管脚之间的偏差,其特征在于,包括:
与应输出所述第1信号的第1输出管脚耦连的第1端子;
与应输出所述第2信号的第2输出管脚耦连的第2端子;
将所述第1端子和所述第2端子二者连接起来的连接节点;
连接于测量输入信号的过渡定时的定时测量电路的输出节点;
连接所述第1端子和所述连接节点的第1布线;
连接所述第2端子和所述连接节点的第2布线;和
连接所述连接节点和所述输出节点的第3布线;
其中,所述第1布线和所述第2布线长度相同,所述连接节点经所述第3布线向所述输出节点提供基于所述第1信号及所述第2信号的双方而形成的信号;所述输入信号是指输入到所述定时测量电路的信号。
2.根据权利要求1所述的布线基板,其特征在于,
所述第1布线和所述第2布线长度相同且最短。
3.根据权利要求1或2所述的布线基板,其特征在于,
所述测试装置包括所述定时测量电路以及与所述定时测量电路连接的输入端子;
所述输出节点是与所述输入端子耦连的第3端子。
4.根据权利要求1或2所述的布线基板,其特征在于,还包括所述定时测量电路;
所述输出节点是所述定时测量电路的输入节点。
5.根据权利要求1或2所述的布线基板,其特征在于,
所述第1输出管脚输出的所述第1信号是所述测试信号的正相信号,所述第2输出管脚输出的所述第2信号是所述测试信号的负相信号。
6.一种偏差测定方法,用于测量通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试所述被测试设备的测试装置中的输出管脚之间的偏差,其特征在于,包括:
准备权利要求1至5中任何一项所述的布线基板的步骤;
将输出所述第1信号的所述测试装置的所述第1输出管脚与所述布线基板的所述第1端子耦连,以及将输出所述第2信号的所述测试装置的所述第2输出管脚与所述布线基板的所述第2端子耦连的步骤;和
通过测量所述输出节点相对于参考电压的电压,来测量所述第1输出管脚与所述第2输出管脚之间的偏差的步骤。
7.根据权利要求6所述的偏差测定方法,其特征在于,测量所述偏差的步骤包括:
在将所述第2输出管脚维持在高电平或者低电平的状态下,从所述第1输出管脚输出所述第1信号,测量所述输出节点的电压与基于所述第2输出管脚的电平和所述第1信号的过渡状态的关系所确定的第1参考电压一致时的第1定时的步骤;
在将所述第1输出管脚维持在高电平或者低电平的状态下,从所述第2输出管脚输出所述第2信号,测量所述输出节点的电压与基于所述第1输出管脚的电平和所述第2信号的过渡状态的关系所确定的第2参考电压一致时的第2定时的步骤;和
根据所述第1定时和所述第2定时的差测量所述偏差的步骤。
8.根据权利要求6所述的偏差测定方法,其特征在于,
所述第1输出管脚输出所述测试信号的正相信号,所述第2输出管脚输出所述测试信号的负相信号;
测量所述偏差的步骤,根据在所述输出节点产生的尖峰电压的值来测量所述偏差。
9.根据权利要求6所述的偏差测定方法,其特征在于,所述第1信号和所述第2信号分别是同一测试信号的正相信号和负相信号;
测量所述偏差的步骤包括输出所述同一测试信号的步骤,根据在所述输出节点产生的尖峰电压的值来测量所述偏差的步骤。
10.一种测试装置,通过将包含第1信号和第2信号的测试信号提供给被测试设备来测试所述被测试设备,其特征在于,包括:
输出所述第1信号的第1输出管脚;
输出所述第2信号的第2输出管脚;
测量输入信号的过渡定时的定时测量电路;和
权利要求1至5中的任何一项所述的布线基板;
其中,所述输入信号是指输入到所述定时测量电路的信号。
CN200980133261.8A 2008-08-28 2009-08-27 互连基板、偏差测定方法及测试装置 Active CN102132166B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/199,811 2008-08-28
US12/199,811 US7768255B2 (en) 2008-08-28 2008-08-28 Interconnection substrate, skew measurement method, and test apparatus
PCT/JP2009/004177 WO2010023924A1 (ja) 2008-08-28 2009-08-27 相互接続基板、スキュー測定方法および試験装置

Publications (2)

Publication Number Publication Date
CN102132166A CN102132166A (zh) 2011-07-20
CN102132166B true CN102132166B (zh) 2014-04-09

Family

ID=41721107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980133261.8A Active CN102132166B (zh) 2008-08-28 2009-08-27 互连基板、偏差测定方法及测试装置

Country Status (5)

Country Link
US (1) US7768255B2 (zh)
JP (1) JP5475666B2 (zh)
KR (1) KR101178069B1 (zh)
CN (1) CN102132166B (zh)
WO (1) WO2010023924A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429727B2 (ja) * 2007-08-24 2014-02-26 ワイアイケー株式会社 半導体試験装置
US8592415B2 (en) 2009-02-11 2013-11-26 Reaction Biology Corp. Selective kinase inhibitors
US20110013691A1 (en) * 2009-07-17 2011-01-20 Tektronix, Inc. Method and apparatus to generate differential skew effect on transition minimized differential signaling signals
WO2017091681A1 (en) 2015-11-24 2017-06-01 Aclaris Therapeutics, Inc. Selective kinase inhibitors
KR102415198B1 (ko) 2017-11-20 2022-07-04 에스케이하이닉스 주식회사 스큐 보상 회로 및 이를 포함하는 반도체 장치
TWI647546B (zh) * 2018-06-29 2019-01-11 志聖工業股份有限公司 防板偏檢知設計
US11428732B2 (en) * 2019-08-28 2022-08-30 Keysight Technologies, Inc. Self-calibrating deskew fixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281698B1 (en) * 1999-07-07 2001-08-28 Mitsubishi Denki Kabushiki Kaisha LSI testing apparatus and timing calibration method for use therewith
JP2003043124A (ja) * 2001-07-31 2003-02-13 Advantest Corp 試験装置、及びキャリブレーション方法
JP2005331264A (ja) * 2004-05-18 2005-12-02 Yokogawa Electric Corp 半導体試験装置
CN1938788A (zh) * 2004-04-05 2007-03-28 爱德万测试株式会社 测试装置、相位调整方法及存储器控制器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656178A (en) * 1983-09-01 1987-04-07 Junusov Sabir J Pharmaceutical composition possessing antiarrhythmic effect
US4724378A (en) * 1986-07-22 1988-02-09 Tektronix, Inc. Calibrated automatic test system
JPH0862291A (ja) 1994-08-24 1996-03-08 Mitsubishi Denki Semiconductor Software Kk 半導体試験装置のスキュー校正装置
JP3401713B2 (ja) 1994-09-13 2003-04-28 富士通株式会社 集積回路試験装置
US6448799B1 (en) * 1999-09-30 2002-09-10 Hitachi Electronics Engineering Co., Ltd. Timing adjustment method and apparatus for semiconductor IC tester
JP3562581B2 (ja) * 2000-12-20 2004-09-08 日本電気株式会社 スキュー調整回路及び半導体集積回路
US7595629B2 (en) * 2004-07-09 2009-09-29 Formfactor, Inc. Method and apparatus for calibrating and/or deskewing communications channels
DE102004036145A1 (de) * 2004-07-26 2006-03-23 Infineon Technologies Ag Halbleiterschaltungseinrichtung und System zum Testen einer Halbleitervorrichtung
KR101329594B1 (ko) * 2006-06-30 2013-11-15 테라다인 인코퍼레이티드 교정 디바이스

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281698B1 (en) * 1999-07-07 2001-08-28 Mitsubishi Denki Kabushiki Kaisha LSI testing apparatus and timing calibration method for use therewith
JP2003043124A (ja) * 2001-07-31 2003-02-13 Advantest Corp 試験装置、及びキャリブレーション方法
CN1938788A (zh) * 2004-04-05 2007-03-28 爱德万测试株式会社 测试装置、相位调整方法及存储器控制器
JP2005331264A (ja) * 2004-05-18 2005-12-02 Yokogawa Electric Corp 半導体試験装置

Also Published As

Publication number Publication date
JPWO2010023924A1 (ja) 2012-01-26
US20100052723A1 (en) 2010-03-04
US7768255B2 (en) 2010-08-03
CN102132166A (zh) 2011-07-20
WO2010023924A1 (ja) 2010-03-04
KR20110034662A (ko) 2011-04-05
JP5475666B2 (ja) 2014-04-16
KR101178069B1 (ko) 2012-08-30

Similar Documents

Publication Publication Date Title
CN102132166B (zh) 互连基板、偏差测定方法及测试装置
JP5279724B2 (ja) 試験装置およびキャリブレーション方法
KR100402653B1 (ko) Ic 시험장치의 타이밍 교정방법 및 그 교정방법을이용한 교정기능을 갖는 ic 시험장치
US6298465B1 (en) Skew calibration means and a method of skew calibration
KR20010080184A (ko) 자동 테스트 장치용 원격 테스트 모듈
US8324947B2 (en) Output apparatus and test apparatus
US6784684B2 (en) Testing apparatus including testing board having wirings connected to common point and method of testing semiconductor device by composing signals
KR100736680B1 (ko) 반도체 소자 테스트 장치의 캘리브레이션 방법
JPWO2005026759A1 (ja) キャリブレーション用比較回路
KR100868995B1 (ko) 시험 장치, 조정 장치, 조정 방법, 및 조정 프로그램을기록한 기록 매체
JP4948421B2 (ja) 試験装置、調整装置、調整方法、および、調整プログラム
JP2020532164A (ja) 信号タイミングの調整
US9645195B2 (en) System for testing integrated circuit
CN110927560A (zh) 一种集成电路测试方法
CN114047369B (zh) 一种数字示波器和用于数字示波器的数字通道校正方法
JP2001183432A (ja) タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法
US20030016041A1 (en) Method and apparatus for testing semiconductor integrated circuit, and semiconductor integrated circuit manufactured thereby
JP2004170079A (ja) 試験波形供給方法、半導体試験方法、ドライバ、及び半導体試験装置
JP2000180514A (ja) タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置
JP2008045879A (ja) コンパレータのスキュー測定方法
JPH04129331A (ja) A/dコンバータ試験回路
JPS59160774A (ja) 集積回路の試験装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant