CN102125825A - 一种ZrO2纳米管负载B2O3催化剂的制备方法 - Google Patents

一种ZrO2纳米管负载B2O3催化剂的制备方法 Download PDF

Info

Publication number
CN102125825A
CN102125825A CN 201010571056 CN201010571056A CN102125825A CN 102125825 A CN102125825 A CN 102125825A CN 201010571056 CN201010571056 CN 201010571056 CN 201010571056 A CN201010571056 A CN 201010571056A CN 102125825 A CN102125825 A CN 102125825A
Authority
CN
China
Prior art keywords
catalyst
preparation
zro
anode
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010571056
Other languages
English (en)
Other versions
CN102125825B (zh
Inventor
王西新
赵建玲
侯晓蕊
赵靓
唐成春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN2010105710564A priority Critical patent/CN102125825B/zh
Publication of CN102125825A publication Critical patent/CN102125825A/zh
Application granted granted Critical
Publication of CN102125825B publication Critical patent/CN102125825B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明为一种ZrO2纳米管负载B2O3催化剂的制备方法。该方法包括以下步骤:配制含有浓度为0.5-1.0%NH4F、0.1-6%硼化物和5-12%(NH4)2SO4的水溶液,以其作为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用10-30V直流电室温进行阳极氧化,反应3-5小时,停止反应,将氧化物干燥、焙烧即制得催化剂;所述的浓度百分比均为质量百分比。本发明所制备B2O3/ZrO2催化剂同时具有较大的比表面积和体积,当比表面积与纳米粉体相同时,体积是纳米粉体的上万倍,解决了粉体载体比表面积与体积之间的矛盾,可克服粉体ZrO2负载B2O3催化剂所存在的缺陷。

Description

一种ZrO<sub>2</sub>纳米管负载B<sub>2</sub>O<sub>3</sub>催化剂的制备方法
技术领域
本发明属于纳米功能材料制备技术领域,特别涉及一种ZrO2纳米管负载B2O3催化剂的制备方法。
技术背景
氧化锆同时具有酸性、碱性、氧化性和还原性,是一种性能优异的催化剂载体。ZrO2负载B2O3催化剂对烷烃异构化、酚的烷基化、Friedel-Crafts酰基化、酯交换、Beckmann重排等反应都具有很好的催化性能。
目前,ZrO2负载B2O3催化剂的制备方法主要分为两个步骤,首先采用沉淀法、溶胶-凝胶法等方法制备ZrO2载体,然后以硼酸等为硼源制备催化剂。
《Journal of Molecular Catalysis A》(2004,212,P337-344)报导一种制备B2O3/ZrO2催化剂的方法,该方法采用沉淀法制备载体,将氨水滴入ZrOCl2·8H2O溶液中生成沉淀物,沉淀物经过滤、洗涤、干燥制得氢氧化氧锆,然后把氢氧化氧锆加入硼酸水溶液中,搅拌、浓缩,干燥、煅烧制得催化剂。
《Catalysis Communications》(2002,3,P411-416)报导一种制备B2O3/ZrO2催化剂的方法,该方法以ZrO(NO3)2·2H2O为锆源,具体步骤与前述方法相同。
《Applied Catalysis A》(2004,263,P83-89)报导一种制备B2O3/TiO2-ZrO2催化剂的方法,该方法采用溶胶-凝胶法制备载体,分别配置TiCl4和ZrOCl2·8H2O的无水甲醇溶液,冰浴冷却,在0℃温度下搅拌混合,在搅拌条件下将氨水的无水乙醇溶液加入TiCl4和ZrOCl2·8H2O的无水甲醇混合溶液中,水解形成凝胶,经老化、过滤、洗涤、干燥,得到TiO2-ZrO2复合氧化物载体,然后以硼酸为硼源、采用浸渍法制得催化剂。
上述方法制得的ZrO2载体负载B2O3催化剂都是粉体,存在制备工艺过程复杂、废液量大等缺点。众所周知,载体的结构、形貌、比表面积等对催化剂的性能有显著影响。常用的粉体载体比表面积较小,限制了其应用;纳米粉体载体虽可提高催化剂的比表面积和催化活性,但颗粒太小,存在不易与反应介质分离、流失严重、介质流动阻力大等缺陷。
发明内容
本发明所要解决的技术问题是:提供一种阳极氧化法制备B2O3/ZrO2纳米管负载催化剂的方法,以解决现有粉体载体负载B2O3催化剂所存在的缺陷以及制备工艺过程复杂、废液量大等缺点。
本发明解决该技术问题所采用的技术方案是:
一种ZrO2纳米管负载B2O3催化剂的制备方法,包括以下步骤:
配制含有浓度为0.5-1.0%NH4F、0.1-6%硼化物和5-12%(NH4)2SO4的水溶液,以其作为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用10-30V直流电室温进行阳极氧化,反应3-5小时,停止反应,将氧化物干燥、焙烧即制得催化剂;
所述的浓度百分比均为质量百分比。
按上述方法所制B2O3/ZrO2纳米管负载催化剂的长度20-60μm、管径50-150nm。
上述制备方法中所述的硼化物为硼酸、硼酸铵中的一种或两种的混合物。
本发明的有益效果是:
(1)本发明的突出特点是,在电解液中加入0.1-6%(wt)的硼化物,采用阳极氧化法直接制备ZrO2纳米管负载B2O3催化剂。所用硼化物为硼酸、硼酸铵中的一种或两种的混合物,硼酸或硼酸根在阳极氧化过程中会进入ZrO2纳米管结构中。
(2)本发明的显著特点是,所制备B2O3/ZrO2催化剂的载体是氧化锆纳米管,同时具有较大的比表面积和体积,当比表面积与纳米粉体相同时,体积是纳米粉体的上万倍,解决了粉体载体比表面积与体积之间的矛盾,可克服粉体ZrO2负载B2O3催化剂所存在的缺陷。另外,氧化锆纳米管载体高的长径比和内部中空的管状结构有利于催化剂性能的提高。
(3)本发明的显著特点是,制备工艺简单,操作方便,成本低,催化剂的管径和管长可控,易于工业化生产。所用电解液基本无毒,可回收、循环使用。
(4)本发明合适的阳极氧化电压为10-30V,电压升高,反应速度加快,管径增大;电压降低,反应速度减慢,管径缩小。
通过调整电解液组成、阳极氧化电压和反应时间,能够制备长度20-60μm、管径50-150nm的ZrO2纳米管负载B2O3催化剂。
附图说明:
图1为本发明实施例1所制备的ZrO2纳米管负载B2O3催化剂实物图。
下面结合附图和实施例对本发明进一步说明。
具体实施方式
实施例1
配制含1.0%(wt)NH4F、2%(wt)硼酸、10%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用20V直流电室温进行阳极氧化反应4小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、500℃焙烧即制得催化剂。
从附图1中可以看出:该催化剂管径120nm,长度达到50μm,比表面积为24.3m2/g,与直径42nm粉体的比表面积相似,体积是粉体的1.46万倍。
实施例2
配制含0.5%(wt)NH4F、6%(wt)硼酸铵、5%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用30V直流电室温进行阳极氧化反应3小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、400℃焙烧即制得催化剂。
实施例3
配制含1.0%(wt)NH4F、0.1%(wt)硼酸、12%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用10V直流电室温进行阳极氧化反应5小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、600℃焙烧即制得催化剂。
实施例4
配制含0.5%(wt)NH4F、4%(wt)硼酸铵、12%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用20V直流电室温进行阳极氧化反应5小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、400℃焙烧即制得催化剂。
实施例5
配制含0.6%(wt)NH4F、3%(wt)硼酸、8%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用15V直流电室温进行阳极氧化反应4小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、400℃焙烧即制得催化剂。
实施例6
配制含0.5%(wt)NH4F、1%(wt)硼酸、4%(wt)硼酸铵、12%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用10V直流电室温进行阳极氧化反应3小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、600℃焙烧即制得催化剂。
实施例7
配制含0.8%(wt)NH4F、2%(wt)硼酸、2%(wt)硼酸铵、8%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用20V直流电室温进行阳极氧化反应3小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、600℃焙烧即制得催化剂。
实施例8
配制含1.0%(wt)NH4F、4%(wt)硼酸、2%(wt)硼酸铵、5%(wt)(NH4)2SO4的水溶液为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用30V直流电室温进行阳极氧化反应5小时,在锆片表面生成氧化物。反应结束后,将氧化物120℃干燥、600℃焙烧即制得催化剂。

Claims (3)

1.一种ZrO2纳米管负载B2O3催化剂的制备方法,其特征为包括以下步骤:
配制含有浓度为0.5-1.0%NH4F、0.1-6%硼化物和5-12%(NH4)2SO4的水溶液,以其作为反应介质,锆片作阳极,铂片作阴极,阳极与阴极间距离为1.5cm,采用10-30V直流电室温进行阳极氧化,反应3-5小时,停止反应,将氧化物干燥、焙烧即制得催化剂;
所述的浓度百分比均为质量百分比。
2.如权利要求1所述的ZrO2纳米管负载B2O3催化剂的制备方法,其特征为按上述方法所制催化剂的长度20-60μm、管径50-150nm。
3.如权利要求1所述的ZrO2纳米管负载B2O3催化剂的制备方法,其特征为所述的硼化物为硼酸、硼酸铵中的一种或两种的混合物。
CN2010105710564A 2010-12-02 2010-12-02 一种ZrO2纳米管负载B2O3催化剂的制备方法 Expired - Fee Related CN102125825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105710564A CN102125825B (zh) 2010-12-02 2010-12-02 一种ZrO2纳米管负载B2O3催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105710564A CN102125825B (zh) 2010-12-02 2010-12-02 一种ZrO2纳米管负载B2O3催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN102125825A true CN102125825A (zh) 2011-07-20
CN102125825B CN102125825B (zh) 2012-05-23

Family

ID=44264249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105710564A Expired - Fee Related CN102125825B (zh) 2010-12-02 2010-12-02 一种ZrO2纳米管负载B2O3催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN102125825B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177461A2 (en) * 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US8921256B2 (en) 2011-05-24 2014-12-30 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
CN104300161A (zh) * 2014-09-28 2015-01-21 宁波大学 一种聚合物电解质燃料电池用电极催化剂材料
US8962517B2 (en) 2011-11-29 2015-02-24 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9321702B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US9352295B2 (en) 2014-01-09 2016-05-31 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US9738571B2 (en) 2013-03-15 2017-08-22 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9751079B2 (en) 2014-09-17 2017-09-05 Silura Technologies, Inc. Catalysts for natural gas processes
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US9956544B2 (en) 2014-05-02 2018-05-01 Siluria Technologies, Inc. Heterogeneous catalysts
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN109183124A (zh) * 2018-10-30 2019-01-11 湖南大学 一种窄禁带黑氧化锆纳米管薄膜及其制备方法
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
CN113877574A (zh) * 2021-11-11 2022-01-04 河北工业大学 一种二氧化锆纳米管阵列固载单原子催化剂的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049964A (zh) * 2007-05-23 2007-10-10 河北工业大学 二氧化锆纳米管的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049964A (zh) * 2007-05-23 2007-10-10 河北工业大学 二氧化锆纳米管的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《催化学报》 20021130 尹双凤 等 "己酮肟在改性氧化锆催化剂上的Beckmann重排反应 Ⅴ.活化焙烧温度对B2O3/ZrO2催化剂的影响" 第507-512页 第23卷, 第6期 *
《催化学报》 20040531 程时标 等 "B2O3/ZrO2催化剂的11BMASNMR表征" 第393-396页 第25卷, 第5期 *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US10195603B2 (en) 2010-05-24 2019-02-05 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
US10654769B2 (en) 2011-05-24 2020-05-19 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US8921256B2 (en) 2011-05-24 2014-12-30 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US11795123B2 (en) 2011-05-24 2023-10-24 Lummus Technology Llc Catalysts for petrochemical catalysis
US9040762B2 (en) 2011-05-24 2015-05-26 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9963402B2 (en) 2011-05-24 2018-05-08 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9446387B2 (en) 2011-05-24 2016-09-20 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US8962517B2 (en) 2011-11-29 2015-02-24 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US9751818B2 (en) 2011-11-29 2017-09-05 Siluria Technologies, Inc. Nanowire catalysts and methods for their use and preparation
US11078132B2 (en) 2011-11-29 2021-08-03 Lummus Technology Llc Nanowire catalysts and methods for their use and preparation
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US11254626B2 (en) 2012-01-13 2022-02-22 Lummus Technology Llc Process for separating hydrocarbon compounds
US9527784B2 (en) 2012-01-13 2016-12-27 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
WO2013177461A2 (en) * 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US9556086B2 (en) 2012-05-24 2017-01-31 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US11370724B2 (en) 2012-05-24 2022-06-28 Lummus Technology Llc Catalytic forms and formulations
AU2013266189B2 (en) * 2012-05-24 2018-01-04 Lummus Technology Llc Catalysts comprising catalytic nanowires and their use
WO2013177461A3 (en) * 2012-05-24 2014-01-16 Siluria Technologies, Inc. Catalysts comprising catalytic nanowires and their use
US11242298B2 (en) 2012-07-09 2022-02-08 Lummus Technology Llc Natural gas processing and systems
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US10183900B2 (en) 2012-12-07 2019-01-22 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US11168038B2 (en) 2012-12-07 2021-11-09 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10308565B2 (en) 2013-03-15 2019-06-04 Silura Technologies, Inc. Catalysts for petrochemical catalysis
US10865166B2 (en) 2013-03-15 2020-12-15 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US9738571B2 (en) 2013-03-15 2017-08-22 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
US11407695B2 (en) 2013-11-27 2022-08-09 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10927056B2 (en) 2013-11-27 2021-02-23 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US11254627B2 (en) 2014-01-08 2022-02-22 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9512047B2 (en) 2014-01-08 2016-12-06 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9321702B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9321703B2 (en) 2014-01-08 2016-04-26 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9701597B2 (en) 2014-01-09 2017-07-11 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US9352295B2 (en) 2014-01-09 2016-05-31 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US11208364B2 (en) 2014-01-09 2021-12-28 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10829424B2 (en) 2014-01-09 2020-11-10 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US11008265B2 (en) 2014-01-09 2021-05-18 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10780420B2 (en) 2014-05-02 2020-09-22 Lummus Technology Llc Heterogeneous catalysts
US9956544B2 (en) 2014-05-02 2018-05-01 Siluria Technologies, Inc. Heterogeneous catalysts
US10300465B2 (en) 2014-09-17 2019-05-28 Siluria Technologies, Inc. Catalysts for natural gas processes
US9751079B2 (en) 2014-09-17 2017-09-05 Silura Technologies, Inc. Catalysts for natural gas processes
US11000835B2 (en) 2014-09-17 2021-05-11 Lummus Technology Llc Catalysts for natural gas processes
CN104300161A (zh) * 2014-09-28 2015-01-21 宁波大学 一种聚合物电解质燃料电池用电极催化剂材料
CN104300161B (zh) * 2014-09-28 2016-08-24 宁波大学 一种聚合物电解质燃料电池用电极催化剂材料
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9790144B2 (en) 2015-03-17 2017-10-17 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US11542214B2 (en) 2015-03-17 2023-01-03 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9567269B2 (en) 2015-03-17 2017-02-14 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10787400B2 (en) 2015-03-17 2020-09-29 Lummus Technology Llc Efficient oxidative coupling of methane processes and systems
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US10407361B2 (en) 2016-04-13 2019-09-10 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US11505514B2 (en) 2016-04-13 2022-11-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10870611B2 (en) 2016-04-13 2020-12-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
CN109183124A (zh) * 2018-10-30 2019-01-11 湖南大学 一种窄禁带黑氧化锆纳米管薄膜及其制备方法
CN113877574A (zh) * 2021-11-11 2022-01-04 河北工业大学 一种二氧化锆纳米管阵列固载单原子催化剂的制备方法及应用
CN113877574B (zh) * 2021-11-11 2024-02-02 河北工业大学 一种二氧化锆纳米管阵列固载单原子催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN102125825B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN102125825B (zh) 一种ZrO2纳米管负载B2O3催化剂的制备方法
Zhang et al. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers
Li et al. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning
Li et al. Fabrication of titania nanofibers by electrospinning
CN106731012B (zh) 一种超浸润二氧化钛纳米棒多孔膜的制备及其在乳液分离中的应用
CN101362649B (zh) 一种电纺介孔氧化锆纤维膜的制备方法
CN102658371B (zh) 一种超细铂纳米线的制备方法
CN101942090B (zh) 一种纳米纤维聚苯胺的制备方法
CN103832993A (zh) 一种由碳水化合物制备发光碳点的方法
CN101545158A (zh) 一种管状和管中管结构的无机氧化物及其制备方法
CN104289249A (zh) 一种可用于聚合物燃料电池阴极催化剂的Fe、N共掺杂多孔碳纳米纤维的制备方法
CN103696235B (zh) 一种碳纤维负载介孔二氧化钛的制备方法
CN100500576C (zh) 二氧化锆纳米管的制备方法
CN106268798A (zh) 用于甲酸氧化的Pd/WO3‑RGO催化剂及其制备方法
CN104018189A (zh) 一种新型纳米银线的制备方法
CN106140162A (zh) 一种用于电催化析氢的铜纳米粒子/碳纳米纤维杂化材料的制备方法
CN102553505B (zh) 基于纳米孔阵列的纳通道式催化纳反应器及其制备方法和应用
CN101519233B (zh) 利用短TiO2纳米管阵列薄膜电极光电催化降解有机物的方法
CN108014789A (zh) 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法
CN108940379B (zh) 双亲性Lindqvist型多酸TiO2复合纳米纤维及其制备方法和应用
CN105107548A (zh) 一种多孔结构金属/稀土共掺杂无机纳米纤维光催化材料的制备方法
CN110697687A (zh) 一种具有核壳结构的A12O3包覆CNTs粉体的制备方法
CN109896863A (zh) 耐高温氧化铝陶瓷纤维及其溶胶-凝胶制备方法
CN102068989B (zh) 一种ZrO2纳米管负载铜催化剂的制备方法
CN102500400A (zh) 一种酸性催化膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20151202

EXPY Termination of patent right or utility model