CN102066408B - 毒素基因及其使用方法 - Google Patents

毒素基因及其使用方法 Download PDF

Info

Publication number
CN102066408B
CN102066408B CN200980122563.5A CN200980122563A CN102066408B CN 102066408 B CN102066408 B CN 102066408B CN 200980122563 A CN200980122563 A CN 200980122563A CN 102066408 B CN102066408 B CN 102066408B
Authority
CN
China
Prior art keywords
sequence
plant
nucleic acid
nucleotide sequence
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980122563.5A
Other languages
English (en)
Other versions
CN102066408A (zh
Inventor
S·阿加瓦尔
C·坎贝尔
B·麦克纳尔蒂
K·S·桑普森
D·J·汤姆索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
BASF Agricultural Solutions Seed US LLC
Original Assignee
Athenix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41258971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102066408(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Athenix Corp filed Critical Athenix Corp
Priority to CN201510303590.XA priority Critical patent/CN105002189A/zh
Publication of CN102066408A publication Critical patent/CN102066408A/zh
Application granted granted Critical
Publication of CN102066408B publication Critical patent/CN102066408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1278Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Pest Control & Pesticides (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Insects & Arthropods (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

本发明提供用于赋予细菌、植物、植物细胞、组织和种子杀虫活性的组合物和方法。本发明提供包含δ-内毒素多肽的编码序列的组合物。该编码序列可用于在植物和细菌中转化和表达的DNA构建体和表达盒中。该组合物还包含转化的细菌、植物、植物细胞、组织和种子。具体而言,本发明提供分离的δ-内毒素核酸分子。此外,本发明涵盖对应于多核苷酸的氨基酸序列和特异性结合那些氨基酸序列的抗体。具体而言,本发明提供分离的核酸分子,其包含编码SEQ ID NO:61-121和133-141中所示的氨基酸序列的核苷酸序列,或SEQ ID NO:1-60、124-132和142-283中所示的核苷酸序列,及其变体和片段。

Description

毒素基因及其使用方法
技术领域
本发明涉及分子生物学领域。所提供的是编码杀虫蛋白的新基因。这些蛋白质和编码它们的核酸序列用于制备杀虫制剂和用于产生转基因抗害虫植物。
背景技术
苏云金芽孢杆菌(Bacillus thuringiensis)是革兰氏阳性的产芽孢土壤细菌,其特征在于其产生晶状包含体的能力,该晶状包含体特异性地对某些目和种的昆虫有毒,但对植物和其他非靶标生物体无害。由于此原因,包含苏云金芽孢杆菌菌株或它们的杀虫蛋白的组合物可以用作环境可接受的杀虫剂来控制农业昆虫害虫或各种人或动物疾病的昆虫媒介。
源自苏云金芽孢杆菌的晶体(Cry)蛋白质(δ-内毒素)具有主要针对鳞翅目(Lepidopteran)、双翅目(Dipteran)和鞘翅目(Coleopteran)幼虫的有效杀虫活性。这些蛋白质还已显示针对膜翅目(Hymenoptera)、同翅目(Homoptera)、虱目(Phthiraptera)、食毛目(Mallophaga)和蜱螨亚纲(Acari)害虫目,以及其他无脊椎动物目如线形动物门(Nemathelminthes)、扁形动物(Platyhelminthes)和肉鞭虫门(Sarcomastigorphora)的活性(Advanced Engineered Pesticides,MarcelDekker,Inc.,New York,N.Y.中的Feitelson(1993)The BacillusThuringiensis family tree)。最初主要根据这些蛋白质的杀虫活性将它们分类为CryI至CryV。主要的种类是鳞翅目(Lepidoptera)特异的(I)、鳞翅目和双翅目(Diptera)特异的(II)、鞘翅目(Coleoptera)特异的(III)、双翅目特异的(IV)和线虫类特异的(V)和(VI)。进一步将这些蛋白质分类进入亚家族;为各家族内更高度相关的蛋白质指定各字母如Cry1A、Cry1B、Cry1C等。各分部内还更接近地相关的蛋白质命名为如Cry1C1、Cry1C2等。
最近描述了基于氨基酸序列同源性而非昆虫靶特异性的Cry基因的新命名法(Crickmore等(1998)Microbiol.Mol.Biol.Rev.62:807-813)。在此新分类中,为各毒素指定合并了初级等级(阿拉伯数字)、二级等级(大写字母)、三级等级(小写字母)和四级等级(另一个阿拉伯数字)的唯一的名称。在此新分类中,在初级等级中已将罗马数字调换为阿拉伯数字。序列同一性低于45%的蛋白质具有不同的初级等级,二级等级和三级等级的标准分别是78%和95%。
晶体蛋白质直到被摄入并在昆虫中肠中溶解时才显示杀虫活性。昆虫消化道中的蛋白酶将摄入的前毒素水解为活性毒性分子。(和Whiteley(1989)Microbiol.Rev.53:242-255)。该毒素与靶标幼虫中肠中的顶刷状缘受体结合并插入顶膜(apical membrane)产生离子通道或管孔,导致幼虫死亡。
δ-内毒素一般具有5个保守序列域(sequence domain)和3个保守结构域(见例如de Maagd等(2001)Trends Genetics 17:193-199)。第一个保守结构域由7个α螺旋组成并涉及膜插入和管孔形成。结构域II由以希腊钥匙构型排列的3个β片层组成,而结构域III由”薄卷饼”型的2个反平行β片层组成(de Maagd等,2001,上文)。结构域II和III涉及受体识别和结合,因此认为它们是毒素特异性决定子。
基于苏云金芽孢杆菌的杀虫剂的密集使用已经在菜蛾(Plutellaxylostella)田间群体中引起了抗性(Ferré和Van Rie(2002)Annu.Rev.Entomol.47:501-533)。最常见的抗性机制是毒素与其一种或多种特异性中肠受体结合的减弱。这还可以赋予对共用同一受体的其他毒素的交叉抗性(Ferré和Van Rie(2002))。
发明概述
本发明提供用于赋予细菌、植物、植物细胞、组织和种子害虫抗性的组合物和方法。组合物包含编码δ-内毒素多肽序列的核酸分子、包含那些核酸分子的载体和包含载体的宿主细胞。组合物还包含该内毒素的多肽序列和那些多肽的抗体。该核苷酸序列可以用于用来在生物体(包含微生物和植物)中转化和表达的DNA构建体或表达盒中。核苷酸或氨基酸序列可以是设计用于在包含但不限于微生物或植物的生物体中表达的合成序列。组合物还包含转化的细菌、植物、植物细胞、组织和种子。
具体而言,提供对应于δ-内毒素核酸序列的分离的核酸分子。此外,涵盖对应于该多核苷酸的氨基酸序列。具体而言,本发明提供编码包含编码SEQ ID NO:61-121和133-141中任一项所示的氨基酸序列的核苷酸序列的分离的核酸分子,或SEQ ID NO:1-60和124-132中任一所示的核苷酸序列,以及其变体和片段。还涵盖与本发明的核苷酸序列互补的核苷酸序列,或与本发明的序列杂交的核苷酸序列。
本发明的组合物和方法用于产生具有杀虫剂抗性的生物体,尤其是细菌和植物。这些生物体和从它们衍生的组合物是为了农业目的而希望得到的。本发明的组合物还用于产生改变的或改进的具有杀虫活性的δ-内毒素蛋白质,或用于检测δ-内毒素蛋白质或核酸在产物或生物体中的存在。
发明详述
本发明涉及用于在生物体,尤其是植物或植物细胞中调节害虫抗性的组合物和方法。该方法涉及用编码本发明的δ-内毒素蛋白质的核苷酸序列转化生物体。具体而言,本发明的核苷酸序列可用于制备具有杀虫活性的植物和微生物。因此,提供转化的细菌、植物、植物细胞、植物组织和种子。组合物是苏云金芽孢杆菌δ-内毒素的核酸和蛋白质。这些序列用于构建表达载体用于随后转化进入目的生物体,作为用于分离其他δ-内毒素基因的探针,和用于通过本领域已知的方法,如结构域交换或DNA改组产生改变的杀虫蛋白。这些蛋白质用于控制或杀死鳞翅目、鞘翅目和线虫类害虫群体,并用于产生具有杀虫活性的组合物。
“δ-内毒素”指具有针对一种或多种害虫的毒性活性的源自苏云金芽孢杆菌的毒素,或与这种蛋白质具有同源性的蛋白质,所述一种或多种害虫包含但不限于鳞翅目、双翅目和鞘翅目的成员或线虫动物门(Nematoda phylum)的成员。在一些情况下,已从包含双酶梭菌(Clostridium bifermentans)和日本甲虫类芽孢杆菌(Paenibacilluspopilliae)的其他生物体分离了δ-内毒素蛋白质。δ-内毒素蛋白质包含从本文公开的全长核苷酸序列推断的氨基酸序列,和由于使用其他下游起始位点或由于产生具有杀虫活性的较短蛋白质的加工而比全长序列短的氨基酸序列。加工可以发生在表达该蛋白质的生物体中,或该蛋白质被摄入后发生在害虫体内。
δ-内毒素包含鉴定为cry1至cry43、cyt1和cyt2和Cyt-样毒素的蛋白质。目前已知超过250种具有大范围的特异性和毒性的δ-内毒素。全面的列表见Crickmore等(1998),Microbiol.Mol.Biol.Rev.62:807-813,定期更新见www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index上的Crickmore等(2003)“Bacillus thuringiensis toxin nomenclature”。
本文所提供的是赋予杀虫活性的新的分离的核苷酸序列。还提供δ-内毒素蛋白质的氨基酸序列。从该基因翻译产生的蛋白质允许细胞控制或杀死将其摄入的害虫。
分离的核酸分子及其变体和片段
本发明的一个方面涉及包含编码δ-内毒素蛋白质和多肽或其生物学活性部分的核苷酸序列的分离的或重组的核酸分子,以及能够用作杂交探针来鉴定δ-内毒素编码核酸的核酸分子。本文所用的术语“核酸分子”旨在包含DNA分子(例如重组DNA、cDNA或基因组DNA)和RNA分子(例如mRNA)以及用核苷酸类似物产生的DNA或RNA的类似物。核酸分子可以是单链的或双链的,但优选是双链DNA。
“分离的”或“纯化的”核酸分子或蛋白质或其生物学活性部分基本上游离于其他细胞物质或培养基(通过重组技术产生时),或基本上游离于化学品前体或其他化学品(化学合成时)。优选地,“分离的”核酸游离于衍生该核酸的生物体的基因组DNA中天然位于该核酸侧翼(即位于该核酸的5′和3′端的序列)的序列(优选蛋白质编码序列)。为了本发明的目的,当用来指核酸分子时,“分离的”排除了分离的染色体。例如,在各种实施方案中,分离的δ-内毒素编码核酸分子可以包含少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb在衍生该核酸的细胞基因组DNA中天然位于该核酸分子侧翼的核苷酸序列。基本上游离于细胞物质的δ-内毒素蛋白质包含具有少于约30%、20%、10%或5%(按干重计)的非δ-内毒素蛋白质(本文还称之为“污染蛋白质”)的蛋白质制剂。
编码本发明的蛋白质的核苷酸序列包含SEQ ID NO:1-60和124-132中所示的序列及其变体、片段和互补序列。“互补序列”是指与给定的核苷酸序列充分互补,使得其可以与该给定的核苷酸序列杂交从而形成稳定的双链体的核苷酸序列。由该核苷酸序列编码的δ-内毒素蛋白质的对应的氨基酸序列示于SEQ ID NO:61-121和133-141。
本发明还涵盖是这些δ-内毒素编码核苷酸序列的片段的核酸分子。“片段”是指编码δ-内毒素蛋白质的核苷酸序列的部分。核苷酸序列的片段可以编码δ-内毒素蛋白质的生物学活性部分,或者它可以是用下文所公开的方法可以用作杂交探针或PCR引物的片段。取决于预期的用途,是δ-内毒素核苷酸序列的片段的核酸分子包含至少50、100、200、300、400、500、600、700、800、900、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800、1850、1900、1950、2000、2050、2100、2150、2200、2250、2300、2350、2400、2450、2500、2550、2600、2650、2700、2750、2800、2850、2900、2950、3000、3050、3100、3150、3200、3250、3300、3350个毗连核苷酸,或高达存在于本文所公开的全长δ-内毒素编码核苷酸序列中的核苷酸的数目。“毗连”核苷酸是指彼此相邻的核苷酸残基。本发明的核苷酸序列的片段可编码保留δ-内毒素蛋白质的生物学活性并因此保留杀虫活性的蛋白质片段。“保留活性”是指该片段可具有至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的δ-内毒素蛋白质的杀虫活性。测量杀虫活性的方法为本领域熟知。见例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等(1988)Biochem.J.252:199-206;Marrone等(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,所有文献在此完整引入作为参考。
编码本发明的蛋白质的生物学活性部分的δ-内毒素编码核苷酸序列的片段可编码至少约15、25、30、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100个毗连氨基酸,或高达存在于本发明的全长δ-内毒素蛋白质中的氨基酸的总数。
本发明优选的δ-内毒素蛋白质由与SEQ ID NO:1-60和124-132的核苷酸序列几乎相同的核苷酸序列编码。“几乎相同的”是指使用标准参数用本文所述的比对程序之一与参考序列相比,具有至少约60%或65%序列同一性、约70%或75%序列同一性、约80%或85%序列同一性、约90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性的氨基酸或核苷酸序列。本领域技术人员可知,通过考虑密码子简并性、氨基酸相似性、阅读框定位等,可以适当调节这些值来测定由两条核苷酸序列编码的蛋白质的对应的同一性。
为了测定两条氨基酸序列或两个核酸的百分比同一性,比对序列用于最佳比较的目的。两条序列间的百分比同一性是序列所共有的相同位置数的函数(即百分比同一性=相同位置数/位置(例如重叠位置)总数x100)。在一个实施方案中,两条序列具有相同的长度。在另一个实施方案中,比较跨越参考序列的整体(例如跨越SEQ ID NO:1-60和124-132之一的整体,或跨越SEQ ID NO:61-121和133-141之一的整体)。可以用与下文所述技术类似的允许或不允许缺口的技术来测定两条序列间的百分比同一性。在计算百分比同一性中,通常计数精确匹配。
可以用数学算法完成两条序列间百分比同一性的测定。用来进行两条序列的比较的数学算法的非限制性实例是按Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5877中修改的Karlin和Altschul(1990)Proc.Natl.Acad.Sci.USA 87:2264的算法。这种算法已被并入Altschul等(1990)J.Mol.Biol.215:403的BLASTN和BLASTX程序。可以用BLASTN程序,得分=100,字长=12进行BLAST核苷酸搜索,以获得与本发明的δ-内毒素样核酸分子同源的核苷酸序列。可以用BLASTX程序,得分=50,字长=3进行BLAST蛋白质搜索,以获得与本发明的δ-内毒素蛋白质分子同源的氨基酸序列。为了获得用于比较目的的缺口比对,可以按Altschul等(1997)Nucleic Acids Res.25:3389中所述使用缺口BLAST(在BLAST 2.0中)。备选地,可以用PSI-Blast进行检测分子间距离关系的迭代搜索。见Altschul等(1997)上文。当利用BLAST、缺口BLAST和PSI-Blast程序时,可以使用各程序(例如BLASTX和BLASTN)的默认参数。还可以通过目检进行手工比对。
用于进行序列比较的数学算法的另一个非限制性实例是ClustalW算法(Higgins等(1994)Nucleic Acids Res.22:4673-4680)。ClustalW比较序列并比对氨基酸或DNA序列的整体,从而可以提供关于整个氨基酸序列的序列保守性的数据。ClustalW算法用于几种市售DNA/氨基酸分析软件包中,如Vector NTI Program Suite(Invitrogen Corporation,Carlsbad,CA)的ALIGNX模块。用ClustalW比对氨基酸序列后,可以评估百分比氨基酸同一性。用于ClustalW比对分析的软件程序的非限制性实例是GENEDOCTM。GENEDOCTM(Karl Nicholas)允许评估多个蛋白质间的氨基酸(或DNA)相似性和同一性。用于进行序列比较的数学算法的另一个非限制性实例是Myers和Miller(1988)CABIOS 4:11-17的算法。这种算法已并入ALIGN程序(2.0版),其是GCG Wisconsin Genetics SoftwarePackage,版本10(可从Accelrys,Inc.,9685 Scranton Rd.,San Diego,CA,USA获得)的部分。当用ALIGN程序进行氨基酸序列比较时,可以使用PAM120权重余数表(weight residue table),缺口长度罚分12和缺口罚分4。
除非另作说明,将使用以下参数,用GAP版本10(其使用Needleman和Wunsch(1970)J.Mol.Biol.48(3):443-453的算法)来测定序列同一性或相似性:核苷酸序列的%同一性和%相似性使用缺口权重(GAP Weight)50和长度权重3和nwsgapdna.cmp评分矩阵;氨基酸序列的%同一性或%相似性使用缺口权重8和长度权重3和BLOSUM62评分程序。还可以使用等同的程序。“等同的程序”指任意序列比较程序,其为所讨论的任意两条序列产生这样的比对,当与由GAP Version 10产生的对应的比对相比时,该比对具有相同的核苷酸残基匹配和相同的百分比序列同一性。本发明还包含变体核酸分子。δ-内毒素编码核苷酸序列的“变体”包含编码本文所公开的δ-内毒素蛋白质,但由于遗传密码的简并性而保守地不同的那些序列,以及如上文所讨论的几乎相同的那些序列。可以用熟知的分子生物学技术,如下文概述的聚合酶链反应(PCR)和杂交技术来鉴定天然存在的等位变体。变体核苷酸序列还包含合成衍生的核苷酸序列,其通过例如使用位点定向诱变产生,但其仍按下文所讨论编码本发明中公开的δ-内毒素蛋白质。本发明所包含的变体蛋白质是有生物学活性的,即它们继续保持所希望的天然蛋白质的生物学活性,即保留杀虫活性。“保留活性”是指变体可具有至少约30%、至少约50%、至少约70%或至少约80%天然蛋白质的杀虫活性。测量杀虫活性的方法为本领域熟知。见例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等(1988)Biochem.J.252:199-206;Marrone等(1985)J.of Economic Entomology78:290-293;和美国专利号5,743,477,所有文献在此完整引入作为参考。
熟练的技术人员可进一步理解,可以通过本发明的核苷酸序列的突变来引入改变,从而在不改变蛋白质生物学活性的情况下导致所编码的δ-内毒素蛋白质氨基酸序列中的改变。因此,可以通过将一个或多个核苷酸取代、添加或缺失引入本文所公开的对应核苷酸序列来产生分离变体的核酸分子,以便将一个或多个氨基酸取代、添加或缺失引入所编码的蛋白质。可以通过标准技术,如位点定向诱变和PCR介导的诱变引入突变。这类变体核苷酸序列也包含于本发明。
例如,可以在一个或多个预测的非必需氨基酸残基处产生保守氨基酸取代。“非必需”氨基酸残基是可以在不改变生物学活性的情况下从δ-内毒素蛋白质的野生型序列改变的残基,而“必需”氨基酸残基为生物学活性所需。“保守氨基酸取代”是用具有相似侧链的氨基酸残基取代该氨基酸残基的取代。已在本领域内定义了具有相似侧链的氨基酸残基的家族。这些家族包含具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、β分支(β-branched)侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。
δ-内毒素一般具有5个保守序列域和3个保守结构域(见例如deMaagd等(2001)Trends Genetics 17:193-199)。第一个保守结构域由7个α螺旋组成并涉及膜插入和管孔形成。结构域II由以希腊钥匙构型排列的3个β-片层组成,而结构域III由”薄卷饼”型的两个反平行β-片层组成(de Maagd等,2001,上文)。结构域II和III涉及受体识别和结合,并因此认为它们是毒素特异性决定子。
可以在保留功能的非保守区域中进行氨基酸取代。一般,不对保守氨基酸残基或处于保守基序内的氨基酸残基进行这类取代,其中这类残基是蛋白质活性必需的。保守且可以为蛋白质活性必需的残基实例包含,例如,包含于本发明的氨基酸序列比对中的所有蛋白质和已知的δ-内毒素序列间相同的残基。保守但可以允许保守氨基酸取代且仍保留活性的残基的实例包含,例如,在包含于本发明的氨基酸序列比对中的所有蛋白质和已知的δ-内毒素序列间仅具有保守取代的残基。但是,本领域技术人员应理解,功能性变体可以在保守残基中具有较少的保守或非保守改变。
备选地,可以通过沿全部或部分编码序列随机引入突变,如通过饱和诱变来产生变体核苷酸序列,并可以针对赋予δ-内毒素活性的能力筛选产生的突变体来鉴定保留活性的突变体。诱变后,可以重组表达所编码的蛋白质,并可以用标准测定技术测定蛋白质的活性。
可以用如PCR、杂交等的方法鉴定对应的δ-内毒素序列,这类序列与本发明的序列具有基本的同一性。见例如Sambrook和Russell(2001)Molecular Cloning:A Laboratory Manual.(Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,NY)和Innis等(1990)PCR Protocols:A Guideto Methods and Applications(Academic Press,NY)。
在杂交法中,可以用全部或部分δ-内毒素核苷酸序列来筛选cDNA或基因组文库。构建这类cDNA和基因组文库的方法一般为本领域已知并公开于Sambrook和Russell,2001,上文中。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并可以用可检测基团如32P或任意其他可检测标记,如其他放射性同位素、荧光化合物、酶或酶辅因子标记。可以根据本文所公开的已知的δ-内毒素编码核苷酸序列,通过标记合成的寡核苷酸来产生用于杂交的探针。此外,可以使用根据核苷酸序列或所编码的氨基酸序列中的保守核苷酸或氨基酸残基设计的简并引物。探针通常包含在严格条件下与本发明的δ-内毒素编码核苷酸序列或其片段或变体的至少约12、至少约25、至少约50、75、100、125、150、175、200、250、300、350或400个相邻核苷酸杂交的核苷酸序列区域。用于制备杂交探针的方法一般为本领域已知并公开于Sambrook和Russell,2001,上文中,其在此引用作为参考。
例如,可以将本文所公开的整个δ-内毒素序列或其一个或多个部分用作能够特异性地与对应的δ-内毒素样序列和信使RNA杂交的探针。为了在各种条件下达到特异性杂交,这类探针包含独特且优选长度为至少约10个核苷酸或长度为至少约20个核苷酸的序列。可以用这类探针通过PCR从所选择的生物体扩增对应的δ-内毒素序列。该技术可以用来从所希望的生物体分离其他编码序列或作为诊断测定来测定编码序列在生物体中的存在。杂交技术包含涂布DNA文库的杂交筛选(噬斑或菌落;见例如Sambrook等(1989)Molecular Cloning:A Laboratory Manual(第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。
这类序列的杂交可以在严格条件下进行。“严格条件”或“严格杂交条件”是指这样的条件,在该条件下,探针可与其靶序列杂交至高于与其他序列的杂交的可检测程度(例如超过背景至少2倍)。严格条件是序列依赖性的且在不同环境中可不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定与探针100%互补的靶序列(同源探测)。备选地,可以将严格性条件调整为允许序列中的一些错配,以便于检测较低程度的相似性(异源探测)。一般,探针长度小于约1000个核苷酸,优选长度小于500个核苷酸。
通常,严格条件可以是这样的条件:在pH 7.0至8.3,盐浓度低于约1.5M钠离子,通常为约0.01至1.0M钠离子浓度(或其他盐类),温度对短探针(例如10至50个核苷酸)为至少约30℃,对长探针(例如大于50个核苷酸)为至少约60℃。还可以用去稳定剂如甲酰胺的加入达到严格条件。示例性低严格性条件包含在37℃下用30-35%甲酰胺、1M NaCl、1%SDS(十二烷基硫酸钠)的缓冲液杂交,并在50-55℃下在1X至2X SSC(20X SSC=3.0M NaCl/0.3M柠檬酸三钠)中洗涤。示例性中等严格性条件包含在37℃下在40-45%甲酰胺、1.0M NaCl、1%SDS中杂交,并在55-60℃下在0.5X至1X SSC中洗涤。示例性高严格性条件包含在37℃下在50%甲酰胺、1M NaCl、1%SDS中杂交,并在60-65℃下在0.1X SSC中洗涤。可选地,洗涤缓冲液可以包含约0.1%至约1%SDS。杂交时间一般少于约24小时,通常为约4至约12小时。
特异性通常是杂交后洗涤的函数,临界因子是最终洗涤溶液的离子强度和温度。对于DNA-DNA杂种,可以从Meinkoth和Wahl(1984)Anal.Biochem.138:267-284的方程得出近似Tm值:Tm=81.5℃+16.6(logM)+0.41(%GC)-0.61(%甲酰胺)-500/L;其中M是单价盐离子的体积摩尔浓度,%GC是DNA中鸟苷和胞嘧啶核苷酸的百分比,%甲酰胺是杂交溶液中甲酰胺的百分比,L是以碱基对计的杂化物的长度。Tm是在该温度下50%互补靶序列与完全匹配的探针杂交的温度。对每1%的错配,Tm降低约1℃;因此,可以调节Tm、杂交和/或洗涤条件来与具有所希望的同一性的序列杂交。例如,如果寻找具有≥90%同一性的序列,可以将Tm降低10℃。一般,在给定的离子强度和pH下,选择严格条件为比特定序列和它的互补序列的热熔点(thermal melting point,Tm)低约5℃。但是,极严格条件可以利用比热熔点(Tm)低1、2、3或4℃下的杂交和/或洗涤;中等严格条件可以利用比热熔点(Tm)低6、7、8、9或10℃下的杂交和/或洗涤;低严格性条件可以利用比热熔点(Tm)低11、12、13、14、15或20℃下的杂交和/或洗涤。普通技术人员可理解,利用该方程、杂交和洗涤组合物和所希望的Tm,隐喻了杂交和/洗涤溶液的严格性中的变化。如果所希望的错配程度导致低于45℃(水性溶液)或32℃(甲酰胺溶液)的Tm,则优选提高SSC浓度,使得可以使用较高的温度。核酸杂交的大量指导见于Tijssen(1993)Laboratory Techniques in Biochemistry andMolecular Biology-Hybridization with Nucleic Acid Probes,第I部分,第2章(Elsevier,纽约);和Ausubel等,编辑(1995)Current Protocols inMolecular Biology,第2章(Greene Publishing and Wiley-Interscience,纽约)中。见Sambrook等(1989)Molecular Cloning:A Laboratory Manual(第2版,冷泉港实验室出版社,冷泉港,纽约(Cold Spring HarborLaboratory Press,Cold Spring Harbor,New York))。
分离的蛋白质及其变体和片段
δ-内毒素蛋白质也包含于本发明内。“δ-内毒素蛋白质”是指具有SEQ ID NO:61-121和133-141中所示的氨基酸序列的蛋白质。还提供其片段、生物学活性部分和变体,且其可以用来实施本发明的方法。
“片段”或“生物学活性部分”包含含有与SEQ ID NO:61-121和133-141的任一项中所示的氨基酸序列几乎相同的氨基酸序列并显示杀虫活性的多肽片段。δ-内毒素蛋白质的生物学活性部分可以是长度为例如10、25、50、100或更多个氨基酸的多肽。可以通过重组技术制备这类生物学活性部分并评估其杀虫活性。测量杀虫活性的方法为本领域熟知。见例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等(1988)Biochem.J.252:199-206;Marrone等(1985)J.of EconomicEntomology 78:290-293;和美国专利号5,743,477,所有文献在此完整引入作为参考。如此处所用,片段包含SEQ ID NO:61-121和133-141的至少8个毗连氨基酸。但是,本发明包含其他片段,如大于约10、20、30、50、100、150、200、250、300、350、400、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250或1300个氨基酸的蛋白质中的任意片段。
“变体”是指与SEQ ID NO:61-121和133-141中任一项的氨基酸序列具有至少约60%、65%、约70%、75%、约80%、85%、约91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列的蛋白质或多肽。变体还包含由在严格条件下与SEQ ID NO:1-60和124-132的核酸分子杂交的核酸分子或其互补分子编码的多肽。变体包含由于诱变而在氨基酸序列中不同的多肽。本发明所包含的变体蛋白质是有生物学活性的,即它们继续保持所希望的天然蛋白质的生物学活性,即保留杀虫活性。测量杀虫活性的方法为本领域熟知。见例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等(1988)Biochem.J.252:199-206;Marrone等(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,所有文献在此完整引入作为参考。
细菌基因,如本发明的axmi基因常在靠近可读框起点处具有多个甲硫氨酸起始密码子。通常,在一个或多个这些起始密码子处的翻译起始可导致功能性蛋白质的产生。这些起始密码子可以包含ATG密码子。但是,细菌如芽孢杆菌属物种(Bacillus sp.)还将密码子GTG识别为起始密码子,在GTG密码子处起始翻译的蛋白质在第一个氨基酸处包含甲硫氨酸。此外,通常不确定这些密码子中的哪一个是细菌中天然优先使用的。因此,据理解,备选甲硫氨酸密码子之一的使用也可以导致编码杀虫活性的δ-内毒素蛋白质的产生。这些δ-内毒素蛋白质包含于本发明中并可以用于本发明的方法。
针对本发明的多肽或针对其变体或片段的抗体也涵盖于本发明。产生抗体的方法为本领域熟知(见例如Harlow和Lane(1988)Antibodies:ALaboratory Manual,冷泉港实验室,冷泉港,纽约;美国专利号4,196,265)。
改变的或改良的变体
据认可,可以通过各种方法改变δ-内毒素的DNA序列,这些改变可以产生这样的DNA序列,其编码具有不同于本发明的δ-内毒素所编码的氨基酸序列的氨基酸序列的蛋白质。可以用多种方式改变该蛋白质,该各种方式包括SEQ ID NO:61-121和133-141的一个或多个氨基酸的氨基酸取代、缺失、平截和插入,包含至多约2个、约3个、约4个、约5个、约6个、约7个、约8个、约9个、约10个、约15个、约20个、约25个、约30个、约35个、约40个、约45个、约50个、约55个、约60个、约65个、约70个、约75个、约80个、约85个、约90个、约100个、约105个、约110个、约115个、约120个、约125个、约130个或更多个氨基酸取代、缺失或插入。
进行这类操作的方法一般为本领域已知。例如,可以通过DNA中的突变制备δ-内毒素蛋白质的氨基酸序列变体。这还可以通过几种诱变形式之一和/或在定向进化中达到。在一些方面中,编码于氨基酸序列中的改变可以基本上不影响蛋白质的功能。这类变体可以具有所希望的杀虫活性。但是,据理解,可以通过在本发明的组合物上使用这类技术来改进δ-内毒素赋予杀虫活性的能力。例如,可以在DNA复制过程中显示高碱基错参率的宿主细胞,如XL-1 Red(Stratagene)中表达δ-内毒素。在这类菌株中繁殖后,可以分离δ-内毒素DNA(例如通过制备质粒DNA,或通过用PCR扩增并将产生的PCR片段克隆入载体),在非诱变菌株中培养δ-内毒素突变,并例如通过进行测试杀虫活性的测定来鉴定具有杀虫活性的突变的δ-内毒素基因。一般而言,将蛋白质混合并用于摄食测定。见例如Marrone等(1985)J.of Economic Entomology 78:290-293。这类测定可以包括将植物与一种或多种害虫接触,并测定植物存活和/或引起害虫死亡的能力。产生提高的毒性的突变的实例见于Schnepf等(1998)Microbiol.Mol.Biol.Rev.62:775-806中。
备选地,可以在基本不影响活性的情况下,在氨基或羧基端对许多蛋白质的蛋白质序列进行改变。这可以包含通过现代分子方法如PCR(包括由于在用于PCR扩增的寡核苷酸中包含氨基酸编码序列而改变或衍生蛋白质编码序列的PCR扩增)引入的插入、缺失或改变。备选地,所添加的蛋白质序列可以包含整个蛋白质编码序列,如本领域中通常用来产生蛋白质融合的序列。这类融合蛋白质通常用来:(1)提高目的蛋白质的表达;(2)引入结合结构域、酶活性或表位以便于蛋白质纯化、蛋白质检测或本领域已知的其他实验用途;(3)将蛋白质的分泌或翻译靶向至亚细胞器,如革兰氏阴性菌的壁膜间隙,或真核细胞的内质网,其中后者常导致蛋白质的糖基化。
本发明的变体核苷酸和氨基酸序列还包含衍生自诱变法和重组法(如DNA改组)的序列。使用这种方法,可以用一个或多个不同的δ-内毒素蛋白质编码区来产生具有所希望的特性的新的δ-内毒素蛋白质。在这种方式中,从相关序列多核苷酸的群体产生重组多核苷酸文库,该群体包含具有基本的序列同一性且可以在体外或体内同源重组的序列区域。例如,使用此方法,可以在本发明的δ-内毒素基因和其他已知的δ-内毒素基因间改组编码目的结构域的序列基序,以获得编码具有改进的目的特性(例如增加的杀虫活性)的蛋白质的新基因。用于这种DNA改组的策略为本领域已知。见例如Stemmer(1994)Proc.Natl.Acad.Sci.USA 91:10747-10751;Stemmer(1994)Nature 370:389-391;Crameri等(1997)Nature Biotech.15:436-438;Moore等(1997)J.Mol.Biol.272:336-347;Zhang等(1997)Proc.Natl.Acad.Sci.USA 94:4504-4509;Crameri等(1998)Nature391:288-291;和美国专利号5,605,793和5,837,458。
结构域交换或改组是产生改变的δ-内毒素蛋白质的另一种机制。可以在δ-内毒素蛋白质间交换结构域II和III,得到具有改良的杀虫活性或目标特征的杂化物或嵌合毒素。用于产生重组蛋白质和测试它们的杀虫活性的方法为本领域熟知(见例如Naimov等(2001)Appl.Environ.Microbiol.67:5328-5330;de Maagd等(1996)Appl.Environ.Microbiol.62:1537-1543;Ge等(1991)J.Biol.Chem.266:17954-17958;Schnepf等(1990)J.Biol.Chem.265:20923-20930;Rang等91999)Appl.Environ.Microbiol.65:2918-2925)。
载体
可以在用于在目的植物中表达的表达盒中提供本发明的δ-内毒素序列。“植物表达盒”是指能够在植物细胞中引起从可读框表达蛋白质的DNA构建体。这些通常包含启动子和编码序列。通常,这类构建体还可包含3′非翻译区。这类构建体可以包含“信号序列”或“前导序列”以便于该肽共翻译或翻译后转运至某些胞内结构如叶绿体(或其他质体)、内质网或高尔基体。
“信号序列”是指已知或怀疑其导致肽共翻译或翻译后转运跨过细胞膜的序列。在真核细胞中,这通常涉及分泌进入高尔基体,其中一些产生糖基化。“前导序列”是指,在翻译氨基酸序列时,能够引起肽链共翻译转运至亚细胞器的任意序列。因此,这包含通过进入内质网,经过液泡、质体(包含叶绿体、线粒体等)靶向转运和/或糖基化的前导序列。
“植物转化载体”是指有效的植物细胞转化所必需的DNA分子。这种分子可以由一个或多个植物表达盒组成,且可以组织入一个以上的“载体”DNA分子。例如,二元载体是利用两个非毗连DNA载体来编码植物细胞转化必需的所有顺式和反式作用功能的植物转化载体(Hellens和Mullineaux(2000)Trends in Plant Science 5:446-451)。“载体”指设计用于在不同宿主细胞间转移的核酸构建体。“表达载体”指具有在外源细胞中掺入、整合和表达异源DNA序列的能力的载体。盒可以包含与本发明的序列有效连接的5′和3′调节序列。“有效连接”是指启动子和第二序列的功能性连接,其中启动子序列起始和介导对应于第二序列的DNA序列的转录。一般而言,有效连接指所连接的核酸序列是毗连的,且在必须连接两个蛋白质编码区的地方是毗连并处于同一阅读框中的。盒可以额外包含至少一个待转化进入生物体的其他基因。备选地,一个或多个其他基因可以提供在多个表达盒上。
“启动子”指发挥作用来指导下游编码序列的转录的核酸序列。启动子与其他转录和翻译调节核酸序列(也称为“控制序列”)共同为目的DNA序列的表达所需。
提供具有多个限制位点的这种表达盒用于将δ-内毒素序列插至调节区的转录调节下。
表达盒可以在5′至3′的转录方向上包含转录和翻译起始区(即启动子)、本发明的DNA序列和在植物中有功能的翻译和转录终止区(即终止区)。对植物宿主和/或对本发明的DNA序列而言,启动子可以是天然的或类似的,或外源的或异源的。备选地,启动子可以是天然序列或备选地是合成序列。启动子是植物宿主的“天然”或“同源”启动子时,其是指该启动子见于该启动子所引入的天然植物中。启动子是本发明的DNA序列的“外源”或“异源”启动子时,其是指该启动子不是本发明DNA序列的有效连接的天然的或天然存在的启动子。
终止区可以是转录起始区的天然终止区,可以是有效连接的目的DNA序列的天然终止区,可以是植物宿主的天然终止区,或可以衍生自其他来源(即对启动子、目的DNA序列、植物宿主或其任意组合而言是外源的或异源的)。可从根瘤农杆菌(A.tumefaciens)的Ti质粒获得方便的终止区,如章鱼碱合酶和胭脂氨酸合酶终止区。还见Guerineau等(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon等(1991)Genes Dev.5:141-149;Mogen等(1990)Plant Cell 2:1261-1272;Munroe等(1990)Gene 91:151-158;Ballas等(1989)Nucleic Acids Res.17:7891-7903;和Joshi等(1987)Nucleic Acid Res.15:9627-9639。
适当时,可以优化一个或多个基因用于提高在转化的宿主细胞中的表达。即可以用宿主细胞优选的密码子来合成基因,或可以按宿主优选的密码子选择频率用密码子来合成基因,以改进表达。参见,例如Campbell和Gowri(1990),Plant Physiol.92:1-11关于宿主优选密码子使用的讨论。一般,可以提高基因的GC含量。可在本领域内获得用于合成植物优选的基因的方法。见例如美国专利号5,380,831和5,436,391,和Murray等(1989)Nucleic Acids Res.17:477-498,其在此引用作为参考。
在一个实施方案中,将δ-内毒素靶向至叶绿体进行表达。在不直接将δ-内毒素插入叶绿体的此方式中,表达盒可额外包含编码转运肽来将δ-内毒素导向叶绿体的核酸。这类转运肽为本领域已知。见例如Von Heijne等(1991)Plant Mol.Biol.Rep.9:104-126;Clark等(1989)J.Biol.Chem.264:17544-17550;Della-Cioppa等(1987)Plant Physiol.84:965-968;Romer等(1993)Biochem.Biophys.Res.Commun.196:1414-1421;和Shah等(1986)Science 233:478-481。
可以针对在叶绿体中的表达优化待靶向至叶绿体的δ-内毒素基因,以补偿植物细胞核和该细胞器间密码子选择的差异。在此方式中,可以用叶绿体优选的密码子合成目的核酸。见例如美国专利号5,380,831,其在此引用作为参考。
植物转化
本发明的方法涉及将核酸构建体引入植物。“引入”是指以这样的方式将核酸构构建体递呈至植物,使得该构建体可以接近该植物细胞内部。本发明的方法不要求使用用于将核苷酸构建体引入植物的特定方法,只要核苷酸构建体可以接近该植物的至少一个细胞的内部。将核苷酸构建体引入植物的方法为本领域已知,其包括但不限于稳定转化法、瞬时转化法和病毒介导法。
“植物”是指整株植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、胚及这些的子代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶细胞、根细胞、韧皮部细胞、花粉)。
“转基因植物”或“转化植物”或“稳定转化”植物或细胞或组织指已将外源核酸序列或DNA片段掺入或整合入植物细胞的植物。这些核酸序列包含外源的或不存在于未转化的植物细胞中的核酸序列,以及可以是内源的或存在于未转化的植物细胞中的核酸序列。“异源的”一般指这样的核酸序列,其不是细胞内源的或不是其存在于其中的天然基因组的部分,且已通过感染、转染、显微注射、电穿孔、显微投影等加入至该细胞。
可以通过本领域已知的几种技术之一达到植物细胞的转化。可以修饰本发明的δ-内毒素基因以获得或增强在植物细胞中的表达。通常,表达这种蛋白质的构建体可包含驱动该基因转录的启动子,以及允许转录终止和多聚腺苷化作用的3′非编码区。这类构建体的组织为本领域熟知。在一些情况下,改造基因使得产生的多肽分泌或以其他方式在植物细胞内靶向可以是有用的。例如,可以将基因改造为包含信号肽,以便于该肽转移至内质网。还可以优选将植物表达盒改造为包含内含子,使得内含子的mRNA加工为表达所需。
通常可将该“植物表达盒”插入“植物转化载体”。该植物转化载体可以包含达到植物转化所需的一个或多个DNA载体。例如,利用包含一个以上毗连DNA片段的植物转化载体是本领域中常见的实施。这些载体在本领域中通常称为“二元载体”。二元载体以及具有辅助质粒的载体最常用于农杆菌属(Agrobacterium)介导的转化,其中达到有效转化所需的DNA片段的大小和复杂性非常大,且将功能分开在独立的DNA分子上是有利的。二元载体通常包含含有T-DNA转移所需的顺式作用序列(如左边缘和右边缘)的载体、改造为能够在植物细胞中表达的选择标记和“目的基因”(改造为能够在希望针对其产生转基因植物的植物细胞中表达的基因)。细菌复制所需的序列也存在于该质粒载体上。顺式作用序列按允许有效转移进入植物细胞并在其中表达的方式排列。例如,选择标记基因和δ-内毒素位于左边缘和右边缘之间。第二质粒载体通常包含介导T-DNA从农杆菌属转移至植物细胞的反式作用因子。如本领域中所理解(Hellens和Mullineaux(2000)Trends in Plant Science 5:446-451),该质粒通常包含允许通过农杆菌属感染植物细胞和通过在边缘序列切割和vir介导的转移来转移DNA的毒力功能。几种类型的农杆菌属菌株(例如LBA4404、GV3101、EHA101、EHA105等)可以用来进行植物转化。第二质粒载体不是通过其他方法如显微投影、显微注射、电穿孔、聚乙二醇等转化植物必需的。
一般,植物转化方法涉及转移异源DNA进入靶植物细胞(例如未成熟的或成熟的胚、悬浮培养物、未分化的愈伤组织、原生质体等),然后应用最大阈值水平的适当的选择(取决于选择标记基因)从一组未转化的细胞群集回收转化的植物细胞。通常将外植体转移至新鲜补给的相同培养基并进行常规培养。随后,转化的细胞在放置在补充有最大阈值水平的选择剂的再生培养基上之后分化为苗。然后将苗转移至选择性生根培养基进行有根苗或小植物的恢复。然后将转基因小植物培育为成熟植物并产生可育种子(例如Hiei等(1994)The Plant Journal 6:271-282;Ishida等(1996)Nature Biotechnology 14:745-750)。通常将外植体转移至新鲜补给的相同培养基并进行常规培养。用于产生转基因植物的技术和方法的一般描述见于Ayres和Park(1994)Critical Reviews in Plant Science 13:219-239和Bommineni和Jauhar(1997)Maydica 42:107-120中。由于转化的物质包含许多细胞;转化和非转化细胞都存在于任意一片其所属的靶愈伤组织或组织或细胞群中。杀死非转化细胞和允许转化细胞增殖的能力产生转化植物培养物。通常,除去非转化细胞的能力是快速回收转化植物细胞和成功产生转基因植物的限制。
取决于靶向转化的植物或植物细胞的类型(即单子叶植物或双子叶植物),转化流程以及将核苷酸序列引入植物的流程可以不同。转基因植物的产生可以通过几种方法之一进行,其包括但不限于显微注射、电穿孔、直接基因转移、通过农杆菌属将异源DNA引入植物细胞(农杆菌属介导的转化)、用粘附至粒子的异源外源DNA轰击植物细胞、弹道粒子加速、气溶胶束转化(美国公开申请号20010026941;美国专利号4,945,050;国际公开号WO 91/00915;美国公开申请号2002015066)、Lec1转化和多种其他非粒子直接介导的转移DNA的方法。
用于叶绿体转化的方法为本领域已知。见例如Svab等(1990)Proc.Natl.Acad.Sci.USA 87:8526-8530;Svab和Maliga(1993)Proc.Natl.Acad.Sci.USA 90:913-917;Svab和Maliga(1993)EMBO J.12:601-606。该方法依赖于DNA的粒子枪递送,该DNA包含选择标记并通过同源重组将该DNA靶向至质体基因组。此外,通过核编码和质体导向的RNA聚合酶的组织优选表达,通过携带转基因的沉默质体的反式激活可以实现质体转化。这种系统已报道于McBride等(1994)Proc.Natl.Acad.Sci.USA91:7301-7305中。
将异源外源DNA整合入植物细胞后,在培养基中应用最大阈值水平的适当的选择来杀死未转化的细胞,并通过定期转移至新鲜培养基来分离和增殖从该选择处理存活的推定的转化细胞。通过连续传代并用适合的选择挑战来鉴定并增殖用质粒载体转化的细胞。然后可以用分子和生物化学方法来确认整合进入该转基因植物基因组的异源目的基因的存在。
可以按照常规方式将已转化的细胞培养为植物。见例如McCormick等(1986)Plant Cell Reports 5:81-84。然后可以培养这些植物,并用相同的转化品系或不同品系对其授粉,鉴定具有所希望的表型特征的组成性表达的杂种。可以培养两代或多代以确保所希望的表型特征的表达稳定维持和遗传,然后收获种子以确保已达到所希望的表型特征的表达。在此方式中,本发明提供具有稳定整合入其基因组的本发明的核苷酸构建体,例如本发明的表达盒的转化种子(也称为“转基因种子”)。
植物转化的评估
异源外源DNA引入植物细胞后,通过多种方法,如对与所整合的基因相关的核酸、蛋白质和代谢物的分析来确认异源基因在该植物基因组中的转化或整合。
在移植入土壤前的更早阶段,PCR分析是针对整合基因的存在筛选转化的细胞、组织或苗的快速方法(Sambrook和Russell(2001)MolecularCloning:A Laboratory Manual.冷泉港实验室出版社,冷泉港,纽约)。用对目的基因或农杆菌属载体背景等特异的寡核苷酸引物进行PCR。
可以通过基因组DNA的DNA印迹分析确认植物转化(Sambrook和Russell,2001,上文))。一般,从转化体提取总DNA,用适合的限制酶消化,在琼脂糖凝胶中分级分离并转移至硝酸纤维素膜或尼龙膜。然后按照标准技术(Sambrook和Russell,2001,上文),用例如放射性标记的32P靶DNA片段探测膜或“印迹”,以确认所引入的基因整合入该植物基因组。
在RNA印迹分析中,按照本领域中常规使用的标准方法(Sambrook和Russell,2001,上文),从转化体的特定组织分离RNA,在甲醛琼脂糖凝胶中分级分离并印迹在尼龙滤膜上。然后通过将滤膜与通过本领域已知的方法(Sambrook和Russell,2001,上文)从δ-内毒素衍生的放射性探针杂交来测试由δ-内毒素编码的RNA的表达。
可以通过标准方法(Sambrook和Russell,2001,上文),用与存在于δ-内毒素蛋白质上的一个或多个表位结合的抗体在转基因植物上进行蛋白质印迹、生化测定等,以确认由δ-内毒素基因编码的蛋白质的存在。
植物中的杀虫活性
在本发明的另一个方面中,可以产生表达具有杀虫活性的δ-内毒素的转基因植物。上文以实例的方式描述的方法可以用来产生转基因植物,但产生转基因植物细胞的方式对本发明并不重要。可以按照实验者的判断使用本领域已知或已描述的方法,如农杆菌属介导的转化、生物射弹转化和非离子介导的方法。可以通过本领域中所描述的常见方法分离表达δ-内毒素的植物,例如通过转化愈伤组织、选择转化的愈伤组织和从这种转基因愈伤组织再生可育植物。在这种方法中,可以用任意基因作为选择标记,只要其在植物细胞中的表达赋予鉴定或选择转化细胞的能力。
已发展了许多标记用于植物细胞,如对氯霉素、氨基糖苷类G418、潮霉素等的抗性。其他编码涉及叶绿体代谢的产物的基因也可以用作选择标记。例如,提供对植物除草剂如草甘膦、溴苯腈或咪唑啉酮的抗性的基因可以具有特定用途。已报道了这类基因(Stalker等(1985)J.Biol.Chem.263:6310-6314(溴苯腈抗性腈水解酶基因);和Sathasivan等(1990)Nucl.Acids Res.18:2188(AHAS咪唑啉酮抗性基因))。此外,用本文所公开的基因作标记来评估细菌或植物细胞的转化。用于检测转基因在植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、胚或这些的子代中的存在的方法为本领域熟知。在一个实施方案中,通过测试杀虫活性来检测转基因的存在。
可以针对杀虫活性测试表达δ-内毒素的可育植物,并选择显示最佳活性的植物进行进一步繁殖。本领域中可获得测定害虫活性的方法。一般,将蛋白质混合并用于摄食测定。见例如Marrone等(1985)J.of EconomicEntomology 78:290-293。
本发明可以用于任意植物种类的转化,其包含但不限于单子叶植物和双子叶植物。目的植物的实例包含但不限于玉米(玉蜀黍)、高粱、小麦、向日葵、西红柿、十字花科植物、胡椒、马铃薯、棉花、水稻、大豆、甜菜、甘蔗、烟草、大麦、油菜、芸苔属物种(Brassica sp.)、苜蓿、黑麦、蜀、红花、花生、甘薯、木薯、咖啡、椰子、菠萝、柑桔树、可可、茶、香蕉、鳄梨、无花果、番石榴、芒果、橄榄、番木瓜、腰果、澳洲坚果(macadamia)、杏、燕麦、蔬菜、观赏植物和针叶树。
蔬菜包含但不限于西红柿、莴苣、菜豆、利马豆、豌豆和黄瓜属(Curcumis)的成员如黄瓜、棱瓜和甜瓜。观赏植物包含但不限于杜鹃花、绣球花、木槿、玫瑰、郁金香、水仙花、喇叭花、康乃馨、一品红和菊花。优选地,本发明的植物是作物植物(例如玉蜀黍、高粱、小麦、向日葵、西红柿、十字花科植物、胡椒、马铃薯、棉花、水稻、大豆、甜菜、甘蔗、烟草、大麦、油菜等)。
在害虫控制中的用途
在杀虫剂控制或改造其他生物体为杀虫剂中使用包含本发明的核苷酸序列或其变体的菌株的一般方法为本领域已知。见例如美国专利号5,039,523和EP 0480762A2。
包含本发明的核苷酸序列或其变体的芽孢杆菌属菌株或已遗传改造为包含杀虫基因或蛋白质的微生物可以用来保护作物或农产品免受害虫危害。在本发明的一个方面中,当将细胞应用于一种或多种靶害虫的环境时,用延长细胞中产生的毒素的活性的试剂处理产生毒素(杀虫剂)的生物体的整个(即未裂解的)细胞。
备选地,通过将δ-内毒素基因引入细胞宿主来产生杀虫剂。δ-内毒素基因的表达直接或间接导致该杀虫剂的胞内产生和维持。在本发明的一个方面中,当将细胞应用于一种或多种靶害虫的环境时,随后在延长细胞中产生的毒素的活性的条件下处理这些细胞。产生的产物保留毒素的毒性。然后可以按照常规技术配制这些天然封装的杀虫剂应用于具有靶害虫的环境,例如土壤、水和植物的叶。见例如EPA 0192319和本文引用的参考文献。备选地,可以这样配置表达本发明的基因的细胞,使得允许将产生的物质作为杀虫剂应用。
杀虫组合物
本发明的活性成分通常以组合物形式应用,并可以与其他化合物同时或顺次地应用于作物区或待处理的植物。这些化合物可以是肥料、除草剂、冷冻保护剂、表面活性剂、去污剂、杀虫皂、休眠喷洒油、聚合物和/或单次应用该制剂后允许靶区域的长期给药的延时释放(time-release)或生物可降解载体制剂。它们还可以是选择性除草剂、化学杀虫剂、杀病毒剂、杀微生物剂、杀变形虫剂、杀虫剂、杀真菌剂、杀菌剂、杀线虫剂、杀软体动物剂或几种这些制剂的混合物,如果希望,它们可与制剂领域通常使用的其他农业可用载体、表面活性剂或应用促进佐剂一起。合适的载体和佐剂可以是固体或液体的,对应于制剂技术中通常使用的物质,例如天然或再生的矿物质、溶剂、分散剂、润湿剂、胶黏剂、黏合剂或肥料。类似地,制剂可制成可食用的“诱饵”或塑造成害虫“陷阱”的形式,以使得杀虫制剂的靶害虫进食或摄食。
应用本发明的活性成分或包含至少一种由本发明的细菌菌株产生的杀虫蛋白的本发明的农用化学品组合物的方法包括叶应用、种子包被和土壤应用。应用数目和应用比率取决于被对应的害虫侵袭的强度。
组合物可以配制为粉末(powder)、粉剂(dust)、丸、颗粒、喷雾、乳剂、胶体、溶液等,且可以通过常规方法,如脱水、冷冻干燥、匀浆、提取、过滤、离心、沉降或浓缩包含多肽的细胞培养物来配制。在包含至少一种这种杀虫多肽的所有这类组合物中,该多肽可以按从约1wt%至约99wt%的浓度存在。
可以通过本发明的方法在给定区域中杀死鳞翅目、鞘翅目或线虫类害虫或降低其数量,或者可以预防性地应用于环境区域以防止被易感害虫侵袭。优选地,害虫摄食或接触杀虫有效量的多肽。“杀虫有效量”是指能够引起至少一只害虫死亡或显著降低害虫的生长、进食或正常生理发育的杀虫剂的量。此量可取决于以下这类因素而不同,例如待控制的具体靶害虫、具体环境、位置、植物、作物、或待处理的农业场所、环境条件、和方法、比率、浓度、稳定性、和杀虫有效的多肽组合物的应用量。制剂还可以依气候条件、环境考虑和/或应用频率和/或害虫侵袭的严重度而不同。
可以通过用所希望的农业可用载体配制细菌细胞、晶体和/或孢子悬液或分离的蛋白质成分来产生所述杀虫组合物。可以用适当的方法在施用前配制组合物,如低压冻干、冷冻干燥、脱水、或在水性载体、培养基或适合的稀释液,如盐水或其他缓冲液中。所配制的组合物可以是粉剂或颗粒材料的形式,或在油(植物或矿物)或水或油/水乳剂中的悬液,或作为可湿性粉,或与任意其他适合用于农业应用的载体材料组合。适合的农业载体可以是固体或液体且为本领域熟知。术语“农业可用载体”包含通常用于杀虫剂制剂技术的所有佐剂、惰性成分、分散剂、表面活性剂、胶黏剂、黏合剂等;这些是杀虫剂制剂领域技术人员熟知的。制剂可以与一种或多种固体或液体佐剂混合和通过多种方法制备,例如通过使用常规制剂技术将杀虫组合物与适合的佐剂均质地混合、捣碎和/或研磨。适合的制剂和应用方法描述于美国专利号6,468,523中,其在此引入作为参考。
“害虫”包含但不限于昆虫、真菌、细菌、线虫、螨、蜱等。昆虫害虫包含选自鞘翅目、双翅目、膜翅目、鳞翅目、食毛目、同翅目、半翅目(Hemiptera)、直翅目(Orthroptera)、缨翅目(Thysanoptera)、革翅目(Dermaptera)、等翅目(Isoptera)、虱目(Anoplura)、蚤目(Siphonaptera)、毛翅目(Trichoptera)等目,尤其是鞘翅目、鳞翅目和双翅目的昆虫。
鞘翅目包含肉食亚目(Adephaga)和多食亚目(Polyphaga)。肉食亚目包含步甲总科(Caraboidea)和鼓甲总科(Gyrinoidea),而多食亚目包含牙甲总科(Hydrophiloidea)、隐翅虫总科(Staphylinoidea)、花萤总科(Cantharoidea)、郭公虫总科(Cleroidea)、叩头虫总科(Elateroidea)、花甲总科(Dascilloidea)、泥甲总科(Dryopoidea)、丸甲总科(Byrrhoidea)、扁甲总科(Cucujoidea)、芫菁总科(Meloidea)、花虱总科(Mordelloidea)、拟步行虫总科(Tenebrionoidea)、长蠢总科(Bostrichoidea)、金龟子总科(Scarabaeoidea)、天牛总科(Cerambycoidea)、叶甲总科(Chrysomeloidea)和象虫总科(Curculionoidea)。步甲总科包含虎甲科(Cicindelidae)、步甲科(Carabidae)和龙虱科(Dytiscidae)。鼓甲总科包含鼓甲科(Gyrinidae)。牙甲总科包含牙甲科(Hydrophilidae)。隐翅虫总科包含埋葬虫科(Silphidae)和隐翅虫科(Staphylinidae)。花萤总科包含花萤科(Cantharidae)和萤科(Lampyridae)。郭公虫总科包含郭公虫科(Cleridae)和皮蠹科(Dermestidae)。叩头虫总科包含叩甲科(Elateridae)和吉丁甲科(Buprestidae)。扁甲总科包含瓢虫科(Coccinellidae)。芫菁总科包含芫菁科(Meloidae)。拟步行虫总科包含拟步行虫科(Tenebrionidae)。金龟子总科包含黑蜣科(Passalidae)和金龟子科(Scarabaeidae)。天牛总科包含天牛科(Cerambycidae)。叶甲总科包含叶甲科(Chrysomelidae)。象虫总科包含象甲科(Curculionidae)和小蠹科(Scolytidae)。
双翅目包含长角亚目(Nematocera)、短角亚目(Brachycera)和环裂亚目(Cyclorrhapha)。长角亚目包含大蚊科(Tipulidae)、毛蠓科(Psychodidae)、蚊科(Culicidae)、蠓科(Ceratopogonidae)、摇蚊科(Chironomidae)、蚋科(Simuliidae)、毛蚊科(Bibionidae)和瘿蚊科(Cecidomyiidae)。短角亚目包含水虻科(Stratiomyidae)、虻科(Tabanidae)、剑虻科(Therevidae)、食虫虻科(Asilidae)、拟食虫虻科(Mydidae)、蜂虻科(Bombyliidae)和长足虻科(Dolichopodidae)。环裂亚目包含无缝组(Aschiza)和无缝组(Aschiza)。无缝组包含蚤蝇科(Phoridae)、食蚜蝇科(Syrphidae)和眼蝇科(Conopidae)。无缝组包含无瓣类(Acalyptratae)和有瓣类(Calyptratae)。无瓣类包含斑蝇科(Otitidae)、实蝇科(Tephritidae)、潜蝇科(Agromyzidae)和果蝇科(Drosophilidae)。有瓣类包含虱蝇科(Hippoboscidae)、狂蝇科(Oestridae)、寄蝇科(Tachinidae)、花蝇科(Anthomyiidae)、蝇科(Muscidae)、丽蝇科(Calliphoridae)和麻蝇科(Sarcophagidae)。
鳞翅目包含凤蝶科(Papilionidae)、粉蝶科(Pieridae)、灰蝶科(Lycaenidae)、蛱蝶科(Nymphalidae)、斑蝶科(Danaidae)、眼蝶科(Satyridae)、弄蝶科(Hesperiidae)、天蛾科(Sphingidae)、天蚕蛾科(Saturniidae)、尺蛾科(Geometridae)、灯蛾科(Arctiidae)、夜蛾科(Noctuidae)、毒蛾科(Lymantriidae)、透翅蛾科(Sesiidae)和谷蛾科(Tineidae)。
线虫类包含寄生线虫类如根结线虫类、包囊线虫类和根腐线虫类(root-knot,cyst,and lesion nematodes),其包含棘皮线虫属物种(Heterodera spp.)、根结线虫属物种(Meloidogyne spp.)和球胞囊线虫属物种(Globodera spp.);尤其是包囊线虫类的成员,其包含但不限于大豆胞囊线虫(Heterodera glycines);甜菜胞囊线虫(Heterodera schachtii);燕麦胞囊线虫(Heterodera avenae);和马铃薯金线虫(Globoderarostochiensis)和马铃薯白线虫(Globodera pailida)(马铃薯包囊线虫)。根腐线虫类包括短体线虫属物种(Pratylenchus spp.)。
本发明的主要作物昆虫害虫包含:玉蜀黍:玉米螟(Ostrinianubilalis),欧洲玉米螟(European corn borer);小地老虎(Agrotis ipsilon);玉米穗蛾(Helicoverpa zea);秋夜蛾(Spodoptera frugiperda),草地夜蛾(fall armyworm);西南玉米秆草螟(Diatraea grandiosella),西南玉米螟(Southwestern corn borer);小玉米茎蛀虫(Elasmopalpus lignosellus);蔗螟(Diatraea saccharalis);西部玉米根叶甲(Diabrotica virgifera);北方玉米叶甲(Diabrotica longicornis barberi);南方玉米根叶甲(Diabroticaundecimpunctata howardi);叩头虫属物种(Melanotus spp.),金针虫;北方圆头犀金龟(Cyclocephala borealis)(白蛴螬);南方圆头犀金龟(Cyclocephala immaculata)(白蛴螬);日本丽金龟(Popillia japonica);玉米跳甲(Chaetocnema pulicaria);玉米谷象(Sphenophorus maidis);玉米叶蚜(Rhopalosiphum maidis);玉米根蚜(Anuraphis maidiradicis);麦长蝽(Blissus leucopterus leucopterus);红腿蝗(Melanoplusfemurrubrum);迁徙蚱蜢(Melanoplus sanguinipes);种蝇(Hylemyaplatura);玉米斑潜蝇(Agromyza parvicornis);美洲锥形蓟马(Anaphothripsobscrurus);窃蚁(Solenopsis milesta);二点红叶螨(Tetranychus urticae);高粱:高梁螟(Chilo partellus);秋夜蛾;玉米穗蛾;小玉米茎蛀虫;粒肤地老虎(Feltia subterranea);白蛴螬(Phyllophaga crinita);伪金针虫属(Eleodes)、金针虫属(Conoderus)和Aeolus物种,金针虫;橙足负泥虫(Oulema melanopus);玉米跳甲;玉米谷象;玉米叶蚜;蔗黄伪毛蚜(Siphaflava);麦长蝽;高粱瘿蚊(Contarinia sorghicola);朱砂叶螨(Tetranychuscinnabarinus);二点红叶螨;小麦:行军虫(Pseudaletia unipunctata);秋夜蛾;小玉米茎蛀虫;西方灰地老虎(Agrotis orthogonia);小玉米茎蛀虫;橙足负泥虫;车轴草叶象甲(Hypera punctata);南方玉米根叶甲;俄罗斯麦蚜;麦二叉蚜(Schizaphis graminum);麦长管蚜(Macrosiphum avenae);红腿蝗;长额负蝗(Melanoplus differentialis);迁徙蚱蜢;黑森瘿蚊(Mayetiola destructor);麦红吸浆虫(Sitodiplosis mosellana);美洲麦秆蝇(Meromyza americana);冬作种蝇(Hylemya coarctata);烟草蓟马(Frankliniella fusca);麦茎蜂(Cephus cinctus);郁金香瘤螨(Aceriatulipae);向日葵:向日葵芽蛾(Suleima helianthana);向日葵斑螟(Homoeosoma electellum);向日葵叶甲(Zygogramma exclamationis);胡萝卜金龟(Bothyrus gibbosus);向日葵籽瘿蚊(Neolasiopteramurtfeldtiana);棉花:绿棉铃虫(Heliothis virescens);棉铃虫(Helicoverpazea);甜菜夜蛾(Spodoptera exigua);棉红铃虫(Pectinophoragossypiella);棉铃象甲(Anthonomus grandis);棉蚜(Aphis gossypii);棉跳盲蝽(Pseudatomoscelis seriatus);带状翅白粉虱(Trialeurodesabutilonea);牧草盲蝽(Lygus lineolaris);红腿蝗;长额负蝗;棉蓟马(Thripstabaci);烟草蓟马;朱砂叶螨;二点红叶螨;水稻:蔗螟;秋夜蛾,草地夜蛾;玉米穗蛾;葡萄肖叶甲(Colaspis brunnea);稻水象甲(Lissorhoptrusoryzophilus);米象(Sitophilus oryzae);黑尾叶蝉(Nephotettix nigropictus);麦长蝽;喜绿蝽(Acrosternum hilare);大豆:大豆夜蛾(Pseudoplusiaincludens);梨豆夜蛾(Anticarsia gemmatalis);苜蓿绿夜蛾(Plathypenascabra);玉米螟,欧洲玉米螟;小地老虎;甜菜夜蛾;绿棉铃虫;棉铃虫;墨西哥豆瓢虫(Epilachna varivestis);桃蚜(Myzus persicae);马铃薯微叶蝉(Empoasca fabae);喜绿蝽;红腿蝗;长额负蝗;种蝇;大豆蓟马(Sericothrips variabilis);棉蓟马;草莓蛛螨(Tetranychus turkestani);二点红叶螨;大麦:玉米螟,欧洲玉米螟;小地老虎;麦二叉蚜;麦长蝽;喜绿蝽;褐臭蝽(Euschistus servus);灰地种蝇(Delia platura);黑森瘿蚊;麦岩螨(Petrobia latens);油菜:甘蓝蚜(Brevicoryne brassicae);跳甲(Phyllotreta cruciferae);披肩粘虫(Mamestra configurata);菜蛾;地种蝇属(Delia)物种,根蛆。
提高植物产量的方法
提供用于提高植物产量的方法。该方法包括将包含本文所公开的杀虫序列的多核苷酸引入植物或植物细胞。如本文所定义,植物的“产量”指由植物产生的生物量的质量和/或数量。“生物量”是指任意测量的植物产物。生物量产生的提高是所测量的植物产物产量的改善。提高植物产量具有几种商业应用。例如,提高植物叶生物量可以提高用于人或动物消费的多叶蔬菜的产量。此外,提高叶生物量可以用来提高植物衍生的药物或工业产物的产生。产量的提高可以包含任意统计上显著的提高,其包含但不限于与不表达杀虫序列的植物相比产量具有至少1%的提高、至少3%的提高、至少5%的提高、至少10%的提高、至少20%的提高、至少30%、至少50%、至少70%、至少100%更大的提高。
在具体方法中,植物产量由于表达本文所公开的杀虫蛋白的植物的改进的害虫抗性而提高。杀虫蛋白的表达导致害虫侵袭或摄食植物的能力降低,从而改进植物产量。
以说明的方式而不是限制的方式提供以下实施例。
实施例
实施例1.从苏云金芽孢杆菌发现新的杀虫基因
用以下步骤从表1中所列的细菌菌株鉴定新的杀虫基因:
●从包含通常含有δ内毒素基因的质粒的菌株制备染色体外DNA;
●机械剪切染色体外DNA以产生大小不一的片段;
●克隆染色体外DNA的~2Kb至~10Kb的片段;
●长出~1500个染色体外DNA的克隆;
●用克隆载体特异的引物对1500个克隆进行部分测序(末端阅读);
●通过用MiDAS法(按美国专利公开号20040014091中所述,其在此完整引入作为参考)进行同源性分析来鉴定推定的毒素基因;
●对包含推定的目的毒素基因的片段的克隆进行序列补全(步行)。
表1.从苏云金芽孢杆菌分离的新基因列表。
1表达或与另一种毒素如Axmi0014或Axmi008配对时具有潜在的辅活性(co-activity);
2表达或与另一种毒素如Axmi0014或Axmi009配对时具有潜在的辅活性;
3与磷脂酶C催化结构域同源的N端结构域;
4表达或与另一种毒素如Axmi052配对时具有潜在的辅活性;
5表达或与另一种毒素如Axmi051配对时具有潜在的辅活性。
实施例2.从苏云金芽孢杆菌发现新的杀虫基因
使用以下步骤,按美国专利公开号20040014091(其在此完整引入作为参考)中所述用MiDAS法从表2中所列的菌株鉴定新的杀虫基因:
●从菌株制备染色体外DNA。染色体外DNA包含以下中的一些或全部的混合物:各种大小的质粒;噬菌体染色体;未经纯化流程分离的基因组DNA片段;其他未表征的染色体外分子;
●机械或酶剪切染色体外DNA以产生大小不一的片段;
●对片段化的DNA进行测序;
●通过同源性和/或其他计算分析鉴定推定的毒素基因;
●需要时,通过几种PCR或克隆策略之一(例如TAIL-PCR)对目的基因进行序列补全。
表2.从苏云金芽孢杆菌分离的新基因列表
1此基因是割裂cry基因的N端部分且在其天然环境中与Axmi126配对,Axmi126表示割裂cry配对的C端。这些基因可以表现为辅毒素且在共表达或融合时可以显示增强的、新的或改变的活性。Axmi125和下游的Axmi126之间的间插区域显示于SEQ ID NO:122中。
2此基因是割裂cry基因的C端部分且在其天然环境中与Axmi125配对,Axmi125表示割裂cry配对的N端。这些基因可以表现为辅毒素且在共表达或融合时可以显示增强的、新的或改变的活性。
实施例3.从苏云金芽孢杆菌菌株ATX13046发现新的毒素基因 Axmi068
按以下鉴定编码axmi068的菌株:
●用源自已知或疑似的毒素基因的序列信息来产生表示毒素组(家族)内保守和部分保守的DNA序列的比对;
●根据比对的序列设计聚合酶链反应(PCR)引物来选择性扩增一个或多个毒素家族成员;
●通过PCR筛选从细菌菌株分离的DNA,以鉴定包含推定的靶基因家族同源物的菌株;
●对PCR产物进行测序以选择包含目的基因的菌株。
按以下通过MiDAS基因组学方法(美国专利公开号20040014091)从所选择的菌株鉴定完整的基因序列:
●从菌株制备染色体外DNA。染色体外DNA包含以下中的一些或全部的混合物:各种大小的质粒;噬菌体染色体;未经纯化流程分离的基因组DNA片段;其他未表征的染色体外分子;
●机械或酶剪切染色体外DNA以产生大小不一的片段;
●将染色体外DNA片段克隆入质粒载体;
●培养和纯化染色体外DNA的克隆;
●对克隆进行部分测序;
●通过同源性和/或其他计算分析鉴定推定的毒素基因;
●需要时,对包含推定的目的毒素基因的克隆进行序列补全(步行)。
●axmi068的核苷酸序列显示于SEQ ID NO:16中,AXMI068的氨基酸序列显示于SEQ ID NO:76中。
基因和蛋白质的特征
基因长度,DNA碱基对:                    1,791
蛋白质长度,氨基酸残基:                 597
估计的蛋白质分子量,Da:                 66,495
已知同源物和近似的百分比同一性:         Cry1Id1,71.4%
实施例4.在芽孢杆菌属中表达
通过本领域熟知的方法,通过PCR扩增本文所公开的杀虫基因,将PCR产物克隆入芽孢杆菌属表达载体pAX916或其他适合的载体。在常规生长培养基,如CYS培养基(10g/l细菌培养用酪胨;3g/l酵母提取物;6g/l KH2PO4;14g/l K2HPO4;0.5mM MgSO4;0.05mM MnCl2;0.05mMFeSO4)上培养产生的包含具有axmi基因的载体的芽孢杆菌属菌株,直到通过显微镜检查表明孢子形成。制备样品并在生物测定中测试活性。
实施例5.合成序列的构建
在本发明的一个方面中,产生了合成的axmi序列。相对于亲本axmi序列,这些合成序列具有改变的DNA序列,并编码与其所对应的亲本AXMI蛋白质共线,但缺乏存在于许多δ-内毒素蛋白质中的C端“晶体结构域”的蛋白质。合成基因显示于表3中。
表3
在本发明的另一个方面中,设计合成基因的修饰形式,使得产生的肽靶向至植物细胞器,如内质网或质外体。已知其导致融合蛋白质靶向至植物细胞器的肽序列为本领域已知。例如,本领域已知,源自白羽扇豆(Lupinus albus)酸性磷酸酶基因(Genebank ID GI:14276838;Miller等.(2001)Plant Physiology 127:594-606)的N端区域导致异源蛋白质的内质网靶向。若产生的融合蛋白质还在C端包含含有肽N端-赖氨酸-天冬氨酸-谷氨酸-亮氨酸(即“KDEL”基序(SEQ ID NO:123))的内质网滞留序列,则该融合蛋白质可靶向至内质网。若融合蛋白质在C端缺乏内质网靶向序列,则该蛋白质可靶向至内质网,但最终将隐藏于质外体中。
实施例6.axmi100在大肠杆菌(E.coli)和芽孢杆菌属中的表达
将axmi100的完整ORF(3.45kb,其编码1156个氨基酸的长蛋白质)克隆入基于pRSF1b的大肠杆菌表达载体(命名为pAX5445)和基于pAX916的芽孢杆菌属载体(命名为pAX5444)。通过限制性分析和最后通过所克隆的基因的完全测序来确认产生的克隆。
为了在大肠杆菌中表达,用pAX5445转化BL21*DE3。将单菌落接种入补充有卡那霉素的LB中,并在37℃下培养过夜。次日,用1%过夜培养物接种两份新鲜培养基,并在37℃下培养至对数期。随后,在37℃下用1mM IPTG诱导培养物3小时或在20℃下诱导过夜。将各细胞沉淀悬浮于补充有1mM DTT的pH 10.5的50mM碳酸钠缓冲液中并进行超声处理。通过SDS-PAGE分析检测对应于Axmi100的130kD蛋白质的表达。
为了在芽孢杆菌属中表达,用pAX5444转化苏云金芽孢杆菌,并将单菌落在CYS-glu培养基中培养3天至孢子形成。然后用补充有1mM DTT的pH 10.5的50mM碳酸钠缓冲液提取细胞沉淀。由于Axmi100的加工,可溶性部分显示130DB的Axmi100蛋白质,以及几条较小分子量的蛋白质条带。胰酶消化Axmi100产生约65kD和55kD的2条不同的蛋白质条带。
实施例7.Axmi100的生物测定
样品的制备
通常将源自表达AXMI-100的细胞的无细胞提取物重悬于通常包含1mM DTT作为还原剂的50mM碳酸钠缓冲液(pH 10.5)中。制备包含和不包含胰酶的样品用于生物测定测试。
生物测定方法学概述:
将1ml多物种饲料(multi-species diet)(Bio-Serv)加至24孔组织培养板(Corning)并让其固化。一旦固化,将40μl蛋白质样品放置在各孔的饲料表面上并让其在室温下浸入/干燥。取决于实验,将ECB卵块、10只新生幼虫或单只新生幼虫放入各孔内。用透气膜(Research ProductsInternational)封闭平板并在25℃和90%RH下孵育。5天或7天(依赖于实验)后,与仅缓冲液或非转化的提取物对照相比,通过观察对样品进行评分。
在欧洲玉米螟和烟青虫(Tobacco Budworm)上观察到AXMI-100的强活性。在高蛋白质浓度下观察到在小地老虎(black cutworm)上的活性。在高浓度下还在梨豆夜蛾(Velvet Bean caterpillar)上观察到一些活性,但小地老虎和梨豆夜蛾二者的活性比所测试的其他昆虫的活性显著性低且更多变。胰酶消化Axmi100产生约65kD和55kD的2条不同的蛋白质条带,且似乎不是AXMI-100的活性所需。
实施例8.杀虫活性的其他测定
通常以许多方式评估杀虫蛋白作为害虫杀虫剂的能力。本领域熟知的一种方式是进行进食测定。在这种进食测定中,将害虫暴露于包含待测试的化合物或对照样品的样品中。这通常通过将待测试物质或这种物质的适当的稀释液放置在害虫可摄食的物质,如人工饲料上。待测试的物质可以由液体、固体或浆液组成。可以将待测试的物质放置在表面并让其干燥。备选地,可以将待测试的物质与熔化的人工饲料混合,然后分入测定室。测定室可以是例如杯、皿或微量滴定板的孔。
用于吸吮害虫(例如蚜虫)的测定可以涉及通过隔膜(理想的是可以被吸吮昆虫的吸吮口器刺穿的部分)将测试物质和昆虫分开以允许测试材料的摄食。通常将测试物质与助食素如蔗糖混合以促进测试化合物的摄食。
其他类型的测定可以包含将测试物质显微注射入害虫的口或肠,以及产生转基因植物,然后测试害虫以转基因植物为生的能力。植物测试可以涉及分离正常消费的植物部分,例如添加在叶上的小笼,或将整株植物分离在包含昆虫的笼中。
测定害虫的其他方法和途径为本领域已知,并可以见于例如Robertson,J.L.& H.K.Preisler.1992.Pesticide bioassays witharthropods.CRC,Boca Raton,FL中。备选地,测定常描述于杂志“Arthropod Management Tests”和“Journal of Economic Entomology”中或通过与Entomological Society of America(ESA)成员讨论。
实施例9.Axmi079和Axmi082的生物测定
基因表达和纯化
●分别将编码Axmi079和Axmi082的毒素结构域的DNA区域在编码麦芽糖结合蛋白质(MBP)克隆入大肠杆菌表达载体pMAL-C4x的malE基因之后。这类符合读框的融合导致MBP-Axmi融合蛋白质在大肠杆菌中表达。
●为了在大肠杆菌中表达,用各质粒转化BL21*DE3。将单菌落接种入补充有羧苄青霉素和葡萄糖的LB中,并在37℃下培养过夜。次日,用1%过夜培养物接种新鲜培养基,并37℃下培养至对数期。随后,在20℃下用0.3mM IPTG诱导过夜。将各细胞沉淀悬浮于20mM Tris-Cl缓冲液,pH 7.4+200mM NaCl+1mM DTT+蛋白酶抑制剂中并进行超声处理。通过SDS-PAGE分析确认融合蛋白质的表达。
●将总无细胞提取物流过连接FPLC的直链淀粉柱进行MBP-axmi融合蛋白质的亲和纯化。用10mM麦芽糖溶液从树脂洗脱结合的融合蛋白质。然后用因子Xa或胰酶切割纯化的融合蛋白质以从Axmi蛋白质除去氨基端的MBP标签。通过SDS-PAGE测定蛋白质的切割和可溶性。
昆虫生物测定
●用适合的对照在昆虫测定中测试切割的蛋白质。5天的读板显示这些蛋白质的以下活性。
其他昆虫生物测定结果:
VBC=梨豆夜蛾
DBM=菜蛾(diamondback moth)
SWCB=西南玉米螟
CPB=科罗拉多马铃薯甲虫(Colorado potato beetle)
ECB=欧洲玉米螟
Hz=棉铃虫
Hv=绿棉铃虫(Heliothis virescens)
*=表示为发育障碍和死亡率百分数,其中按照以下等级对发育障碍进行评分:
  得分   定义
  0   无活性
  1   轻微的,不均匀的发育障碍
  2   不均匀的发育障碍
  3   均匀的发育障碍
  4   具有死亡率(表示为百分数)的均匀的发育障碍
  5   具有100%死亡率的均匀的发育障碍
实施例10.载体化本发明的杀虫基因用于植物表达
独立地将本发明的基因的每个编码区与适合的启动子和终止子序列连接用于在植物中表达。这类序列为本领域熟知并可以包含用于在单子叶植物中表达的水稻肌动蛋白启动子或玉蜀黍遍在蛋白启动子、用于在双子叶植物中表达的拟南芥属(Arabidopsis)UBQ3启动子或CaMV 35S启动子,以及nos或PinII终止子。用于产生和确认启动子-基因-终止子构建体的技术也为本领域熟知。
实施例11.通过农杆菌属介导的转化将本发明的基因转化 进入植物细胞
授粉后8-12天收集谷穗。从谷穗分离胚并用大小为0.8-1.5mm的那些胚进行转化。将胚盾盖侧向上铺在适合的孵育培养基上,并在25℃避光孵育过夜。但是,本来不必将胚本身孵育过夜。将胚与包含用于Ti质粒介导的转化的适当载体的农杆菌属菌株接触5-10分钟,然后铺在共培养培养基上3天(25℃避光)。共培养后,将外植体转移至恢复期培养基5天(25℃避光)。取决于所使用的具体选择的性质和特征,外植体在选择培养基中孵育至多8周。选择期之后,将产生的愈伤阻止转移至胚成熟培养基,直至观察到成熟体细胞胚的形成。然后将产生的成熟体细胞胚置于低光照下,并按本领域已知起始再生过程。让产生的苗在生根培养基上生根,并将产生的植物转移至苗盆并繁殖为转基因植物。
实施例12.用本发明的杀虫基因转化玉蜀黍细胞
授粉后8-12天收集玉蜀黍谷穗。从谷穗分离胚,并用大小为0.8-1.5mm的那些胚进行转化。将胚盾盖侧向上铺在适合的孵育培养基,如DN62A5S培养基(3.98g/L N6盐;1mL/L(1000x贮液)N6维生素;800mg/L L-天冬酰胺;100mg/L肌醇;1.4g/L L-脯氨酸;100mg/L酪蛋白氨基酸;50g/L蔗糖;1mL/L(1mg/mL贮液)2,4-D)上,并在25℃避光孵育过夜。
将产生的外植体转移至网眼方格(每平板30-40),转移至渗透介质30-45分钟,然后转移至辐射平板(见例如PCR公开号WO/0138514和美国专利号5,240,842)。
用基本上如PCT公开号WO/0138514中所述的条件,用气溶胶束加速器将设计用来在植物细胞中表达本发明的基因的DNA构建体加速进入植物组织。辐射后,将胚在渗透介质上孵育30分钟,然后在25℃避光在孵育培养基上放置过夜。为了避免过度损伤经辐射的外植体,在转移至恢复培养基之前将它们孵育至少24小时。然后将胚散布在恢复期培养基上在25℃避光5天,然后转移至选择培养基。取决于所使用的具体选择的性质和特征,外植体在选择培养基中孵育至多8周。选择期之后,将产生的愈伤组织转移至胚成熟培养基,直至观察到成熟体细胞胚的形成。然后将产生的成熟体细胞胚置于低光照下,并通过本领域已知的方法起始再生过程。让产生的苗在生根培养基上生根,并然后将产生的植物转移至苗盆并繁殖为转基因植物。
材料
DN62A5S培养基
用1N KOH/1N KCl将溶液的pH调节至pH 5.8,加入Gelrite(Sigma)至3g/L并高压灭菌。冷却至50℃后,加入2ml/L的5mg/ml硝酸盐(Phytotechnology Labs)贮液。配方产生约20块平板。
本说明书中提到的所有出版物和专利申请是说明本发明所属领域的技术人员的技术水平。所有出版物和专利申请在此以相同的程度引入作为参考,就如同每一单个出版物或专利申请被明确和单独地说明被引入作为参考一样。
虽然已为了理解的清晰性的目的通过说明和实例的方式较详细地描述了本发明,但显而易见的是,可以在所附权利要求的范围内实施某些改变和修改。

Claims (19)

1.分离的或重组的核酸分子,其选自以下的核苷酸序列:
a)SEQ ID NO:36的核苷酸序列;和
b)编码SEQ ID NO:96的氨基酸序列的核苷酸序列。
2.权利要求1的分离的或重组的核酸分子,其中所述核苷酸序列是已设计用于在植物中表达的合成序列。
3.权利要求2的分离的或重组的核酸分子,其中所述核苷酸序列选自SEQ ID NO:206、207、282和283中的任一个。
4.权利要求1的分离的或重组的核酸分子,其中所述核酸分子有效连接至驱动所述核酸分子在植物细胞中表达的启动子。
5.载体,其包含权利要求1或4的核酸分子。
6.权利要求5的载体,其还包含编码异源多肽的核酸分子。
7.宿主细胞,其包含权利要求1或4的核酸分子,其中所述宿主细胞不是植物细胞。
8.权利要求7的宿主细胞,其是细菌宿主细胞。
9.具有杀虫活性的分离的多肽,其选自以下:
a)由SEQ ID NO:96的氨基酸序列组成的多肽;和
b)由SEQ ID NO:36、206、207、282和283中的任一个核苷酸序列编码的多肽。
10.组合物,其包含权利要求9的多肽。
11.权利要求10的组合物,其中所述组合物选自粉末、粉剂、丸、颗粒、喷雾、乳剂、胶体和溶液。
12.权利要求10的组合物,其中通过脱水、冷冻干燥、匀浆、提取、过滤、离心、沉降或浓缩苏云金芽孢杆菌细胞培养物制备所述组合物。
13.权利要求10的组合物,其中通过冷冻干燥苏云金芽孢杆菌细胞培养物制备所述组合物。
14.权利要求10的组合物,其包含1wt%至99wt%的所述多肽。
15.用于控制鳞翅目或鞘翅目害虫群体的方法,其包括使所述群体与杀虫有效量的权利要求9的多肽接触。
16.用于杀死鳞翅目或鞘翅目害虫的方法,其包括用杀虫有效量的权利要求9的多肽接触所述害虫,或饲喂所述害虫。
17.用于产生具有杀虫活性的多肽的方法,其包括在表达编码所述多肽的核酸分子的条件下培养权利要求7的宿主细胞。
18.用于保护植物免受害虫的方法,其包括将至少一个包含编码杀虫多肽的核苷酸序列的表达载体引入所述植物或其细胞,其中所诉核苷酸序列选自:
a)SEQ ID NO:36、206、207、282和283中的任一个核苷酸序列;和
b)编码SEQ ID NO:96的氨基酸序列的核苷酸序列。
19.权利要求18的方法,其中所述植物产生具有针对鳞翅目或鞘翅目害虫的杀虫活性的杀虫多肽。
CN200980122563.5A 2008-06-25 2009-06-25 毒素基因及其使用方法 Active CN102066408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510303590.XA CN105002189A (zh) 2008-06-25 2009-06-25 毒素基因及其使用方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US7571908P 2008-06-25 2008-06-25
US61/075,719 2008-06-25
US15813709P 2009-03-06 2009-03-06
US61/158,137 2009-03-06
PCT/US2009/048614 WO2009158470A2 (en) 2008-06-25 2009-06-25 Toxin genes and methods for their use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510303590.XA Division CN105002189A (zh) 2008-06-25 2009-06-25 毒素基因及其使用方法

Publications (2)

Publication Number Publication Date
CN102066408A CN102066408A (zh) 2011-05-18
CN102066408B true CN102066408B (zh) 2015-07-01

Family

ID=41258971

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980122563.5A Active CN102066408B (zh) 2008-06-25 2009-06-25 毒素基因及其使用方法
CN201510303590.XA Pending CN105002189A (zh) 2008-06-25 2009-06-25 毒素基因及其使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510303590.XA Pending CN105002189A (zh) 2008-06-25 2009-06-25 毒素基因及其使用方法

Country Status (19)

Country Link
US (5) US8461421B2 (zh)
EP (4) EP3904371A3 (zh)
JP (1) JP2011526150A (zh)
CN (2) CN102066408B (zh)
AR (1) AR072316A1 (zh)
AU (1) AU2009262153B2 (zh)
BR (2) BR122021022392B1 (zh)
CA (2) CA3008307C (zh)
CL (1) CL2010001436A1 (zh)
CO (1) CO6351796A2 (zh)
EA (2) EA030439B1 (zh)
ES (1) ES2911327T3 (zh)
MX (2) MX351227B (zh)
NZ (2) NZ602352A (zh)
PE (2) PE20110599A1 (zh)
PH (1) PH12014500606A1 (zh)
UA (1) UA121093C2 (zh)
WO (1) WO2009158470A2 (zh)
ZA (1) ZA201009045B (zh)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2406278A2 (en) * 2009-03-11 2012-01-18 Athenix Corp. Axmi-001, axmi-002, axmi-030, axmi-035, and axmi-045: insecticidal proteins from bacillus thuringiensis and methods for their use
EP2458009A2 (en) * 2009-07-24 2012-05-30 EMBRAPA - Empresa Brasileira De Pesquisa Agropecuária Isolated nucleic acid molecule, genetic construct, vector, transgenic cell, method for producing a transgenic cell and plant, isolated and purified polypeptide, biodegradable pesticide composition, pest control method, method for producing transgenic strains resistant to insect pests
WO2011009182A2 (pt) * 2009-07-24 2011-01-27 Embrapa - Empresa Brasileira De Pesquisa Agropecuária Molécula de ácido nucléico isolada, construção gênica, vetor, célula transgênica, método para obtenção de uma célula e de uma planta transgênica, polipeptídeo isolado e purificado, composição pesticida biodegradável, método para o controle de uma praga, método de obtenção de linhagens transgênicas resistentes a um inseto praga
CA2785195A1 (en) * 2009-12-21 2011-07-14 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with coleopteran activity
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
AU2011218130B2 (en) * 2010-02-18 2016-03-03 Athenix Corp. AXMI218, AXMI219, AXMI220, AXMI226, AXMI227, AXMI228, AXMI229, AXMI230, and AXMI231 delta-endotoxin genes and methods for their use
US9234208B1 (en) * 2010-05-10 2016-01-12 Dow Agrosciences Llc DIG-13 insecticidal cry toxins
JP2012082186A (ja) 2010-09-15 2012-04-26 Bayer Cropscience Ag 殺虫性アリールピロリジン類
BR112013006612A2 (pt) * 2010-09-22 2017-10-24 Bayer Ip Gmbh uso de agentes de controle biológico ou químico para controle de insetos e nematódeos em culturas resistentes
MX2013005258A (es) 2010-11-15 2013-07-05 Bayer Ip Gmbh N-aril pirazol(tio)carboxamidas.
CA2824508C (en) 2011-01-14 2019-07-30 Certainteed Gypsum, Inc. Composite building boards with thermoplastic coatings and cementitious precoated fibrous mats
WO2012135501A2 (en) * 2011-03-30 2012-10-04 Athenix Corp. Axmi232, axmi233, and axmi249 toxin genes and methods for their use
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
CA2844913A1 (en) * 2011-08-19 2013-02-28 Synthetic Genomics, Inc. Integrated method for high-throughput identification of novel pesticidal compositions and uses therefor
CN102363632A (zh) * 2011-11-09 2012-02-29 四川农业大学 一种杀虫Bt蛋白Cry8Kb1、其编码基因及应用
CN102517228B (zh) * 2011-11-29 2014-02-19 四川农业大学 一株苏云金芽孢杆菌st7及其抗癌基因和应用
CN102408472B (zh) * 2011-11-29 2013-04-10 四川农业大学 一种Bt蛋白Cry62Aa1、其编码基因及应用
CN102408474B (zh) * 2011-12-07 2013-04-10 四川农业大学 一种Bt蛋白Cry69Aa1、其编码基因及应用
BR112014022166B1 (pt) * 2012-03-08 2022-08-30 Basf Se Molécula de ácido nucleico codificando um polipeptídeo recombinante delta-endotoxina axmi345, vetor, célula hospedeira, composição, e métodos para matar uma praga, produzir um polipeptídeo e proteger uma planta de uma praga
TWI654180B (zh) 2012-06-29 2019-03-21 美商艾佛艾姆希公司 殺真菌之雜環羧醯胺
US9758793B2 (en) * 2012-08-30 2017-09-12 Athenix Corp. AXMI-234 and AXMI-235 delta-endotoxin genes and methods for their use
CN104884625A (zh) 2012-10-15 2015-09-02 先锋国际良种公司 增强cry内毒素的活性的方法和组合物
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
MX2015006327A (es) 2012-11-30 2015-10-05 Bayer Cropscience Ag Mezclas fungicidas ternarias.
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
BR112015012473A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas binárias pesticidas e fungicidas
EP2970363B1 (en) 2013-03-14 2020-07-08 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US10023877B2 (en) 2013-03-15 2018-07-17 Pioneer Hi-Bred International, Inc. PHI-4 polypeptides and methods for their use
US9862967B2 (en) * 2013-08-09 2018-01-09 Athenix Corp. AXMI281 toxin gene and methods for its use
US9974302B2 (en) * 2013-08-09 2018-05-22 Monsanto Technology Llc Pesticidal toxin active against coleopteran and/or hemipteran insects
EP3032942B1 (en) 2013-08-16 2020-03-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3043635B1 (en) 2013-09-13 2020-02-12 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3102684B1 (en) 2014-02-07 2020-05-06 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2015120276A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2016000237A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
WO2016044092A1 (en) 2014-09-17 2016-03-24 Pioneer Hi Bred International Inc Compositions and methods to control insect pests
US10435706B2 (en) 2014-10-16 2019-10-08 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US10487123B2 (en) 2014-10-16 2019-11-26 Monsanto Technology Llc Chimeric insecticidal proteins toxic or inhibitory to lepidopteran pests
SG10201913870RA (en) 2014-10-16 2020-03-30 Monsanto Technology Llc Novel chimeric insecticidal proteins toxic or inhibitory to lepidopteran pests
US10316329B2 (en) 2014-10-16 2019-06-11 Monsanto Technology Llc Proteins toxic or inhibitory to lepidopteran insects
ES2739948T3 (es) 2014-10-16 2020-02-04 Monsanto Technology Llc Proteínas variantes con secuencias de aminoácidos Cry1Da1 activas contra lepidópteros
CA2969667A1 (en) 2014-12-12 2016-06-09 Syngenta Participations Ag Compositions and methods for controlling plant pests
BR112017013633A2 (pt) 2014-12-22 2018-03-13 Agbiome Inc polipeptídeo recombinante, molécula de ácido nucleico recombinante, composição, célula hospedeira, construto de dna, vetor, método para controlar uma população de pragas, método para produzir um polipeptídeo com atividade pesticida, planta, semente transgênica, método para proteger uma planta de uma praga de insetos, método para aumentar o rendimento em uma planta
CN114075267A (zh) * 2015-01-15 2022-02-22 先锋国际良种公司 杀昆虫蛋白及其使用方法
EA038923B1 (ru) 2015-03-11 2021-11-10 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидная днк-конструкция и способы её применения
WO2016168289A1 (en) 2015-04-17 2016-10-20 AgBiome, Inc. Pesticidal genes and methods of use
RU2738424C2 (ru) 2015-04-22 2020-12-14 Агбайоми, Инк. Пестицидные гены и способы их применения
RU2017144238A (ru) 2015-05-19 2019-06-19 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидные белки и способы их применения
CN108271390A (zh) * 2015-06-03 2018-07-10 农业生物群落股份有限公司 杀虫基因和使用方法
AU2016278142A1 (en) 2015-06-16 2017-11-30 E. I. Du Pont De Nemours And Company Compositions and methods to control insect pests
CA2989169A1 (en) * 2015-06-22 2016-12-29 AgBiome, Inc. Pesticidal genes and methods of use
EP3115458A1 (en) 2015-07-06 2017-01-11 Genective Method for gene optimization
MX2018000615A (es) 2015-07-13 2018-08-01 Pivot Bio Inc Metodos y composiciones para mejorar atributos de plantas.
MX2018001523A (es) 2015-08-06 2018-03-15 Pioneer Hi Bred Int Proteinas insecticidas derivadas de plantas y metodos para su uso.
US10036037B2 (en) 2015-08-18 2018-07-31 Monsanto Technology Llc Insect inhibitory proteins
EP3341483B1 (en) 2015-08-28 2019-12-18 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
WO2017062412A1 (en) 2015-10-05 2017-04-13 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
CN114470192A (zh) 2015-10-13 2022-05-13 优瑞科生物技术公司 对人类cd19具有专一性的抗体药剂和其用途
US10435707B2 (en) * 2015-10-14 2019-10-08 Basf Agricultural Solutions Seed, Us Llc AXMI554 delta-endotoxin gene and methods for its use
SG10201913245UA (en) 2015-10-23 2020-02-27 Eureka Therapeutics Inc Antibody/t-cell receptor chimeric constructs and uses thereof
US20180325119A1 (en) 2015-12-18 2018-11-15 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US10358654B2 (en) 2015-12-22 2019-07-23 AgBiome, Inc. Pesticidal genes and methods of use
CN117003840A (zh) 2016-04-14 2023-11-07 先锋国际良种公司 具有改善的活性谱的杀昆虫多肽及其用途
US11028407B2 (en) 2016-04-19 2021-06-08 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
EP3960863A1 (en) 2016-05-04 2022-03-02 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US20190185867A1 (en) 2016-06-16 2019-06-20 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US20190194676A1 (en) 2016-06-24 2019-06-27 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
EP3954202A1 (en) 2016-07-01 2022-02-16 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
US20210292778A1 (en) 2016-07-12 2021-09-23 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CA3035896A1 (en) 2016-09-06 2018-03-15 AgBiome, Inc. Pesticidal genes and methods of use
EP4050021A1 (en) 2016-11-01 2022-08-31 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN110088123B (zh) 2016-12-14 2023-10-20 先锋国际良种公司 杀昆虫蛋白及其使用方法
CA3046226A1 (en) 2016-12-22 2018-06-28 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN110799474B (zh) 2017-01-12 2022-07-26 皮沃特生物公司 用于改良植物性状的方法及组合物
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
US10793610B2 (en) 2017-01-30 2020-10-06 AgBiome, Inc. Pesticidal genes and methods of use
WO2018148001A1 (en) 2017-02-08 2018-08-16 Pioneer Hi-Bred International Inc Insecticidal combinations of plant derived insecticidal proteins and methods for their use
CA3058757A1 (en) 2017-04-11 2018-10-18 AgBiome, Inc. Pesticidal genes and methods of use
US11965021B2 (en) 2017-04-26 2024-04-23 Eureka Therapeutics, Inc. Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof
EP3622076A1 (en) 2017-05-11 2020-03-18 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112019024827A2 (pt) 2017-05-26 2020-06-16 Pioneer Hi-Bred International, Inc. Construto de dna, planta transgênica ou progênie da mesma, composição e método para controlar uma população de pragas de insetos
EP3661950A2 (en) 2017-08-03 2020-06-10 Agbiome, Inc. Pesticidal genes and methods of use
US20200165626A1 (en) 2017-10-13 2020-05-28 Pioneer Hi-Bred International, Inc. Virus-induced gene silencing technology for insect control in maize
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen
WO2019126479A1 (en) 2017-12-22 2019-06-27 AgBiome, Inc. Pesticidal genes and methods of use
EP3755797A1 (en) 2018-02-22 2020-12-30 Zymergen, Inc. Method for creating a genomic library enriched for bacillus and identification of novel cry toxins
WO2019169227A1 (en) 2018-03-02 2019-09-06 Zymergen Inc. Insecticidal protein discovery platform and insecticidal proteins discovered therefrom
US20210002657A1 (en) 2018-03-02 2021-01-07 Pioneer Hi-Bred International, Inc. Plant health assay
BR112020021445A2 (pt) 2018-04-20 2021-01-19 AgBiome, Inc. Genes pesticidas e métodos de uso
CA3096516A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
US11963530B2 (en) 2018-06-27 2024-04-23 Pivot Bio, Inc. Agricultural compositions comprising remodeled nitrogen fixing microbes
EP3844283A1 (en) 2018-08-29 2021-07-07 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2020047704A1 (en) * 2018-09-03 2020-03-12 Syngenta Participations Ag Compositions and methods for controlling plant pests
WO2021076346A1 (en) 2019-10-18 2021-04-22 Pioneer Hi-Bred International, Inc. Maize event dp-202216-6 and dp-023211-2 stack
RU2744443C1 (ru) * 2019-12-17 2021-03-09 Российская Федерация, от имени которой выступает Министерство здравохранения Российской Федерации Реагентно-программный комплекс для проведения таргетного анализа
US20230235352A1 (en) 2020-07-14 2023-07-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP4192848A1 (en) 2020-08-10 2023-06-14 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
EP4251755A2 (en) 2020-11-24 2023-10-04 AgBiome, Inc. Pesticidal genes and methods of use
WO2022125639A1 (en) 2020-12-08 2022-06-16 Monsanto Technology Llc Modified plant-associated bacteria and methods of their use
AU2021409634A1 (en) 2020-12-21 2023-07-06 Monsanto Technology Llc Novel insect inhibitory proteins
UY39585A (es) 2020-12-23 2022-07-29 Monsanto Technology Llc Proteínas que exhiben actividad inhibidora de insectos frente a plagas con importancia agrícola de plantas de cultivo y semillas
CA3206691A1 (en) 2020-12-31 2022-07-07 Monsanto Technology Llc Novel insect inhibitory proteins
CA3214227A1 (en) 2021-05-06 2022-11-10 Rebekah Deter Kelly Pesticidal genes and methods of use
CA3239251A1 (en) 2021-12-07 2023-06-15 Rebekah Deter Kelly Pesticidal genes and methods of use
WO2024044596A1 (en) 2022-08-23 2024-02-29 AgBiome, Inc. Pesticidal genes and methods of use
WO2024129674A1 (en) 2022-12-13 2024-06-20 AgBiome, Inc. Pesticidal genes and methods of use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625562A (zh) * 2002-03-27 2005-06-08 科学与工业研究会 CRY1EA和CRY1CA的嵌合型δ-内毒素蛋白
CN1950395A (zh) * 2004-03-02 2007-04-18 美国陶氏益农公司 杀虫毒素复合体融合蛋白
WO2007147029A2 (en) * 2006-06-14 2007-12-21 Athenix Corporation Axmi-031, axmi-039, axmi-040 and axmi-049, a family of delta-endotoxin genes and methods for their use

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1506602A (en) 1922-05-17 1924-08-26 Nichols Henry Vehicle wheel
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
EP0192319B1 (en) 1985-01-22 1992-07-15 Mycogen Corporation Cellular encapsulation of biological pesticides
US6028346A (en) * 1986-04-25 2000-02-22 Mitsubishi Denki Kabushiki Kaisha Isolated trench semiconductor device
US5039523A (en) 1988-10-27 1991-08-13 Mycogen Corporation Novel Bacillus thuringiensis isolate denoted B.t. PS81F, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
US5240842A (en) 1989-07-11 1993-08-31 Biotechnology Research And Development Corporation Aerosol beam microinjector
WO1991000915A1 (en) 1989-07-11 1991-01-24 Biotechnology Research & Development Corporation Aerosol beam microinjector
CA2051562C (en) 1990-10-12 2003-12-02 Jewel M. Payne Bacillus thuringiensis isolates active against dipteran pests
UA48104C2 (uk) * 1991-10-04 2002-08-15 Новартіс Аг Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
US5743477A (en) 1992-08-27 1998-04-28 Dowelanco Insecticidal proteins and method for plant protection
HU221339B1 (en) * 1992-08-27 2002-09-28 Plant Genetic Systems Nv New bacillus thuringiensis strains and their insecticidal proteins
WO1994024264A1 (en) * 1993-04-09 1994-10-27 Plant Genetic Systems N.V. New bacillus thuringiensis strains and their insecticidal proteins
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5994526A (en) * 1996-06-21 1999-11-30 Plant Genetic Systems Gene expression in plants
US7129212B2 (en) * 1996-10-30 2006-10-31 Mycogen Corporation Polynucleotides, pesticidal proteins, and novel methods of using them
ID25530A (id) * 1996-11-20 2000-10-12 Ecogen Inc δ-ENDOTOKSIN BERSPEKTRUM-LEBAR
US6017534A (en) * 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
US5942664A (en) * 1996-11-27 1999-08-24 Ecogen, Inc. Bacillus thuringiensis Cry1C compositions toxic to lepidopteran insects and methods for making Cry1C mutants
CA2325567A1 (en) * 1998-05-01 1999-11-11 Maxygen, Inc. Optimization of pest resistance genes using dna shuffling
US6468523B1 (en) 1998-11-02 2002-10-22 Monsanto Technology Llc Polypeptide compositions toxic to diabrotic insects, and methods of use
US6938976B2 (en) 1999-06-16 2005-09-06 Eastman Kodak Company Printer and method therefor adapted to sense data uniquely associated with a consumable loaded into the printer
CA2384967A1 (en) * 1999-09-15 2001-03-22 Monsanto Technology Llc Lepidopteran-active bacillus thuringiensis .delta.-endotoxin compositions and methods of use
WO2001021821A2 (en) * 1999-09-17 2001-03-29 Aventis Cropscience N.V. Insect-resistant rice plants
ATE538205T1 (de) 1999-11-29 2012-01-15 Midwest Oilseeds Inc Verfahren, medien und vorrichtung zur einführung von molekülen in pflanzenzellen und bakterien mittels aerosolstrahlen
AU784649B2 (en) * 1999-12-28 2006-05-18 Bayer Cropscience Nv Insecticidal proteins from Bacillus thuringiensis
US20020038005A1 (en) * 2000-01-07 2002-03-28 Wojciechowska Jana Alexandrovna Novel delta-endotoxins and nucleic acid sequences coding therefor
WO2001087940A2 (en) * 2000-05-15 2001-11-22 Monsanto Technology Llc Polypeptide composionns toxic to anthonomus insects, and use thereof
FR2822157B1 (fr) * 2001-03-19 2003-10-31 Aventis Cropscience Sa Toxine insecticide de bacillus thuringiensis modifiee sensible a la pepsine
EP1488365A4 (en) 2002-03-11 2007-05-09 Athenix Corp INTEGRATED SYSTEM FOR GENETIC DIVERSITY COLLECTION WITH HIGH THROUGHPUT
US6927062B2 (en) * 2002-11-25 2005-08-09 Agdia, Inc. Controls and standards for assays and method for manufacture thereof
NZ588825A (en) * 2003-02-20 2011-06-30 Athenix Corp AXMI-014 delta-endotoxin
US7351881B2 (en) * 2003-02-20 2008-04-01 Athenix Corporation AXMI-008, a delta-endotoxin gene and methods for its use
US7629504B2 (en) * 2003-12-22 2009-12-08 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry9 nucleic acids
US8143474B2 (en) * 2006-04-18 2012-03-27 Rutgers, The State University Of New Jersey Compositions and methods for increasing transgene expression in the plastids of higher plants
WO2007147096A2 (en) * 2006-06-15 2007-12-21 Athenix Corporation A family of pesticidal proteins and methods for their use
BRPI0720135A2 (pt) * 2006-12-08 2012-11-06 Pioneer Hi Bred Int molécula de ácido nucleico isolada, vetor, cassete de expressão, célula hospedeira, planta transgênica, semente, molécula de ácido nucleico, vetor, poliptìdeo, método para produzir uma planta com resistência a insetos aumentada, polinucleotìdeo isolado, cassete de expressão recombinante, polipeptìdeo isolado, célula hospedeira transformada, planta transformada, semente transformada
US7772465B2 (en) 2007-06-26 2010-08-10 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis gene with lepidopteran activity
AR081386A1 (es) * 2010-05-10 2012-08-29 Texas A & M Univ Sys Composiciones, organismos, sistemas y metodos para expresar un producto genetico en plantas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625562A (zh) * 2002-03-27 2005-06-08 科学与工业研究会 CRY1EA和CRY1CA的嵌合型δ-内毒素蛋白
CN1950395A (zh) * 2004-03-02 2007-04-18 美国陶氏益农公司 杀虫毒素复合体融合蛋白
WO2007147029A2 (en) * 2006-06-14 2007-12-21 Athenix Corporation Axmi-031, axmi-039, axmi-040 and axmi-049, a family of delta-endotoxin genes and methods for their use

Also Published As

Publication number Publication date
NZ602352A (en) 2014-06-27
CN102066408A (zh) 2011-05-18
CN105002189A (zh) 2015-10-28
CL2010001436A1 (es) 2012-08-24
PH12014500606A1 (en) 2015-12-07
CO6351796A2 (es) 2011-12-20
US20100005543A1 (en) 2010-01-07
JP2011526150A (ja) 2011-10-06
AU2009262153B2 (en) 2014-02-27
US20200055907A1 (en) 2020-02-20
US20130305412A1 (en) 2013-11-14
PE20140942A1 (es) 2014-08-06
BR122021022392B1 (pt) 2022-08-09
EP3470419B1 (en) 2022-01-05
EP2727933A1 (en) 2014-05-07
US9556255B2 (en) 2017-01-31
UA121093C2 (uk) 2020-04-10
US20130310543A1 (en) 2013-11-21
BRPI0914780B1 (pt) 2022-02-08
EP3904371A3 (en) 2022-01-26
EP2727933B1 (en) 2019-01-09
CA2729294C (en) 2018-08-14
MX2010013910A (es) 2011-06-20
ES2911327T3 (es) 2022-05-18
US8461421B2 (en) 2013-06-11
EP2297189A2 (en) 2011-03-23
EA030439B1 (ru) 2018-08-31
MX351227B (es) 2017-09-14
CA2729294A1 (en) 2009-12-30
PE20110599A1 (es) 2011-08-31
AR072316A1 (es) 2010-08-18
BRPI0914780A2 (pt) 2020-07-14
BRPI0914780B8 (pt) 2022-07-05
EP3470419A1 (en) 2019-04-17
WO2009158470A2 (en) 2009-12-30
ZA201009045B (en) 2013-02-27
EP3904371A2 (en) 2021-11-03
EA201400248A1 (ru) 2014-10-30
EA201071312A1 (ru) 2011-06-30
CA3008307A1 (en) 2009-12-30
AU2009262153A1 (en) 2009-12-30
EA020327B1 (ru) 2014-10-30
US20170101447A1 (en) 2017-04-13
NZ589991A (en) 2012-09-28
WO2009158470A3 (en) 2010-04-29
CA3008307C (en) 2020-12-15

Similar Documents

Publication Publication Date Title
CN102066408B (zh) 毒素基因及其使用方法
CN102076709B (zh) Axmi-il5、axmi-113、axmi-005、axmi-163和axmi-184:vip3a杀虫蛋白及其使用方法
CN101501066B (zh) δ-内毒素基因家庭,AXMI-031、AXMI-039、AXMI-040和AXMI-049,及其使用方法
CN101878222B (zh) AXMI-066:δ-内毒素蛋白及其使用方法
EP2455394B1 (en) A family of pesticidal proteins and methods for their use
CN102388143A (zh) AXMI-150 δ-内毒素基因及其使用方法
CN102421792A (zh) Axmi-001、axmi-002、axmi-030、axmi-035和axmi-045: 来自苏云金芽孢杆菌的杀虫蛋白及其用法
CN102257145A (zh) 来自短芽孢杆菌的杀虫基因及其使用方法
CN102369286A (zh) 变体axmi-r1δ-内毒素基因和使用它们的方法
CN102395679A (zh) 控制植物害虫的方法和组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200323

Address after: New jersey, USA

Patentee after: BASF Agricultural Solutions Seeds US LLC

Address before: Ludwigshafen, Germany

Patentee before: BASF SE

Effective date of registration: 20200323

Address after: Ludwigshafen, Germany

Patentee after: BASF SE

Address before: North Carolina, USA

Patentee before: ATHENIX Corp.

TR01 Transfer of patent right