CN102051603B - 一种等离子体辅助硒硫化处理装置及工艺 - Google Patents

一种等离子体辅助硒硫化处理装置及工艺 Download PDF

Info

Publication number
CN102051603B
CN102051603B CN201010518539A CN201010518539A CN102051603B CN 102051603 B CN102051603 B CN 102051603B CN 201010518539 A CN201010518539 A CN 201010518539A CN 201010518539 A CN201010518539 A CN 201010518539A CN 102051603 B CN102051603 B CN 102051603B
Authority
CN
China
Prior art keywords
selenium
plate
vakuumkammer
sulfidizing
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010518539A
Other languages
English (en)
Other versions
CN102051603A (zh
Inventor
孙国忠
敖建平
李宝璋
张超
何青
周志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201010518539A priority Critical patent/CN102051603B/zh
Publication of CN102051603A publication Critical patent/CN102051603A/zh
Application granted granted Critical
Publication of CN102051603B publication Critical patent/CN102051603B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种等离子体辅助硒硫化处理装置,设置于真空室内,包括壳体、阴极板和阳极板,阴极板和阳极板交替叠放形成等离子体发生器,阴极板设有固定半导体薄膜基板的沟槽,阳极板表面均布小孔并设有输气管、独立内加热电极和阳极测温点基于该处理装置的工艺为:1)在半导体薄膜材料上按化学式配比预制金属层,然后放入阴极板的沟槽中;2)将其置于真空室内抽真空,打开电源加热阴极板和阳极板,启动等离子体发生器电源,并通入硒或硫、氢、氩混合气体。本发明的优点:硒原子的反应活性高,金属预制层的硒化反应完全,光电转换效率高;基片的加热温度低,不易变形;采用电子方式监控两电极间容抗的变化,了解转化的进展,减少工业化生产的废品率。

Description

一种等离子体辅助硒硫化处理装置及工艺
技术领域
本发明涉及太阳能电池薄膜材料制备技术,特别是一种等离子体辅助硒硫化处理装置及工艺。
背景技术
铜铟硒(CuInSe2缩写为:CIS)或其中固溶镓、硫的铜铟镓硒[Cu(InGa)(SeS)2缩写为:CIGS]太阳薄膜电池是在普通钠钙玻璃或聚酰亚胺薄膜、金属薄板(铝、不锈钢、钼箔等)衬底上分别沉积多层薄膜而构成的光伏器件,其单体电池结构一般为:玻璃衬底/金属钼(Mo)背电极/光吸收层(CIGS)/缓冲层[CdS、ZnS、ZnSe、In(OH)3、ZnS(O,OH)等]/高阻本征i-ZnO/导电窗口层[掺杂ZnO(ZnO:Al、ZnO:Ga、ZnO:B)、SnO2、ITO(氧化铟锡)等]/金属栅状电极/减反射膜等组成。其中光学吸收层的CIGS薄膜制备的质量是阻碍电池产业化的主要困难之一;CIGS光学吸收层薄膜的制备工艺方法主要有:1)共蒸发法,它是将Cu、In、Ga和Se作源在真空室中进行反应共蒸发沉积在Mo背电极上,共蒸发法要求薄膜中各元素的蒸发速率和电池衬底的沉积量均要求精确控制,薄膜大面积沉积的均匀性和重现性要求很严,相应真空沉积设备控制精度和造价很高;2)金属预置层后硒硫化法,先在衬底上分别或混合溅射一定化学配比量的Cu、In、Ga金属预制层,再在真空热处理炉内与H2Se(H2S)或饱和硒蒸汽(或硫蒸汽)进行硒硫化反应,最终生成满足化学配比要求的Cu(In,Ga)Se2化合物半导体多晶薄膜;3)分层沉积Cu、In、Ga和Se或CuSe2、In2Se3、Ga2Se3分层沉积,再放入硒(或硫)气氛炉内快速热处理,转化成Cu(In,Ga)Se2化合物半导体多晶薄膜。
共蒸发法是CIGS薄膜电池小面积高效率电池制作的主要方法,但是大面积产业化时均匀性差。
金属预制层后硒化法较易实现大面积制作CIGS薄膜电池组件,是一产业化的主要途径。金属预制层后硒硫化法有二种:一种是通入H2Se(H2Se+Ar)[或H2S(H2S+Ar)]气体进行化学气相反应形成CIGS薄膜;另一种是固态硒或硫加热气化后在较高温度下与预制层金属Cu、In和Ga发生化学反应形成CIGS薄膜。在H2Se气相硒化时,H2Se在预制层表面分解提供活性硒原子和活性氢原子,活性氢原子很容易在材料中渗透和扩散,相对金属原子,它易得到电子成为负离子,相对其它非金属原子,它易失去电子成为正离子。在金属预制层硒化的过程中,原子之间由金属键转变为共价健,键能增大,需要外界输入能量克服势垒和提供机会,氢原子提供了双性的氢键过渡,起到了传媒和催化的作用,加速了金属预制层转变成化合物半导体薄膜材料的过程,固态源硒化时,也可通入氢气,但氢分子要进入金属或化合物半导体中,必须先被材料表面活性点所吸附、分解成氢原子,才能起到传媒和催化作用。这种方法的特点是可以得到高质量的均匀的薄膜,但是H2Se气体属于剧毒危险品,易燃易爆,运输困难,价格昂贵,国内没有生产厂家,直接利用H2Se气体进行金属预制层后硒化制备CIGS薄膜材料较难实施。
固态源后硒硫化制备CIGS薄膜技术的设备较简单,能降低CIGS薄膜材料的制备成本,固态硒(或硫)原材料的毒性不大,易于实现工业化生产。但是它存在以下缺点:1).固态硒(或硫)源形成的气态硒大多以Se5、Se6、Se7等大分子团或原子簇形式存在,与H2Se相比,反应活性差、过程复杂,反应温度高,接近玻璃基片的软化点;2).由于固态源硒(或硫化)气化时,是从一定的位置产生气体,对于大面积的基片来说,不容易形成均匀分布,形成的薄膜均匀性很差,难以用于大面积的产业化;3).预制层金属Cu、In、Ga转变成化合物半导体薄膜材料时,几乎每个原子之间的相互关系都发生了变化,由原子间的金属键作用转变为共价键,另一方面,硒原子与金属预制层反应,其体积发生了变化,与Mo接触的界面发生了位移,造成CIGS薄膜与Mo背电极结合力严重下降,影响半导体薄膜电池下道工序进行和最终薄膜器件的质量;4).金属镓一般是以铜镓合金的形式与铟分别叠加溅射形成预制层,硒化时薄膜内金属铟比镓更容易反应,因而容易形成CuInSe2,而不是Cu(In,Ga)Se2,造成Ga原子被驱赶到底层,另一方面Ga更容易与Mo化合,Ga向Mo背电极扩散而不能形成化合物半导体,制备的半导体薄膜电池吸收层材料的禁带宽度比理论预期值低,电池开路电压和光电转化效率均不高。
气相硒硫化与固态源硒硫化的共同缺点是薄膜结晶质量或结构疏松,致密性较差,半导体多晶薄膜的缺陷态很多,薄膜电池的光电转换效率较低。
发明内容
本发明的目的是针对上述存在问题,提供一种等离子体辅助硒硫化处理装置及工艺,该装置设备简单、制备成本低,该工艺易于实施、制备的薄膜结晶致密度高、薄膜电池的光电转换效率高且制备过程安全可靠。
本发明的技术方案:
一种等离子体辅助硒硫化处理装置,设置于真空室内,包括壳体、阴极板和阳极板,壳体为长方体结构,设有两块侧板和底板,阴极板和阳极板在壳体内平行间隔交替叠放并固定在壳体的底板上,阴极板和阳极板交替叠放形成等离子体发生器,壳体的侧板即为等离子体发生器的外壳,阴极板设有固定半导体薄膜基板的沟槽,阴极板上设有均匀分布1~4个独立内加热电极和电池基片测温点,阳极板为腔体结构,阳极板表面均布小孔,孔径0.5mm~1.5mm,孔间距5mm~20mm,阳极板上设有输气管与腔体相通,阳极板上设有均匀分布1~3个独立内加热电极和阳极测温点,阴极板和阳极板分别设有极柱并与真空室外的等离子体发生电源连接,所述内加热电极、测温点和输气管分别与真空室外的加热电源、电路及气路连接,内加热电极与测温点通过自动控温系统PID形成闭环温度控制,气路上设有气体流量计。
所述阴极板材质为W、Mo或Ta,数量为2~64片。
所述阳极板材质为Mo金属薄板,数量为2~64片。
所述等离子体外壳设有2~4层保温套或热反射隔热板,其最内层材质是Mo金属薄板,其余各层材质为不锈钢薄板,等离子体外壳固定在真空室内并与真空室箱体形成等电位体。
所述半导体薄膜基板在阴极板两端设为卷带式结构,以实现半导体薄膜基板在处理装置中的连续进给。
所述硒硫化处理装置为1~8个并分别按线形排列设置于相同数量的真空室内,每个真空室设有一个可在真空室中轴线方向运动的小车,按连续流水线方式实施。
所述硒硫化处理装置为水平或垂直设置于真空室内。
一种基于所述等离子体辅助硒硫化处理装置的工艺方法,步骤如下:
1)在半导体薄膜材料上按化学式配比预制金属层,然后放入阴极板的沟槽中;
2)将硒硫化处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-2~10-5Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为使金属预制层基片的温度为350~600℃,阳极板的温度为160~350℃,启动真空室外的等离子体发生器电源,并通入硒或硫、氢、氩混合气体,其中氢、氩气体是传递硒蒸气或硫蒸气的载气。
所述等离子体发生器电源输出模式为:直流脉冲、交流中频、高频、射频(RF)或特高频(VHF)。
所述氢、氩混合载气中,氢为1~30v%,其余为氩气。
本发明的工作原理及积极效果:
1)等离子体可以促进化学反应,等离子体中电子的平均能量(1~20eV)足以使大多数气体电离或分解,易使固态硒气化后的大分子团硒的分解、离化,氢分子被分解成原子氢,在射频电场作用下,钼电极表面更有利于活性硒与氢反应生成硒化氢,使等离子增强固态硒与氢、氩混合气体的硒化工艺具有了单质硒化氢气相硒化工艺的特点;这样,电极表面喷出的氢、氩、硒的混合气体进入等离子体区时,先发生电子辐射促进氢分子与大分子团硒的分解、离化反应,在射频电场作用下,在两电极表面发生合成反应,由于放置金属预制层基板面的硒化温度较另一面高,在350~600℃之间,更易发生硒化氢的分解反应,单原子活性硒更易与金属铜铟镓发生硒化反应,消耗掉硒元素,相对另一电极表面的硒化氢浓度就会增加,形成扩散势或某种类型硒化氢的分解与合成的循环,最终完成金属预制层的硒化反应,完全生成CIGS化合物半导体薄膜光电材料。
2)等离子体中的电子动能替代热能的重要优势是降低基片的加热温度,明显降低固态源硒化所要求的较高环境温度,克服600℃以上普通玻璃基片易软化变形的缺陷,另一方面,电子动能促进材料中各元素的分布更均匀,使常规较高温度形成的固溶体可在低温时形成,铜铟镓硒多晶颗粒的生长相对更大;电子作为离化源,使硒原子的反应活性成倍地增加,交变电场的作用使等离子体中硒离子和氢原子的轰击加快了金属预制层转变成化合物半导体多晶薄膜材料的时间,射频电场使氩原子“捣实”了后硒化薄膜材料,提高了致密度,并使其晶粒更易长大,制备薄膜电池的光电转换效率更高。
3)电容射频等离子体的局限性是其频率不利于氩原子的溅射,但在本发明中氩原子却捣实了转化薄膜材料与底层金属背电极的接触,增加了不易扩散元素的分布均匀性和与硒反应的几率。例如,常规固态源硒化制备铜铟镓硒半导体材料时,金属镓元素不易掺杂成功,电池材料的物理或化学检测符合配比要求,电池开路电压却较低,光电池转化效率不高,其本质是金属镓并没有均匀地与其它元素形成固溶化合物。
4)平行板电容耦合射频等离子体辅助硒化或硫化金属预制层,由于采用电子方式可以监控两电极间容抗的变化,可标定金属预制层转化成半导体薄膜的情况,了解转化的进展,减少工业化生产的废品率。
附图说明
图1为本发明的等离子体辅助硒硫化处理装置的结构示意图。
图2为本发明的等离子体辅助硒硫化处理装置中阳极的结构示意图。
图3为本发明的等离子体辅助硒硫化处理装置中阴极的结构示意图。
图中:1.壳体  2.阴极板  3.阳极板  4.沟槽  5.内加热电极6.小孔  7.输气管  8.半导体薄膜基板  9.极柱
图4为铜铟镓的硒化温度、时间和通混合气体时的工艺曲线。
具体实施方式
下面根据附图对本发明实施细节。
一种等离子体辅助硒硫化处理装置,设置于真空室内,包括壳体1、阴极板2和阳极板3,壳体1为长方体结构,设有两块侧板和底板,阴极板2和阳极板3在壳体1内平行间隔交替叠放并固定在壳体1的底板上,阴极板2和阳极板3交替叠放形成等离子体发生器,壳体1的侧板即为等离子体发生器的外壳,阴极板2设有固定半导体薄膜基板8的沟槽4,阴极板2上设有均匀分布1~4个独立内加热电极5和电池基片测温点,阳极板3为腔体结构,阳极板3表面均布小孔6,孔径0.5mm~1.5mm,孔间距5mm~20mm,阳极板3上设有输气管7与腔体相通,阳极板3上设有均匀分布1~3个独立内加热电极5和阳极测温点,阴极板2和阳极板3分别设有极柱9并与真空室外的等离子体发生电源连接,所述内加热电极5、测温点和输气管7分别与真空室外的加热电源、电路及气路连接,内加热电极与测温点通过自动控温系统PID形成闭环温度控制,气路上设有气体流量计。
实施例1Cu-In金属预制层的硒硫化处理
在普通钠钙玻璃上溅射沉积0.6~1.4μm厚金属Mo,用激光划线,再在Mo薄膜上溅射或蒸发一层NaF(厚0.1~0.3μm)(或Na2S),然后溅射沉积铜铟或铜铟合金,铜与铟的原子比(Cu/In)为0.85∶1.0~0.95∶1.0,将它们放入电容耦合平行板射频等离子体装置内阴极上基片架4上,关闭真空室抽真空。当机械泵与分子泵或真空扩散泵联动抽真空达到10-2~10-5Pa时,启动阴极板及阳极板内加热装置,其中阴极板的温度变化如图4所示。即让电池基板8以0.5~2℃/s的速度均匀地升温,并在100℃左右稳定10~20分钟后,关闭真空闸板阀到微启状态,降低真空室抽气速率,充入氩气,使真空室气压维持0.2~4Pa时,启动真空室外的等离子电源,使两平行电极的区域产生等离子体,然后再快速加热两平板电极,当阳极板3一侧温度达到180℃以上时,在先前通入氩气气路中通入固态硒蒸气、硫蒸气和氢气混合气体。同时阴极也快速升温到350℃并保温2~10min,再升温到550~600℃。这样,阳极表面均匀喷出的混合气体直接进入辉光等离子区,在射频电场和等离子体作用下,固态硒大分子团被分解、离化成活性硒原子或离子,氢分子被分解成氢原子或离子,随着反应的继续进行,在放置电池基片的平板电极端两侧面活性硒原子和氢原子与金属预制层进行硒化反应,在其相对平板电极内置气路端两侧的钼电极表面进行硒化氢合成反应,随着硒化氢浓度增加,逐渐向另一侧平板电极的电池基板表面扩散,渗入预制层内并被分解成活性硒原子和氢原子,直接参与金属预制层的硒化反应。当通入混合气体的阳极板温度超过280℃时,切断加热电源,控制其温度在160~350℃区间,阴极板(即基片)的温度在硒化处理过程中始终维持在350~600℃,其最佳温度区间是450~580℃。阴极板的温度变化曲线如图4所示。
等离子体硒化处理10~50min后,切断变频电源,停止等离子体轰击半导体薄膜材料,将电池基板温度升高到580℃,保持20~30分钟,使多晶半导体材料小晶粒合并、长成大晶粒,减少半导体薄膜材料内部的缺陷态,此过程要继续向真空室内通入硒气氛和氢混合气体;然后,逐渐降低电池基板的温度,达到280℃时,切断硒蒸气、氢气和氩气,使射频等离子体辅助硒化或硫化装置自然降温,达到100℃时,向真空室充氩气快速降温,取出金属预制层已硒化转变成CuIn(Se,S)2化合物半导体薄膜材料的电池基板。
将已硒化转变成CuInSe2半导体薄膜材料的电池基板放入化学水浴中,进行CBD-CdS缓冲层薄膜材料的沉积,其厚度大约50nm,用机械划线法在钼底电极线边的50~200nm处分割电池,吹净浮灰后放入真空室中溅射沉积高阻本征i-ZnO,其厚度60~80nm,方块电阻Rs=106~7欧姆/□,再溅射沉积低阻ZnO:Al,其厚度0.08~0.13μm,方块电阻Rs=10-3~4欧姆/□,再次进行机械划线分割电池,清理电池集成组件两侧Mo电极上的沉积物,真空蒸镀组件Ni/Al边电极导电带,集成组件全表面溅射MgF2减反射膜材料,厚0.1~0.12μm,焊接集成电池组件的电极引线,清理集成组件四周,用EVA树脂和低铁太阳能玻璃进行电池封装,就完成了CIS薄膜电池集成组件的生产。
实施例2 CuIn0.3Ga0.7金属预制层的硒化处理
电池基板表面电极的前期制备工艺与实施例1相同,在Mo薄膜表面先溅射或蒸发一层NaF(厚0.1~0.3μm)(或Na2S),再溅射沉积铜镓合金(CuGa0.3,厚度0.8~1.2μm),溅射沉积铟(0.5~0.8μm),或铜镓铟分别叠层沉积,其总化学配比应满足Cu(Ga0.3In0.7)Se2,并要求Cu/(In+Ga)=1∶1.0~1∶1.15,这是因为铟镓在硒化过程有一定升化损失,而钠离子的掺入有利于降低铜铟镓金属预制层硒化过程的结晶温度、晶粒长大和薄膜表面的平整度,提高CIGS薄膜电池吸收体的载流子浓度,在保持薄膜电池吸收体的电性能相近情况下,扩大了三元化合物半导体薄膜的成份有效范围,改善了薄膜电池的综合性能。
将预制好铜铟镓金属预制层放入平板变频等离子辅助硒化装置内,关闭真空室抽真空。当机械泵与分子泵或真空扩散泵联动抽真空达到10-2~10-5Pa时,启动阴极板及阳极板内加热装置,其中阴极板的温度变化如图4所示,即让电池基板以0.5~2℃/s的速度均匀地升温,并在100℃左右稳定10~20分钟后,关闭真空闸板阀到微启状态,降低真空室抽气速率,充入氩气,使真空室气压维持0.2~4Pa时,启动真空室外的等离子电源,使两平行电极的区域产生等离子体,然后再快速加热两平板电极,当阳极板3一侧温度达到180℃以上时,在先前通入氩气气路中通入固态硒蒸气和氢气混合气体。同时阴极也快速升温到350℃并保温2~10min,再升温到550~600℃。
因为硒化过程中CuSe2较其它硒化物的熔点低,Mo膜上先沉积铜镓合金层有利于CuSe2与Mo电极界面的浸润、优先与周围较难反应的镓生成更宽带隙的CuGaSe2,再逐渐与上表层的In相互扩散,最终生成Cu(In0.7Ga0.3)Se2化合物半导体薄膜,使薄膜电池吸收体在厚度纵深方向的带隙宽度发生渐变,并与Mo形成金属半导体结-薄膜电池背电场,提高电池的开路电压Voc;从另一方面来讲,在变频等离子体与电场作用下,固态硒大分子团被分解、离化成活性硒原子或离子,氢分子被分解成氢原子或离子,它们与预制层金属进行硒化反应,另一变频平板电极钼表面催化生成硒化氢,并逐渐扩散到预制层表面或内部,并被Mo电极所吸附、反应生成MoSe2,改善金属预制层硒化后与Mo电极的结合力。
取出硒化好的铜铟镓硒多晶薄膜的电池基板,分别沉积CdS、i-ZnO、ZnO:Al和MgF等就制备出CIGS薄膜太阳电池组件,单体电池开路电压达500~740mV。
实施例3CIGS进行硒硫化
金属预置层CuInGa硒化后形成的CIGS半导体薄膜,如果再进行硫化,可以生成宽带隙、高阻、n型同质pn结,具有改进CIS及CIGS薄膜质量的作用。本实施例按照实施例2的方法在等离子辅助硒化制备CIGS薄膜材料的后期,将气体的成份改为输入Ar+H2S或Ar+S+H2后,可以在CIGS薄膜材料表层制备出含硫的高阻Cu(In0.7Ga0.3)(SeS)层,用EDX(能量分散型X射线分析仪)测试含硫薄膜表层的深度,确定控制其厚度在10~20nm时的通硫时间(3~10min);这种含硫表层薄膜构成了比底层CIGS薄膜的禁带宽度更宽的n型半导体层或CIGS的高阻层,该表层电阻率104Ω·cm以上,构成CIGS薄膜材料自身的同质pn结,制作成CIS或CIGS太阳能薄膜电池后,该工艺措施能抑制薄膜电池pn结界面缺陷产生的漏电流,提高该结区的二极管特性,达到降低漏电流增加电池开放端电压、提高电池填充因子FF和光电转换效率的目的。
这种表层含硫CIGS薄膜材料进行CBD-CdS沉积后,相对与表层不含硫的CIGS薄膜上沉积CdS后的相比,其界面晶格匹配效果更好,pn结界面区缺陷态更少。

Claims (10)

1.一种等离子体辅助硒硫化处理装置,其特征在于:设置于真空室内,包括壳体、阴极板和阳极板,壳体为长方体结构,设有两块侧板和底板,阴极板和阳极板在壳体内平行间隔交替叠放并固定在壳体的底板上,阴极板和阳极板交替叠放形成等离子体发生器,壳体的侧板即为等离子体发生器的外壳,阴极板设有固定半导体薄膜基板的沟槽,阴极板上设有均匀分布1~4个独立内加热电极和电池基片测温点,阳极板为腔体结构,阳极板表面均布小孔,孔径0.5mm-1.5mm,孔间距5mm-20mm,阳极板上设有输气管与腔体相通,阳极板上设有均匀分布1-3个独立内加热电极和阳极测温点,阴极板和阳极板分别设有极柱并与真空室外的等离子体发生电源连接,所述内加热电极、测温点和输气管分别与真空室外的加热电源、电路及气路连接,内加热电极与测温点通过自动控温系统PID形成闭环温度控制,气路上设有气体流量计。
2.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述阴极板材质为W、Mo或Ta,数量为2-64片。
3.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述阳极板材质为Mo金属薄板,数量为2-64片。
4.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述等离子体发生器的外壳设有2-4层保温套或热反射隔热板,其最内层材质是Mo金属薄板,其余各层材质为不锈钢薄板,等离子体发生器的外壳固定在真空室内并与真空室箱体形成等电位体。
5.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述半导体薄膜基板在阴极板两端设为卷带式结构,以实现半导体薄膜基板在处理装置中的连续进给。
6.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述离子体辅助硒硫化处理装置为1-8个并分别按线形排列设置于相同数量的真空室内,每个真空室设有一个在真空室中轴线方向运动的小车,按连续流水线方式实施。
7.根据权利要求1所述等离子体辅助硒硫化处理装置,其特征在于:所述离子体辅助硒硫化处理装置为水平或垂直设置于真空室内。
8.一种基于权利要求1所述等离子体辅助硒硫化处理装置的工艺方法,其特征在于步骤如下: 
1)在半导体薄膜材料上按化学式配比预制金属层,然后放入阴极板的沟槽中;
2)将硒硫化处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-2-10-5Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为使金属预制层基片的温度为350-600℃,阳极板的温度为160-350℃,启动真空室外的等离子体发生器电源,并通入硒或硫,以及氢、氩混合气体,其中氢、氩混合气体是传递硒蒸气或硫蒸气的载气。
9.根据权利要求8所述工艺方法,其特征在于:所述等离子体发生器电源输出模式为:直流脉冲、交流中频、高频、射频(RF)或特高频(VHF)。
10.根据权利要求8所述工艺方法,其特征在于:所述氢、氩混合气体中,氢为1-30v%,其余为氩气。 
CN201010518539A 2010-10-26 2010-10-26 一种等离子体辅助硒硫化处理装置及工艺 Expired - Fee Related CN102051603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010518539A CN102051603B (zh) 2010-10-26 2010-10-26 一种等离子体辅助硒硫化处理装置及工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010518539A CN102051603B (zh) 2010-10-26 2010-10-26 一种等离子体辅助硒硫化处理装置及工艺

Publications (2)

Publication Number Publication Date
CN102051603A CN102051603A (zh) 2011-05-11
CN102051603B true CN102051603B (zh) 2012-10-24

Family

ID=43956391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010518539A Expired - Fee Related CN102051603B (zh) 2010-10-26 2010-10-26 一种等离子体辅助硒硫化处理装置及工艺

Country Status (1)

Country Link
CN (1) CN102051603B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443779B (zh) * 2011-12-08 2014-06-25 尚越光电科技有限公司 一种制备铜铟镓硒薄膜的等离子体协助硒化工艺及装置
CN102738299A (zh) * 2012-06-06 2012-10-17 华东师范大学 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN102853940B (zh) * 2012-09-07 2013-12-18 顺德工业(江苏)有限公司 导线架高温测试装置
CN102909871B (zh) * 2012-09-29 2015-05-20 深圳南玻显示器件科技有限公司 柔性基材表面处理装置和处理方法
CN103904154B (zh) * 2012-12-27 2016-06-29 北京有色金属研究总院 一种改进型大尺寸样品硒化处理装置
CN103074583B (zh) * 2013-01-25 2015-04-22 合肥工业大学 一种cigs薄膜电池的激光沉积制备工艺
CN103397305B (zh) * 2013-08-06 2015-08-26 深圳先进技术研究院 硒化/硫化处理装置
TWI536585B (zh) * 2014-03-06 2016-06-01 Ching Feng Chen Thin film solar cells in the absorption layer of the production method and thin Production method of membrane solar cell
CN104278251A (zh) * 2014-09-16 2015-01-14 阳江市汉能工业有限公司 一种金属预制层合金化设备及方法
CN107541718B (zh) * 2017-09-01 2020-01-21 苏州云舒新材料科技有限公司 一种水滑石基磁光薄膜材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379453A (zh) * 2001-04-12 2002-11-13 中国科学院长春光学精密机械与物理研究所 一种适于宽带半导体硫(硒)化锌-锰薄膜的生长方法
CN101284654A (zh) * 2008-05-09 2008-10-15 南开大学 一种用于硒化处理的高活性硒源的产生方法及装置和应用
CN201268719Y (zh) * 2008-10-07 2009-07-08 苏州富能技术有限公司 铜铟镓硒硫或铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的镀膜设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246839B2 (ja) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379453A (zh) * 2001-04-12 2002-11-13 中国科学院长春光学精密机械与物理研究所 一种适于宽带半导体硫(硒)化锌-锰薄膜的生长方法
CN101284654A (zh) * 2008-05-09 2008-10-15 南开大学 一种用于硒化处理的高活性硒源的产生方法及装置和应用
CN201268719Y (zh) * 2008-10-07 2009-07-08 苏州富能技术有限公司 铜铟镓硒硫或铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的镀膜设备

Also Published As

Publication number Publication date
CN102051603A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102051603B (zh) 一种等离子体辅助硒硫化处理装置及工艺
CN100413097C (zh) 铜铟镓硒或铜铟镓硫或铜铟镓硒硫薄膜太阳能电池吸收层的制备方法
CN101459200B (zh) 柔性铜铟镓硒薄膜太阳电池吸收层的制备方法
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN101527332B (zh) 一种高效薄膜太阳能电池光吸收层的制备方法
CN101908580B (zh) 一种连续制备铜铟镓硒硫太阳能电池吸收层的工艺
CN1257560C (zh) 铜铟镓的硒或硫化物半导体薄膜材料的制备方法
CN103915516A (zh) 一种cigs基薄膜光伏材料的钠掺杂方法
CN102254998A (zh) 无镉铜铟镓硒薄膜太阳能电池组件及其硫化锌缓冲层薄膜的制备方法
CN105336800A (zh) Cigs基薄膜太阳能电池光吸收层的制备方法
KR20120080045A (ko) 태양전지의 제조방법
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
KR20150048728A (ko) 화합물 태양 전지 및 그 제조 방법
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
CN106409659A (zh) 化合物半导体薄膜及其制备方法
US8258003B2 (en) Manufacturing method of compound semiconductor solar cell
CN103346213A (zh) 一种太阳能电池吸收层的制备方法
CN103474514B (zh) 铜铟镓硒太阳能电池的制备方法
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池
WO2020020217A1 (zh) 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片
CN109801980A (zh) 一种碲化镉薄膜太阳能电池及其制备方法
CN109560159A (zh) 一种铜锌锡硫薄膜太阳电池
CN110797417A (zh) 一种太阳能电池的制备方法
KR101444188B1 (ko) 태양전지 광흡수층 제조장치
CN202205763U (zh) 一种薄膜光伏电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121024

Termination date: 20161026