CN102034695A - 形成硅化镍的增强方法 - Google Patents

形成硅化镍的增强方法 Download PDF

Info

Publication number
CN102034695A
CN102034695A CN2010105199884A CN201010519988A CN102034695A CN 102034695 A CN102034695 A CN 102034695A CN 2010105199884 A CN2010105199884 A CN 2010105199884A CN 201010519988 A CN201010519988 A CN 201010519988A CN 102034695 A CN102034695 A CN 102034695A
Authority
CN
China
Prior art keywords
nickel
silver
wafer
layer
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105199884A
Other languages
English (en)
Other versions
CN102034695B (zh
Inventor
J·P·卡哈兰
G·哈姆
G·R·奥拉德伊斯
D·L·雅克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials LLC
Publication of CN102034695A publication Critical patent/CN102034695A/zh
Application granted granted Critical
Publication of CN102034695B publication Critical patent/CN102034695B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

采用镍涂覆含硅基体。采用一保护层涂覆镍并且加热结合体至一足够温度以形成硅化镍。硅化镍的形成可在含氧环境中进行。提供了一种方法,所述方法包括:a)提供含硅基体;b)在含硅基体上沉积镍层;c)在镍层上沉积银层;和d)加热具有镍层和银层的含硅基体至足够温度以形成硅化镍。

Description

形成硅化镍的增强方法
技术领域
本申请依据35U.S.C第119(e)条要求2009年08月25日提交的美国在先申请NO.61/275,085的优先权利益,该申请的全部内容通过引用在此结合。
本发明涉及一种形成硅化镍的增强方法。更特别地,本发明涉及一种形成硅化镍的增强方法,其中减少了工艺步骤的数目。
背景技术
在半导体和先进封装技术中硅化物通常可用于各种用途,例如形成栅电极,欧姆接触(ohmic contact),互联线,肖特基势垒(Schottky barrier)二极管接触,光伏,太阳能电池和光电元件。硅化物可通过各种技术形成,包括共沉积,例如共溅射、共蒸发、化学气相沉积(CVD)和热退火沉积在硅基体上的金属层。例如,当通过共蒸发或共溅射形成金属硅化物时,沉积金属在硅基体上,然后高温退火以使金属扩散至硅中,其中金属与硅结合以形成金属硅化物。通常退火发生在真空或惰性气体气氛中以防止金属沉积物的氧化。沉积过程和在惰性气体气氛或真空下的退火均需要使用特别设计和昂贵的设备。
退火之后优选在金属硅化物上沉积金属层以建立和形成导电线路或电极。优选该硅化物必须在沉积上述金属层之前活化。活化可通过在该硅化物上沉积催化材料实现;但是,这需要添加多个步骤到总工艺中或使用催化胶体化合物。催化胶体化合物可能粘附至选择性地涂布在硅上的介电材料上并导致在介电层上金属的不期望的,过量的和非选择性沉积。金属的非选择性沉积可能导致表面污染,不期望的导电材料扩散至介电材料中,甚至短路造成的的装置失效和其它装置缺陷。这不仅仅增加了工艺步骤的数量而且每当在金属化之前包括活化步骤就存在未适当活化金属层的风险,从而导致金属层间粘附失败。
U.S.6,787,450公开了一种在半导体装置上形成硅化物的方法和使用化学镀金属沉积形成导体的方法。该半导体可以是硅基的,Si-Ge,Ge或砷化镓。采用绝缘层选择性涂布半导体材料留下暴露的半导体区域。通过化学气相沉积在暴露的半导体上沉积Ti层并且半导体被加热退火至足够高的温度以形成硅化钛。除了Ti,其它金属例如W,Co和Ni可用于形成硅化物;但是,Ti是首选金属,因为Co和Ni的硅化物都有高硅消耗和n+结泄露的缺点。
在退火工艺期间并非所有Ti都消耗在形成硅化物中。该硅化物表面上任何剩余的Ti通过使用包括氢氧化铵和过氧化氢混合物的溶液蚀刻或剥落移除。移除Ti后,在该硅化物上沉积任意金属层之前活化硅化物。从硅化钛中移除氧化物和含氧化合物来进行活化。这些氧化物损害金属对硅化物的粘附并最终损害其中使用了该半导体的任何电子装置的可靠性。在活化期间硅化钛层被轻微刻蚀。活化可通过含过氧化铵的蚀刻溶液进行。其它活化方法包括将硅化物与氢氟酸(HF)单独或与HF和氯化钯的混合物接触。在活化溶液中同样可以包含各种表面活性剂。如果Co或Ni的硅化物替代硅化钛形成,同样必需在化学镀建立形成导体之前活化该硅化物。活化后,漂洗半导体然后化学镀沉积Ni,Ni合金,Co或Co合金以形成导体。
尽管有在半导体晶片上形成金属硅化物的方法,但是仍然需要增强的和更有效率的形成硅化物的方法。
发明内容
一方法包括提供含硅基体;在含硅基体上沉积Ni层;在Ni层上沉积银层;和加热具有该镍和银层的含硅基体至足够的温度以形成硅化镍。
邻接镍金属层涂布的银金属层可保护邻接含硅基体的镍金属层不受在硅化物形成中使用的高温引起的损坏。此外,银层允许在标准室环境或含氧气氛中形成硅化物,因此省略了对于特殊设计和昂贵的装置的需要以及追加的消耗时间的工艺步骤。该方法可省略必须在镍上沉积银之前活化硅化镍的消耗时间的步骤。这一活化步骤的省略减小了镍和银间粘附失败的可能性。该银层阻止烧结过程中不期望的氧化物的形成,因此减小金属层分离的可能性并最终防止其中使用该半导体的电子装置的失灵。因此,上述硅化镍方法与许多传统硅化物形成方法相比提供增强的和更有效率的方法。
贯穿本说明书使用的术语“沉积”和“镀覆”能交换使用。术语“电流轨迹”和“电流线(current line)”能交换使用。术语“组合物”和“镀液(bath)”能交换使用。不定冠词“一”旨在包括单数和复数。术语“硅化物”表示硅和另一元素,优选金属的二元化合物。术语“选择性沉积”表示沉积发生在基体上特定的期望区域。术语“lux=lx”是光照单位,等同于1流明/m2;并且1lux=1.46毫瓦频率为540赫兹的电磁辐射功率。下述缩写表示下述含义除非上下文明确表示其它含义:℃=摄氏度;g=克;mL=毫升;L=升;A=安培;dm=分米;cm=厘米;μm=微米;nm=纳米;UV=紫外;和IR=红外。除非另外表明所有百分含量和比率都是按重量计。所有范围包含和可以任意顺序结合除了逻辑上这些数值范围的和限制在100%。
光伏和太阳能电池可由包含单晶或多晶或无定型硅的半导体晶片组成。这些晶片通常具有p-型基体掺杂。
该半导体晶片在形状上可以是圆形,正方形或矩形或可以是其它任何合适的形状。这种晶片可具有多种尺寸和表面电阻率。例如,圆形晶片可以具有150nm,200nm,300nm,400nm或更大的直径。
对晶片的背侧金属化以提供低电阻率晶片。可使用任何传统的方法。优选,半导体的表面电阻率,也称作方块电阻(sheet resistance),为40-90Ω/□,或者例如从40Ω/□到60Ω/□,或者从60Ω/□到80Ω/□。
整个背侧可涂布金属或背侧的一部分可涂布金属,例如形成栅极(grid)。上述背侧金属化可通过多种技术提供,并可以在晶片前侧金属化之前完成。在一个实施方式中,以导电浆料的形式涂覆金属涂层至背侧,例如含银浆料,含铝浆料或含铝和银的浆料;但是,现有技术中已知的其它合适浆料也可使用。上述导电浆料通常包括嵌入玻璃基质中的导电粒子和有机粘结剂。导电浆料可通过多种技术涂覆到晶片上,例如丝网印刷。涂覆浆料后,焙烧移除有机粘结剂。当使用含铝的导电浆料时,铝部分扩散至晶片背侧,或如果使用还包含银的浆料,可能与银形成合金。使用这种含铝浆料可提高接触电阻和提供“p+”-掺杂区域。可同样通过上述的涂覆铝或硼并随后互扩散来制备重掺杂的“p+”-型区域。在一替代的实施方式中,可沉积晶种层至晶片背侧和可通过化学镀或电镀沉积金属涂层至该晶种层上。
晶片前侧可任选地经过晶体取向织构化(textured)刻蚀以赋予表面提高的光照入射几何形貌,其减小了反射。这可通过将半导体晶片接触酸,例如氢氟酸,或碱来织构化或粗糙表面实现。
为了生产半导体结,磷化扩散或离子注入发生在晶体前侧以生产n-掺杂(n+或n++)区域和提供具有PN结的晶片。该n-掺杂区域可称作发射极层。
在晶体(wafer)的前侧或发射极层上增加抗反射(anti-reflective)层。另外该抗反射层可充当钝化(passivation)层。合适的抗反射层包括但不限于氧化硅层例如SiOx,氮化硅层例如Si3N4,氧化硅和氮化硅层的组合,和氧化硅层与带有氧化态层如TiOx的氮化硅层的组合。上述分子式中,x是氧原子的个数。这些抗反射层可通过多种技术沉积,例如通过各种气相沉积方法,例如,化学气相沉积和物理气相沉积。
晶体前侧包括金属化图案。例如,晶体前侧可以由电流采集线和电流总线组成。电流采集线优选横穿总线和优选相对电流总线具有相对微细结构(也就是尺寸)。
该图案穿过抗反射层以暴露晶片的半导体表面。或者,可在开口处形成沟槽以制造选择性发射极。这些沟槽可以是高掺杂区域。多种工艺可用于形成图案,例如但不限于激光切除,机械手段和平板印刷工艺,所有这些在现有技术中是公知的。上述机械手段包括锯和刮。通常照相平板印刷工艺包括在晶片表面放置可成像材料,图案化可成像材料以在抗反射层中形成开口,转移图案至晶片,在开口中沉积镍层并移除可成像材料。在一实施方式中,可成像材料在沉积镍层至开口中的步骤之前移除。在另一实施方式中,可成像材料在沉积镍层至开口中的步骤之后移除。当在镍沉积步骤期间存在可成像材料时,上述可成像材料优选避免任何染料,例如造影染料(contrast dye),其吸收镍沉积步骤期间使用的辐射波长。镀覆步骤期间存在的可成像材料优选包含具有40-60%的最小透光率的染料。
当可成像材料是液体时,可通过任一合适的技术放置上述材料在晶片表面上,例如但不限于通过旋转涂布,喷墨打印,帘式涂布,和辊涂。当该可成像材料是干膜时,上述材料可通过真空层压放置在晶体表面上。
通过掩模暴露可成像材料至光化辐射,图案化可成像材料。根据选择的具体的可成像材料来选择光化辐射。可使用激光和其它传统的光化辐射源图案化可成像材料。
然后可成像材料上的图案转移至半导体晶片基体。可使用湿化学刻蚀技术或通过使用干刻蚀技术实施图案转移。合适的干刻蚀技术包括但不限于等离子体刻蚀例如离子反应刻蚀。图案通常由相对狭窄的截面尺寸的电流采集线和相对粗的截面尺寸的总线组成。总线横穿电流采集线。
可使用任一合适的有机去除剂去除可成像材料,例如罗门哈斯电子材料有限公司(Rohm and Hass Electronic Materials)(美国马萨诸塞州莫尔伯勒市)出售的有机去除剂。上述去除剂可为碱性、酸性或基本中性。
在导电图案前侧沉积镍晶种层。该镍晶种层可通过任一现有技术中已知的传统镍沉积方法沉积。优选,通过光辅助镍沉积来沉积镍晶种层。如果镍源是化学镀镍组合物,镀覆不需要应用外加电流来完成。如果镍源来自电解镍组合物,后侧电位(整流器)施加至半导体晶片基体。光照可为连续或脉冲式的。脉冲光照能例如通过机械断路器打断光照或可使用电子装置基于期望的循环间歇地循环光照能量来获得。沉积镍之前,优选使用1%氢氟酸溶液从导电图案上除去表面氧化物。
在一实施方式中,半导体浸入镍镀覆组合物中并且在镍沉积期间施加光照。在一替代的实施方式中,半导体浸入镍镀覆组合物中并且施加初始强度的光照至半导体预定长度时间,随后在剩余涂覆周期内减小初始光照强度至一预定量以沉积镍层至掺杂半导体的n掺杂前侧的暴露部分。初始光照强度后施加到半导体基体上和于剩余涂覆周期内施加的光照强度总是小于初始强度。初始光照强度和初始阶段后减小的光照强度的绝对值可发生变化并且在镀覆过程中它们可以改变以获得最佳涂覆结果,只要初始光照强度大于剩余涂覆周期的光照强度。如果在初始时间周期内初始光照强度发生变化,剩余涂覆周期施加的光照强度可以初始光照强度的平均值为基础。可进行有限次试验以确定合适的初始光照强度,合适的施加初始光照强度的初始时间周期,和剩余涂覆周期施加的光照强度。
通常施加初始光照强度的初始时间周期大于0秒至15秒。优选,施加0.25秒至15秒初始光照强度至半导体,更优选2秒至15秒,最优选5秒至10秒。通常,减小的光照强度为初始光照强度的5%-50%。优选,减小的光照强度为初始光照强度的20%-50%,或例如30%-40%。
用作引发涂覆过程的光照包括但不限于可见光,IR,UV和X-射线。光源包括但不限于白炽灯,LED光(发光二极管),红外灯,荧光灯,卤素灯和激光。通常施加至半导体的初始光照量可为8000lx至20,000lx,或例如从10,000lx到15,000lx。通常,在剩余镍涂覆周期施加至半导体晶片的光照量可为400lx至10,000lx,或例如从500lx到7500lx。
优选,使用化学镀镍涂覆组合物通过抗反射层中的开口并在半导体晶片的暴露表面上沉积镍。化学镀镍组合物可以包括或可以不包括还原剂。优选,化学镀镍组合物确实包括还原剂。上述还原剂包括但不限于次磷酸钠,次磷酸钾,硫脲及硫脲衍生物,乙内酰脲及乙内酰脲衍生物,对苯二酚及对苯二酚衍生物,间苯二酚,和甲醛及甲醛衍生物,DEA(n-二乙基胺硼烷),硼氢化钠和肼。上述还原剂可按常规量使用例如0.1g/L-40g/L。商业上可得到的化学镀镍组合物的例子包括DURAPOSITTM SMT 88化学镀镍和NIPOSITTM PM 980和PM 988化学镀镍。都可从罗门哈斯电子材料有限公司(Rohm and Haas Electronic Materials,LLC)(美国马萨诸塞州的莫尔伯勒市)得到。
可选地,可使用电解镍组合物。当使用电解镍组合物时,除光照外使用施加的后侧电位(整流器)沉积镍。优选电流密度从0.1A/dm2至2A/dm2,更优选从0.5A/dm2至1.5A/dm2。具体的电流条件取决于使用晶片的具体尺寸。使用的电镀工艺是常规的。合适的电解镍涂覆镀液既为商业上可得到的又为多种在文献中公开的。商业上可得到的电镀镍镀液的例子包括从罗门哈斯电子材料有限公司得到的NICKEL GLEAMTM电镀镍产品。其它合适的电镀镍涂覆镀液的例子为U.S.3,041,255公开的Watts-型镀液。
涂覆组合物中的镍离子可通过使用任一合适的溶液-可溶性镍化合物提供,优选水溶性镍盐。上述镍化合物包括但不限于硫酸镍,氯化镍,氨基磺酸镍(nickel sulfamate),和磷酸镍。在涂覆组合物中可使用镍化合物的混合物。上述混合物可为具有相同金属但为不同化合物的金属化合物,例如硫酸镍和氯化镍的混合物。以足够在涂覆组合物中提供0.1g/L-150g/L、优选0.5g/L至100g/L、和更优选1g/L至70g/L的镍离子浓度的量添加镍化合物至涂覆组合物中。
以足够在涂覆组合物中提供0.1g/L-150g/L、更优选从0.5g/L至100g/L、和还更优选从1g/L至70g/L的镍离子浓度的量添加镍化合物至涂覆组合物中。
多种电解质中的任一种可用于镍涂覆组合物中,包括酸和碱。示范性电解液包括但不限于烷磺酸例如甲磺酸,乙磺酸和丙磺酸;醇磺酸(alkylol sulfonicacid);芳基磺酸例如甲苯磺酸,苯基磺酸和酚基磺酸;含氨基磺酸例如氨基磺酸;胺基磺酸(sulfamic acid);矿物酸;羧酸例如蚁酸和卤乙酸;氢卤酸和焦磷酸盐。酸性和碱性盐也可用作电解质。此外,电解质可包含酸混合物、碱混合物或一种或多种酸与一种或多种碱的混合物。上述电解质通常是可从商业上多种渠道获得,例如阿尔德里奇化学公司(Aldrich Chemical Company),美国威斯康星州密尔沃基市。
可选地,多种表面活性剂可用于镍涂覆组合物中。可使用任何阴离子,阳离子,两性和非离子表面活性剂只要其不影响镍涂覆的实施。按常规量含有表面活性剂,其在现有技术中是已知的。
可选地,镍涂覆组合物可包含一种或多种附加的组分。上述附加组分包括但不限于光亮剂,晶粒细化剂和延展增强剂。上述附加组分是现有技术中已知的并且以常规量使用。
可选地,镍涂覆组合物可包含缓冲剂。示范性的缓冲剂包括但不限于硼酸盐缓冲剂(例如硼砂),磷酸盐缓冲剂,柠檬酸盐缓冲剂,碳酸盐缓冲剂,和氢氧化物缓冲剂。使用缓冲剂的量为足够维持涂覆组合物的pH在一期望值的水平,这种量为所属领域技术人员已知。
通常,图案化半导体晶片浸入容纳在镀槽内的镍涂覆组合物中。放置光源,用光能量照射半导体晶片。光源可为例如荧光或LED灯,其在半导体光电敏感的波长范围内提供能量。可使用多种其它光源,例如但不限于白炽灯例如75瓦和250瓦的灯,汞灯,卤素灯和150瓦红外灯。
镀槽为相对于镍涂覆组合物有化学惰性并具有最小40-60%的透光率的材料。可选地,晶片能水平设置在镀槽中和从镍镀覆组合物上方照射晶片,在这种情况下镀槽至少不需要具有该最小透光率。
通过采用光能量照射半导体晶片的前面,涂覆在前面发生。入射光能量在半导体中产生电流。通过调整光照强度,镀液温度,还原剂活性,初始晶片状态,掺杂水平和现有技术中工人已知的其它参数控制在前面上涂覆的速度。如果镀液是电镀液,涂覆速度还可通过整流器调节。具有20nm至300nm厚的镍层,或例如从50nm到150nm是通常期望的,精确的厚度取决于各种因素,例如用途,大小,图案和几何形貌。
镍涂覆组合物可具有范围为1-14的pH值,优选从1至12,更优选从1到8。涂覆过程中镍涂覆组合物的工作温度可从10到100℃,或例如从20到50℃。
通过开口和邻近半导体晶片基体的暴露表面沉积镍后,立即邻近镍沉积银。优选,涂覆镍后小于1分钟内沉积银,更优选镍涂覆后小于30秒,最优选从1到30秒。如果银未在镍沉积后短时间内涂覆至镍上,镍变钝化并且必须在银涂覆之前活化。钝化是描述金属层抗涂覆的总称。当涂覆确实发生在钝化金属上时,钝化金属和其上沉积金属间的粘附力是弱且并不可靠的。典型地,沉积金属易从钝化金属上剥落。因此,非常期望镍涂覆后1分钟或更少时间内沉积银至镍上否则可能需要一活化步骤以获得镍和银之间的可靠粘附。
可使用常规电镀银组合物。该银组合物可为含氰化物银组合物或无氰化物银组合物。银离子来源可包括但不限于氰化银钾,硝酸银,硫代硫酸银钠,葡萄糖酸银;银-氨基酸络合物例如银-半胱氨酸络合物;烷基磺酸银,例如甲磺酸银。可使用银化合物的混合物,例如硝酸银和银-半胱氨酸络合物的混合物。组合物中银离子的浓度优选2g/L-40g/L的量。上述银化合物通常是可从商业上多种渠道获得,例如阿尔德里奇化学公司(Aldrich Chemical Company),美国威斯康星州密尔沃基市。商业上可用的银涂覆组合物的例子是从罗门哈斯电子材料有限公司,美国马萨诸塞州莫尔伯勒市获得的ENLIGHTTMSilive Plate600和620。
在银涂覆组合物中可使用多种常规表面活性剂,例如阴离子,阳离子,两性和非离子表面活性剂。可按常规量含有表面活性剂。银涂覆组合物可包含一种或多种常规添加组分。上述添加组分包括但不限于电解质,缓冲剂,光亮剂,晶粒细化剂,螯合剂,配位剂,还原剂,平整剂和延展增强剂。上述添加组分是现有技术中已知的并按常规量使用。
银涂覆组合物可具有范围为1-14的pH值,优选从1至12,仍更优选从1到8。金属涂覆过程中涂覆组合物的工作温度从10到100℃,或例如从20到60℃。工作温度优选在范围10-20℃内,并更优选从15到20℃。优选使用冷却器(chiller)以维持银涂覆组合物处于低于室温的温度。
可通过光致涂覆(LIP)或现有技术中已知的常规电镀银方法沉积银。LIP涂覆过程与上述电镀银晶种层涂覆过程相同(similar)。通常,图案化的半导体晶片浸入容纳在镀槽内的银涂覆组合物中。半导体晶片的后侧与外电源(整流器)连接。放置在银涂覆组合物中的银阳极连接至整流器从而在组分间形成完整回路。优选电流密度是从0.1A/dm2到5A/dm2,和更优选从1A/dm2到3A/dm2。需要的总电流取决于使用晶片的具体尺寸。另外,银阳极提供稳定银离子源以用银离子而无需使用外源来补充银涂覆组合物。放置光源以用光能量照射半导体晶片。光源可为例如荧光或LED灯,其在半导体晶片光电敏感的波长内提供能量。可使用多种其它光源,例如但不限于白炽灯例如75瓦和250瓦的灯,汞灯,卤素灯和150瓦红外灯。
镀槽为相对于银涂覆组合物有化学惰性并具有最小40-60%的透光率的材料制成。或者,晶片能水平设置在镀槽中和从银镀覆组合物上方照射晶片,在这种情况下镀槽至少不需要具有该最小透光率。
通过采用光能量照射半导体晶片的前面,银涂覆(plating)发生在镍晶种层上。光照强度可从5000lx到15000lx变化。入射光能量在太阳能电池中产生电流。当银涂覆镀液为电镀液时,还使用常规整流器提供外电流。通过调整光照强度,镀液温度,初始晶片状态,掺杂水平和电流值以及现有技术中工人已知的其它参数控制在前面上涂覆的速度。具有1μm-30μm厚度的银层或例如从5μm到15μm是通常期望的,而精确的厚度取决于各种因素,例如用途,大小,图案和几何形貌。
可选地,半导体晶片可在金属化之前边缘绝缘化。边缘绝缘化减小金属化过程中因从半导体晶片n-型发射极层到p-型层的金属沉积物的桥接所产生的半导体晶片分流(shunting)的可能性。边缘绝缘化可通过在金属化之前沿半导体晶片的边缘涂覆常规抗镀覆层即边缘掩模来实现。上述抗镀覆层可为蜡基组合物,其包括一种或多种蜡,例如褐煤蜡(montan wax),石蜡,豆蜡,植物蜡和动物蜡。另外,上述抗镀覆层可包括一种或多种交联剂,例如常规的丙烯酸酯,二丙烯酸酯和三丙烯酸酯,和一种或多种固化剂以在暴露至辐射例如UV和可见光时固化抗镀覆层。固化剂包括但不限于在光刻胶中使用的常规光引发剂和其它光敏组分。上述光引发剂是现有技术中已知的和文献中公开的。上述抗镀覆层可通过常规丝网印刷方法或通过选择性喷墨打印方法实施。或者,半导体晶片可采用抗反射层边缘绝缘化。这可通过在抗反射层形成期间,沉积用于制备抗反射层的材料在半导体层边缘上来实现。
银金属在镍上并邻近镍沉积后,然后烧结半导体以形成硅化镍。在镍表面沉积银后完成烧结以提高银和镍之间的粘附力。在镍上沉积银后烧结增大了烧结窗口。换句话说,可相对常规过程在给定的峰值温度延长烧结以提供在镍和硅之间提高的结合,而不用考虑对晶片的损坏。在许多常规过程中,在炉中保持半导体在给定温度太长时间可导致镍扩散到晶片中太深而穿透发射极层,从而分流晶片。镍和硅之间提高的结合减小了硅化镍和银之间粘附失效的可能性。此外,在烧结温度银不渗入硅化物,因此在烧结过程中,在银保护镍不氧化的条件下形成硅化镍。可使用提供晶片峰值温度380℃或更高或从400℃到550℃的炉。不使用超过650℃的峰值温度,因为在上述高温下硅化镍和二硅化镍都可生成。二硅化镍的生成是不期望的,因为它具有高接触阻抗,其减小半导体晶片中的电流流量。优选,峰值温度时间范围从2秒到20秒,或例如从5秒到15秒。合适炉的例子是基于灯的炉(IR)。
由于烧结过程中银层保护镍不氧化,因此烧结可在含氧环境而不是惰性气氛或真空中完成。因此,省去在惰性或真空环境中烧结所需的步骤和装置以及上述过程所需的昂贵设备。同样,特殊惰性气体的省去进一步减小烧结过程的成本和复杂性。通常,完成烧结至少需要3分钟,或例如从4分钟到10分钟,或例如从5分钟到8分钟。半导体通过炉的线性速度可根据使用的炉变化。有限次试验可以确定合适的线速度。优选,线速度从330cm/分到430cm/分,或例如从370cm/分到420cm/分。
已经具体参考太阳能电池中使用的硅半导体晶片描述了烧结过程;但是,该烧结方法可使用在用于其它物品的元件的制造中,例如光伏装置,栅电极,欧姆接触,互联线,肖特基势垒二极管接触和光电元件。
包括下述实施例以阐述本发明但不意图限制本发明的范围。
实施例1
提供6个掺杂的单晶硅晶片。每一个掺杂硅晶片在晶片前侧具有n+掺杂区域,形成发射极层和发射极层下的一pn结。采用由Si3N4构成的钝化或抗反射层涂覆每一个晶片前侧。每一个晶片的前侧具有穿过抗反射层用于电流轨迹的图案,其暴露硅晶片的表面。每一个电流轨迹横穿整个晶片的长度。电流轨迹在每一晶片的末端和每一晶片的中心连接总线。每一晶片的后侧是p+掺杂的并包括铝电极。
使用SCHMID DOD 300喷墨打印装置沿每一个硅晶片的发射极层区域的边缘选择性地涂覆热融抗涂覆层,以防止金属化过程中晶片分流。该热融抗涂覆层包括90重量份石蜡,10重量份80%豆蜡和20%棕榈蜡的混合物,10重量份蜡大戟蜡(candelilla wax)和1重量份荧光染料。然后每一个晶片采用1%氢氟酸水溶液活化60秒以移除硅上的任何表面氧化物。然后采用水漂洗晶片。
每一个掺杂的单晶硅晶片浸入容纳在透光的化学惰性镀槽中的常规低温化学镀镍涂覆组合物NIPOSITTM PM 988Electroless Nickel的水溶液中。镀覆温度为35℃。在涂覆周期中施加人造光至晶片。光源是荧光灯。在每一个晶片整面上施加的平均强度确定为13000lx。使用常规Fisher Scientific曝光表测量光照。进行30秒的镍涂覆以提供200nm厚的镍层。
然后采用水漂洗涂覆镍的硅晶片并立即涂覆银以在硅晶片上形成电流轨迹。在银涂覆之前不使用活化步骤活化镍。透光的化学惰性镀槽包含无氰化物银电镀组合物ENLIGHTTM Silive Plate 620并提供银阳极。电镀组合物的温度为35℃。同样提供荧光灯作为人造光源。放置镍涂覆晶片在银电镀组合物中。每一个晶片后侧上的每一个铝电极和银阳极连接至整流器以形成完整回路。每一个晶片的后侧电位为0.9V并且涂覆过程中施加的电流密度为1.5-2A/dm2。平均光照强度为10,000lx。进行4分钟LIP银以在镍层上形成5μm厚的银电流轨迹。然后从银电镀组合物中移出每一个晶片,用水漂洗并干燥。
然后放置每一个已涂覆的硅晶片至Sierra Therm炉7500系列w/T-3Qz.红外灯以烧结硅晶片并形成硅化镍。炉内温度在10秒内从室温升至425℃并在425℃的设置峰值烧结温度烧结10秒时间。晶片通过炉的速度为150cm/分。晶片冷却至室温后,然后施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆侧并且然后从晶片上手拉除去。四个带样去除了银电流轨道的大部分。剩下两个样品包括较小量的银电流轨迹而大部分电流轨迹仍粘附在晶片上。
实施例2
采用4个单晶半导体晶片重复实施例1中描述的方法。按实施例1中描述的掺杂晶片并涂覆金属。在室温启动在Sierra Therm炉中烧结金属涂覆晶片并在10秒内升高炉温至425℃,在475℃的设置峰值烧结10秒。晶片达到室温后,施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆表面并且然后从晶片上手拉除去。两个带样具有较小量银粘附在表面。剩下两个带样表明无任何银除去的可见迹象。
实施例3
采用2个单晶半导体晶片重复实施例1中描述的方法。按实施例1中描述的掺杂晶片并涂覆金属。在室温启动在Sierra Therm炉中烧结金属涂覆晶片并在10秒内升高炉温至425℃,在500℃的设置峰值烧结10秒。晶片达到室温后,施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆表面并且然后从晶片上手拉除去。两个带样都表明无任何银从电流轨迹上除去的可见迹象。
实施例4
采用2个单晶半导体晶片重复实施例1中描述的方法。按实施例1中描述的掺杂晶片并涂覆金属。在室温启动在Sierra Therm炉中烧结金属涂覆晶片并在10秒内升高炉温至425℃,在525℃的设置峰值烧结10秒。晶片达到室温后,施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆表面并且然后从晶片上手拉除去。两个带样都表明无任何银从电流轨迹上除去的可见迹象。
实施例5
采用4个单晶半导体晶片重复实施例1中描述的方法。按实施例1中描述的掺杂晶片并涂覆金属。在室温启动在Sierra Therm炉中烧结金属涂覆晶片并在10秒内升高炉温至425℃,在550℃的设置峰值烧结10秒。晶片达到室温后,施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆表面并且然后从晶片上手拉除去。所有带样都表明无任何银从电流轨迹上除去的可见迹象。
实施例6
采用2个单晶半导体晶片重复实施例1中描述的方法。按实施例1中描述的掺杂晶片并涂覆金属。在室温启动在Sierra Therm炉中烧结金属涂覆晶片并在10秒内升高炉温至425℃,在600℃的设置峰值烧结10秒。晶片达到室温后,施加一片Cat.#600Scotch透明带至每一个晶片的金属涂覆表面并且然后从晶片上手拉除去。两个带样都表明无任何银从电流轨迹上除去的可见迹象。

Claims (8)

1.一种方法,所述方法包括:
a)提供含硅基体;
b)在含硅基体上沉积镍层;
c)在镍层上沉积银层;和
d)加热具有镍层和银层的含硅基体至足够温度以形成硅化镍。
2.如权利要求1所述的方法,其中镍层为50nm-500nm厚。
3.如权利要求1所述的方法,其中银层为1μm-30μm厚。
4.如权利要求1所述的方法,其中加热在380℃或更高的峰值温度完成。
5.如权利要求1所述的方法,其中通过化学镀方法、光辅助方法或电镀方法沉积镍。
6.如权利要求1所述的方法,其中通过电镀方法或光致涂覆方法沉积银。
7.如权利要求1所述的方法,其中在含氧环境中完成加热步骤。
8.如权利要求1所述的方法,其中含硅基体是太阳能电池,栅电极,欧姆接触,互联线,肖特基势垒二极管接触,光伏装置或光电元件。
CN201010519988.4A 2009-08-25 2010-08-25 形成硅化镍的增强方法 Expired - Fee Related CN102034695B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27508509P 2009-08-25 2009-08-25
US61/275,085 2009-08-25

Publications (2)

Publication Number Publication Date
CN102034695A true CN102034695A (zh) 2011-04-27
CN102034695B CN102034695B (zh) 2014-02-26

Family

ID=43384182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010519988.4A Expired - Fee Related CN102034695B (zh) 2009-08-25 2010-08-25 形成硅化镍的增强方法

Country Status (7)

Country Link
US (1) US7955978B2 (zh)
EP (1) EP2290128B1 (zh)
JP (1) JP5631113B2 (zh)
KR (2) KR20110021686A (zh)
CN (1) CN102034695B (zh)
SG (1) SG169302A1 (zh)
TW (1) TWI396771B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143350A1 (zh) * 2012-03-29 2013-10-03 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
CN104517833A (zh) * 2013-09-30 2015-04-15 扬州倍英斯微电子有限公司 一种肖特基势垒二极管的制造方法
CN104603954A (zh) * 2011-11-23 2015-05-06 艾柯西柯集团股份有限公司 用于形成金属硅化物层的方法
CN114059048A (zh) * 2021-11-09 2022-02-18 株洲中车时代半导体有限公司 一种化学镀缺陷优化装置及方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802461B2 (en) * 2011-03-22 2014-08-12 Micron Technology, Inc. Vertical light emitting devices with nickel silicide bonding and methods of manufacturing
US20130071967A1 (en) * 2011-09-21 2013-03-21 Atomic Energy Council-Institute Of Nuclear Energy Research Method for Making a Nickel Film for Use as an Electrode of an N-P Diode or Solar Cell
TWI464784B (zh) * 2011-10-28 2014-12-11 Iner Aec Executive Yuan 一種製作微晶矽薄膜的方法
JP5472950B2 (ja) * 2012-06-19 2014-04-16 Jeインターナショナル株式会社 マスキング剤および表面処理基材の製造方法
US20140110264A1 (en) * 2012-10-24 2014-04-24 Atomic Energy Council-Institute of Nuclear Research Light induced nickel plating method for p-type silicon and n/p solar cell material
KR20150089592A (ko) * 2014-01-28 2015-08-05 현대중공업 주식회사 태양전지의 도핑 및 전극 형성방법과 그 태양전지
JP6971229B2 (ja) * 2015-11-09 2021-11-24 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 底部処理
JP6405553B2 (ja) * 2015-12-18 2018-10-17 石原ケミカル株式会社 不導態形成性の軽金属上への導電性皮膜形成方法
US10020204B2 (en) * 2016-03-10 2018-07-10 Applied Materials, Inc. Bottom processing
AU2017295870B2 (en) 2016-07-13 2022-04-28 Iontra Inc Electrochemical methods, devices and compositions
KR101843035B1 (ko) * 2016-09-09 2018-03-29 주식회사 티지오테크 모판 및 마스크의 제조 방법
WO2018097533A1 (ko) * 2016-11-22 2018-05-31 주식회사 티지오테크 프레임 일체형 마스크 및 그 제조방법
KR101867467B1 (ko) * 2016-11-22 2018-06-15 주식회사 티지오테크 프레임 일체형 마스크 및 그 제조방법
WO2018097532A1 (ko) * 2016-11-22 2018-05-31 주식회사 티지오테크 프레임 일체형 마스크의 제조 방법
CN109490193B (zh) * 2018-11-27 2021-07-23 东北大学 一种镀铬板表面覆膜的结合力评价方法
JP2022134922A (ja) * 2021-03-04 2022-09-15 株式会社Jcu 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042951A (en) * 1975-09-25 1977-08-16 Texas Instruments Incorporated Gold-germanium alloy contacts for a semiconductor device
US6620718B1 (en) * 2000-04-25 2003-09-16 Advanced Micro Devices, Inc. Method of forming metal silicide regions on a gate electrode and on the source/drain regions of a semiconductor device
CN1638034A (zh) * 1994-09-16 2005-07-13 株式会社半导体能源研究所 用于制造半导体器件的方法
EP1865563A2 (en) * 2006-06-05 2007-12-12 Rohm and Haas Electronic Materials, L.L.C. Light assisted electro plating process
WO2008100603A1 (en) * 2007-02-15 2008-08-21 Massachusetts Institute Of Technology Solar cells with textured surfaces

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011565A (en) * 1934-02-28 1935-08-20 Gladeon M Barnes Suspension for vehicles
US3041255A (en) 1960-03-22 1962-06-26 Metal & Thermit Corp Electrodeposition of bright nickel
US4144139A (en) * 1977-11-30 1979-03-13 Solarex Corporation Method of plating by means of light
US4321283A (en) * 1979-10-26 1982-03-23 Mobil Tyco Solar Energy Corporation Nickel plating method
US4424241A (en) * 1982-09-27 1984-01-03 Bell Telephone Laboratories, Incorporated Electroless palladium process
US4451969A (en) * 1983-01-10 1984-06-05 Mobil Solar Energy Corporation Method of fabricating solar cells
US4609565A (en) * 1984-10-10 1986-09-02 Mobil Solar Energy Corporation Method of fabricating solar cells
US5011565A (en) 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Dotted contact solar cell and method of making same
JPH06252091A (ja) * 1993-02-24 1994-09-09 Hitachi Ltd 半導体装置およびその製造方法
US5803957A (en) * 1993-03-26 1998-09-08 C. Uyemura & Co.,Ltd. Electroless gold plating bath
US5543333A (en) * 1993-09-30 1996-08-06 Siemens Solar Gmbh Method for manufacturing a solar cell having combined metallization
US5494710A (en) * 1994-07-05 1996-02-27 Mallory, Jr.; Glenn O. Electroless nickel baths for enhancing hardness
DE69829018T2 (de) * 1997-06-10 2006-03-23 Canon K.K. Substrat und Verfahren zu dessen Herstellung
US6406743B1 (en) * 1997-07-10 2002-06-18 Industrial Technology Research Institute Nickel-silicide formation by electroless Ni deposition on polysilicon
JP2003037083A (ja) * 2001-07-25 2003-02-07 Fujitsu Ltd 半導体装置の製造方法
US6899816B2 (en) * 2002-04-03 2005-05-31 Applied Materials, Inc. Electroless deposition method
US6905622B2 (en) * 2002-04-03 2005-06-14 Applied Materials, Inc. Electroless deposition method
US6787450B2 (en) * 2002-05-29 2004-09-07 Micron Technology, Inc. High aspect ratio fill method and resulting structure
US20040005468A1 (en) * 2002-07-03 2004-01-08 Steinecker Carl P. Method of providing a metallic contact on a silicon solar cell
US7256498B2 (en) * 2004-03-23 2007-08-14 Taiwan Semiconductor Manufacturing Co., Ltd. Resistance-reduced semiconductor device and methods for fabricating the same
US20050212058A1 (en) * 2004-03-23 2005-09-29 Yi-Chun Huang Resistance-reduced semiconductor device and fabrication thereof
JP2006237374A (ja) * 2005-02-25 2006-09-07 Toshiba Corp 半導体集積回路装置及びその製造方法
US20060252252A1 (en) * 2005-03-18 2006-11-09 Zhize Zhu Electroless deposition processes and compositions for forming interconnects
US7385294B2 (en) * 2005-09-08 2008-06-10 United Microelectronics Corp. Semiconductor device having nickel silicide and method of fabricating nickel silicide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042951A (en) * 1975-09-25 1977-08-16 Texas Instruments Incorporated Gold-germanium alloy contacts for a semiconductor device
CN1638034A (zh) * 1994-09-16 2005-07-13 株式会社半导体能源研究所 用于制造半导体器件的方法
US6620718B1 (en) * 2000-04-25 2003-09-16 Advanced Micro Devices, Inc. Method of forming metal silicide regions on a gate electrode and on the source/drain regions of a semiconductor device
EP1865563A2 (en) * 2006-06-05 2007-12-12 Rohm and Haas Electronic Materials, L.L.C. Light assisted electro plating process
WO2008100603A1 (en) * 2007-02-15 2008-08-21 Massachusetts Institute Of Technology Solar cells with textured surfaces

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANH NGUYEN等: "Feasibility of Improving Front Metallization Lines for Photovoltaic Devices", 《PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2009,34TH IEEE》, 12 June 2009 (2009-06-12) *
谢凤宽 等: "激光辅助电沉积技术", 《材料工程》, 31 December 2006 (2006-12-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603954A (zh) * 2011-11-23 2015-05-06 艾柯西柯集团股份有限公司 用于形成金属硅化物层的方法
CN104603954B (zh) * 2011-11-23 2017-10-13 艾柯西柯集团股份有限公司 用于形成金属硅化物层的方法
WO2013143350A1 (zh) * 2012-03-29 2013-10-03 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
CN104517833A (zh) * 2013-09-30 2015-04-15 扬州倍英斯微电子有限公司 一种肖特基势垒二极管的制造方法
CN114059048A (zh) * 2021-11-09 2022-02-18 株洲中车时代半导体有限公司 一种化学镀缺陷优化装置及方法

Also Published As

Publication number Publication date
SG169302A1 (en) 2011-03-30
EP2290128B1 (en) 2013-10-02
KR20110021686A (ko) 2011-03-04
JP2011102429A (ja) 2011-05-26
CN102034695B (zh) 2014-02-26
EP2290128A2 (en) 2011-03-02
EP2290128A3 (en) 2012-03-28
TWI396771B (zh) 2013-05-21
US7955978B2 (en) 2011-06-07
JP5631113B2 (ja) 2014-11-26
US20110065274A1 (en) 2011-03-17
TW201127988A (en) 2011-08-16
KR20170018878A (ko) 2017-02-20

Similar Documents

Publication Publication Date Title
CN102034695B (zh) 形成硅化镍的增强方法
KR101578035B1 (ko) 반도체 상에서의 광 유도 플레이팅 방법
CN101667606B (zh) 抑制背景镀覆方法
TWI481743B (zh) 於矽光伏打電池上之金屬的光誘鍍敷
TWI538042B (zh) 用以改善金屬黏附之活化製程
CN102162139A (zh) 织构化的半导体衬底
JP2011238903A (ja) 太陽電池格子構造およびその製造方法
CN102839377A (zh) 改进的多晶织构组合物和方法
EP2463410B1 (en) Electrochemical etching of semiconductors
SG185227A1 (en) Plating of copper on semiconductors
Vitanov et al. Low cost multilayer metallization system for silicon solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140226

Termination date: 20200825

CF01 Termination of patent right due to non-payment of annual fee