CN101998610B - 降低多载波相互干扰的方法与装置 - Google Patents

降低多载波相互干扰的方法与装置 Download PDF

Info

Publication number
CN101998610B
CN101998610B CN200910165245.9A CN200910165245A CN101998610B CN 101998610 B CN101998610 B CN 101998610B CN 200910165245 A CN200910165245 A CN 200910165245A CN 101998610 B CN101998610 B CN 101998610B
Authority
CN
China
Prior art keywords
signal
modulation
performance index
delay
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910165245.9A
Other languages
English (en)
Other versions
CN101998610A (zh
Inventor
李凡龙
毕文仲
劳锦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN200910165245.9A priority Critical patent/CN101998610B/zh
Priority to EP09848213.6A priority patent/EP2458744B1/en
Priority to PCT/CN2009/075905 priority patent/WO2011017883A1/zh
Priority to US13/258,330 priority patent/US9094271B2/en
Priority to IN1515DEN2012 priority patent/IN2012DN01515A/en
Publication of CN101998610A publication Critical patent/CN101998610A/zh
Application granted granted Critical
Publication of CN101998610B publication Critical patent/CN101998610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2637Modulators with direct modulation of individual subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70718Particular systems or standards
    • H04B2201/70719CDMA2000
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种降低多载波相互干扰的方法,包括:调整调制信号的延迟;将调整后的调制信号调制到被调信号上;将调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,继续调整所述调制信号的延迟,满足设定性能指标时,将当前的调制信号作为输入信号;或将当前的调制后信号作为输出信号。本发明同时公开了一种降低多载波相互干扰的装置。本发明在多载波相邻配置情况下对性能的改善尤为明显,并使得同一个无线信号覆盖区域可以有多载波同时工作,大大提高了频谱利用率。

Description

降低多载波相互干扰的方法与装置
技术领域
本发明涉及通信系统中多载波相互干扰的处理技术,尤其涉及一种降低多载波相互干扰的方法与装置。
背景技术
目前无线通信系统多能支持多载波工作模式,多载波模式是指发射和接收都将是多个单载波的合波。例如对800MHz频段的CDMA2000lx通信系统而言,单载波的带宽是1.23MHz,相邻载波中心频率间隔1.23MHz,那么多个载波例如三载波相邻配置时候就是三个1.23MHz带宽的单载波共同组成一个占用带宽约3.69MHz的合波,三个载波的中心频率可以分别设置为871.11MHz,872.34MHz,873.57MHz(也可以是其它频率)。图1为码分多址(CDMA,CodeDivision Multiple Access)系统中频域相邻的三载波出现的载波干扰示意图,如图1所示,图中第一个载波的频点为871.11MHz,第二个载波频点为872.34MHz,第三个载波的频点为873.57MHz。多载波模式中会出现一个载波的部分信息混叠到相邻的载波内,即出现了多载波间的相互干扰,载波相邻配置时尤为明显。从图1中可以看到两个阴影区域即为载波的混叠区域,即第一个载波的部分信息混叠到第二个载波中,同时第二个载波中的部分信息混叠到第一个载波中。第二个载波和第三个载波也出现类似情况。一个载波中混叠了另外一个载波的信息,该部分信息将成为一种干扰而影响信号的质量。由于这种干扰的存在,在接收端很可能将无法对信号作正确的解调,因此必须减小这种多载波间的相互干扰,这种干扰对CDMA系统中的EV-DO信号的影响表现尤为突出。当然,在WCDMA和TD-SCDMA等系统中也存在类似的多载波干扰问题。
在CDMA、WCDMA和TD-SCDMA等系统中,当在多载波工作模式下的时候,为了保证通信的质量,必须减小多载波之间的相互干扰的影响。目前业界尚无对无线通信系统中多载波相互干扰的解决方法。
发明内容
有鉴于此,本发明的主要目的在于提供一种降低多载波相互干扰的方法与装置,能明显降低相邻载频的多载波相互干扰。
为达到上述目的,本发明的技术方案是这样实现的:
一种降低多载波相互干扰的方法,包括:
调整调制信号的延迟;
将调整后的调制信号调制到被调信号上;以及
将调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,继续调整所述调制信号的延迟,满足设定性能指标时,将当前调制后信号作为输出信号。
优选地,调整调制信号的延迟,具体为:对各载波的调制信号的延迟同时进行调整。
优选地,调整调制信号的延迟,具体为:对各载波的调制信号依次进行调整。
优选地,所述调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,逐级对所对应的调制信号的延迟进行调整,直到最后一级输出的调制后信号的性能指标满足设定性能指标时,将各级调制所确定出的调制后信号作为输出信号。
优选地,所述信号的性能指标包括载波非激活码道最大功率与激活码道总功率的比值MAX IT及波形质量Rho中的至少一个。
优选地,所述信号的性能指标包括所解调出所述调制信号是否正确,不正确时,继续调整所述调制信号的延迟,正确时,将当前的调制信号作为输入的基带信号。
一种降低多载波相互干扰的方法,包括:
调整调制信号的延迟;
将调整后的调制信号调制到被调信号上;以及
将调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,继续调整所述调制信号的延迟,满足设定性能指标时,将当前的调制信号作为输入信号。
一种降低多载波相互干扰的装置,包括:
调整单元,用于调整调制信号的延迟;
调制单元,用于将调整后的调制信号调制到所述被调信号上;
性能指标确定单元,用于确定调制后信号的性能指标;
比较单元,用于将所述调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,触发所述调整单元继续调整所述调制信号的延迟,满足设定性能指标时,触发确定单元;以及
确定单元,用于将当前的调制后信号作为输出信号。
优选地,所述调整单元对各载波的调制信号的延迟同时进行调整。
优选地,所述调整单元对各载波的调制信号依次进行调整。
优选地,所述调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,所述调整单元逐级对所对应的调制信号的延迟进行调整,直到所述比较单元确定最后一级输出的调制后信号的性能指标满足设定性能指标时,所述确定单元将各级调制所确定出的调制后信号作为输出信号。
优选地,所述信号的性能指标包括载波非激活码道最大功率与激活码道总功率的比值MAX IT及波形质量Rho中的至少一个。
优选地,所述装置还包括:
解调单元,用于对所述调制后信号进行解调,所述信号的性能指标还包括所述解调单元所解调出的调制信号是否正确,不正确时,所述调整单元继续调整所述调制信号的延迟,正确时,所述确定单元将当前的调制信号作为输入的基带信号。
一种降低多载波相互干扰的装置,包括:
调整单元,用于调整调制信号的延迟;
调制单元,用于将调整后的调制信号调制到所述被调信号上;
性能指标确定单元,用于确定调制后信号的性能指标;
比较单元,用于将所述调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,触发所述调整单元继续调整所述调制信号的延迟,满足设定性能指标时,触发确定单元;以及
确定单元,用于将当前的调制信号作为输入信号。
通过以上技术方案,本发明实现了以下有益效果:可以较好的解决无线通信系统中多载波信号的相互干扰问题,尤其对于CDMA系统中多载波EV-DO信号之间的相互干扰。在多载波相邻配置情况下对性能的改善尤为明显。这样使得同一个无线信号覆盖区域可以有多载波同时工作,大大提高了频谱利用率,提高无线规划的灵活性,提高小区的业务容量、传输速率和服务质量,改善了用户体验。
附图说明
图1为CDMA系统中频域相邻的三载波出现的载波干扰示意图;
图2为无线通信系统中对单载波调制方式示意图;
图3为本发明多载波的调制方式的示意图;
图4为本发明降低多载波相互干扰的方法的流程图;
图5为本发明选参数装置的结构示意图;
图6为本发明利用选参数装置调整调制信号的结构示意图;
图7为本发明载波多级调制时降干扰处理装置的结构示意图;
图8为本发明降低多载波相互干扰的装置的组成结构示意图。
具体实施方式
本发明的基本思想是:在多载波系统中,特别是频域相邻的多载波之间,载波间会存在相互干扰。本发明通过调整各载波上输入的调制信号的延迟,使多载波对应的调制后的信号的性能指标满足设定的性能指标。本发明方案实现简单且实用。
为使本发明的目的、技术方案和优点更加清楚明白,以下举实施例并参照附图,对本发明进一步详细说明。
现代无线通信系统中的发射信号是通过将信息即调制信号调制到被调信号上来实现的,其中,被调信号可以由数字控制振荡器(NCO,Numerical ControlOscillator)或模拟振荡器等装置产生。调制过程可以由调制器来完成,其中,调制器可以是实数调制器,复数调制器和正交调制器等多种类型的调制器。
调制信号可以表示为:
X(t+t0)=A(t+t0)+j*B(t+t0);
其中,t0表示的是固定的延迟。如果被调信号是实数,只需要使用X(t+t0)中的实部。
传统的多载波无线通信系统中只对调制器中输入的被调信号的频率做出指定,而并没有通过对各个调制信号的延迟t0做出特别的指定来达到减少载波间干扰的目的。本发明正是通过对各个调制信号的延迟t0进行有针对性的设置,从而达到减小载波间干扰的目的。假设通信系统中包括三个相邻配置载波的调制信号分别为:
X1(t+t1)=A1(t+t1)+j*B1(t+t1)
X2(t+t2)=A2(t+t2)+j*B2(t+t2)
X3(t+t3)=A3(t+t3)+j*B3(t+t3)
通过合适地选择t1、t2和t3分别作为三个相邻配置载波的调制信号的延迟,可以使得这些载波信号的性能指标都能达到设定的要求,从而使各载波都能被接收机很好地解调。通过使用本方法,多载波无线通信系统的载波间干扰的影响可以大大降低。例如,在多载波CDMA2000lx EV-DO通信系统中,使用本方法可以大大改善各载波信号被接收机解调的效果,提高通信系统的性能指标和服务质量。
以下通过附图进一步阐明这一点。
图2为无线通信系统中对单载波调制方式示意图,如图2所示,图中包括两个部件即调制器200和调制信号发生器201。调制器200用于将输入信号x调制到调制信号上得到输出信号y,调制器200是无线通信系统中常用的实数调制器、复数调试器或正交调制器等。调制信号发生器201是按照输入参数完成调制信号的产生。图中仅给出了两个输入参数,频率输入参数f和延迟输出参数θ。传统的调制方式中并没有根据输入信号的参数和输出信号的性能指标来对调制信号延迟做特别的指定来达到减少载波间干扰的目的,所以图中延迟θ并不是输入信号x和输出信号y的函数。
图3为本发明多载波的调制方式的示意图,如图3所示,与图2相比,增加入了延迟器300,以便完成来调整输入信号(调制信号或基带信号)之间的延迟关系,图中的调制器301和被调信号发生器302与图2中所示的调制器200和调制信号发生器201的功能完全相同。本发明采用图3所示的调制方式,有选择性的设置调制信号的延迟,能达到减小载波间相互干扰影响的目的。
图4为本发明降低多载波相互干扰的方法的流程图,如图4所示,在步骤401:设置输入参数,这些参数可以包括表示输入信号(调制信号或基带信号)的信息参数和输出信号性能指标的参数。在步骤402中,提取通信系统的输出信号(调制后信号),计算其性能指标,作为挑选调制信号的依据。在步骤404中,根据402中获得的性能指标和要求之间的差距来判断当前使用的延迟是否达到要求。在步骤403中,根据上述计算得到的性能指标,按照优化算法计算得到下一组初始延迟,作为各调制信号的新延迟并设置到调制信号上。重复步骤401,402,403和404直到找到一组延迟使得输出信号的性能指标满足要求。在步骤405中,将最终得到的延迟固化,作为某一个特定配置所采用延迟调制信号组。
图5为本发明提出的选参数装置的示意图,如图5所示,本发明的选参数装置由信号提取硬件和延迟挑选软件组。信号提取硬件可以是专门设计的电路,也可以是专用或者通用的仪器。延迟挑选软件可以是运行在CPU中的软件或者运行在可编程逻辑器件中的软件或者都包括,该软件也可以以硬件的形式固化并运行。本发明的选参数装置工作时需要的几个输入参数包括:输入信号的类型参数n,输入信号的信号数目m,输入信号的位置信息k。实际使用中根据不同的系统或者载波情况,可以只用部分或者全部的输入参数。本发明的选参数装置的输出参数包括调制信号的延迟选参数结果指示信号。结果指示信号表示了选参数装置的一个工作状态,结束状态还是正在运行状态。本发明的选参数装置按照图4中的选参数方式进行工作,既可以在系统运行前使用,也可以在系统运行过程中使用。
图6为本发明利用选参数装置调整调制信号的结构示意图,如图6所示,延迟器组600用于对输入的各个调制信号设置延迟大小。调制器组601可以是无线通信系统中采用的各种调制器类型,它的功能是完成多载波的调制。调制器组601具有两个输入信号,一个是输入的载波信号即调制信号X1...Xm,另外一个是被调信号发生器输出的被调信号1..m。合波器602用于将调制后的m个单载波合波。耦合器603用于将输出信号反馈到本发明的选参数装置605中,作为选参数装置605的一个输入参数。连同其它的输入参数一起,本发明选参数装置605将按照一定的优化算法进行延迟参数的选取。最后将选择好的延迟参数t通过延迟器600设置到各个调制信号上。选参数装置605的功能与图5所示的选参数装置相同。
以下以三载波的CDMA系统为例,结合图4所示的方法,进一步阐明本发明技术方案是实质。
在一个实施例中,对CDMA系统中相邻配置的3载波1X信号进行延迟的筛选。
首先确定采用什么方法以及对多少级调制器中的调制信号的延迟进行设置。下面叙述中为了方便描述仅仅给出了调制信号的编号。
本例仅对一级调制器的各路输入信号完成延迟的筛选和设置。
硬件的框图参考图6,输入信号为3载波即m=3,调制器组为3个图3所示的调制器。如图4所示,本发明降低多载波相互干扰的方法包括以下步骤:
在步骤401中,设置选参装置需要的相关参数,分别如下:输入载波的类型,本例中是1X信号;输入载波数目,本例中是3载波;输入载波位置信息,本例中是相邻配置设定为871.11MHz,872.34MHz,873.57MHz;本例中载波的初始延迟将通过一个随机系列发生器的函数获得,并在第一次开始将发生器种子都设置为0。通过种子0获得的三个载波延迟初值作为三个输入调整信号的初始延迟值设置到延迟器中并完成设置;输入对输出信号性能指标的要求,本例中是1X信号,衡量1X信号的指标有:载波非激活码道最大功率与激活码道总功率的比值MAX IT,标准要求为-27dBc;波形质量Rho,标准要求0.912。
在步骤402中,通过通用的仪器提取出当初始延迟被设置后对应的3个载波性能指标,MAX IT,Rho各值。
在步骤404中,将步骤402中得到的性能指标和标准的要求进行比较得出差值作为选择延迟的依据。如果比较后满足标准要求那么将退出延迟筛选流程,进入到步骤405中。否则进入到步骤403中开始采用优化算法选参。
选参算法是一个不断循环的过程,直到选择的延迟参数满足要求才会退出循环。
在步骤403中,将结合401中的输入参数和404中得到的性能差值参数来决定被调信号延迟调整的优先级和步进量。
首先按照被调信号的频率参数从大到小依次给出从大到小的编号。如本例中873.57MHz对应的编号为1,872.34MHz对应的编号为2,871.11MHz对应的编号为3;
输入调制信号延迟设置的优先级的高低将按照信号位置信号的编号来进行确定。如果是相邻配置,那么编号最低的优先级最低,编号最高的优先级次之,其它编号的优先级按照编号的大小顺序从大到小排列。如果载波是非相邻配置,那么调制信号编号即为优先级,越大优先级越高。设置完成后将得到一个优先级和调整信号编号一一对应且由高到低排列的数组。本例中各个编号对应的优先级为:编号1对应的是1,编号2对应的是3,编号3对应的是2。数字越大优先级越高。
步进量是按照步骤404中计算得到各个载波性能指标和标准的要求的差值量分为两个等级:大步进和小步进。如果404中得到性能指标的一个差值大于0.6,那么采用较大的步进设置延迟,本例中使用0.8us,如果304中得到差值小于0.6,那么采用步进较小的方式来调整延迟,本例中采用步进0.4us。步进量设置完成后就可以得到一个延迟调整优先级编号和步进量一一对应的数组。步进量设置将会按照性能差值的大小被动态改变。需要注意的时不同制式的无限通信系统对载波之间的延迟差和总的延迟都有要求,所以这些要求需要作为挑选延迟的限制参数。
得到优先级和步进量后,按照优先级和步进量进行各个调制信号的延迟设置直到得到对应载波的性能指标为最优将停止调整,这里最优的判定依据是延迟增加和减少都会导致该载波性能恶化,那么这个时候对应的载波性能为最优。完成所有输入信号的延迟逐次的调制后将得到一组使得各个载波性能相对较优的延迟组,并称之为第一轮调整得到延迟组。在第一轮中每次仅仅查看各个载波性能是否相对较优为停止依据,由于调整延迟载波之间的相互影响,所以第一轮得到的延迟不一定使得各个载波性能都能满足标准要求。采用第一轮调整后得到的延迟组,联合查看是否各个载波都能满足要求,满足退出,不满足则进行下一轮调整。
第二轮调整时首先设置第一轮调整所得相延迟并提取出各个载波的性能指标,计算出和要求的差值,按照差值的大小设置第二轮调相的优先级,差值越大优先级越高。第二轮调整中统一采用小步进调整即0.4us。每设置一次延迟后提取对应调相载波的性能指标,计算是否有改善,如果有改善那么继续该载波延迟调整,如果无改善则停止该载波调整而进行下一个载波的调整。如此重复进行直到调整完成所有载波的延迟,并称该轮调整得到的延迟组称之为第二轮延迟组。
第二轮调整后得到的延迟组联合查看是否各个载波都能满足要求,满足退出,不满足则进行下一轮调整。前面两轮分别采用大步进粗调的方式和小步进精调的方式获得了仅仅各个载波性能相对最优的一组延迟组。接下来的调整中每次调整完成一次后将观察所有的载波性能是否有改善,只有所有载波的性能都有改善才更新对应载波的延迟,否则不更新,并不断的按照差值大小更新优先级,不断的按照0.1us差值来逐步的减小步进,并每次设置完成延迟后都计算各个载波的性能是否满足要求,满足要求后退出,如果不满足则继续轮询。当轮询到延迟步进被设置为0us时,表明基于在步骤301中第一次基于随机函数发生器使用种子全0产生的初始延迟无法找到一组合适的延迟组使得载波性能满足要求,这个时候必须更新一组新随机数发生器种子,进行下一次重复上述方法的查找过程。除了第一次随机数发生器种子是开始给出的一个初值为如本例中为0,其它时候种子的更新总是采用上次循环中延迟步进到0时仍然没有得到合理延迟时的那组延迟作为新的种子。
按照上述所述进行循环的查找,但是要避免对一些情况多次随机函数发生器的种子更新后仍然找不到合适延迟的情况,要防止软件进入到一个死循环,因而在一次查找中有必要规定种子更新的最大次数,本例中设置为20次,如果超过20次,将退出这次查找,并告知该次查找失败。等待一段时间后重新开始查找,直到找到合适的延迟为止。
需要说明的是,本发明中的性能指标也可以是对调制后信号的解调结果的判断,当能从调制后信号(输出信号)中正确解调出基带信号(调制信号)时,认为满足性能指标,不能从调制后信号中正确解调出基带信号时,认为不能满足性能指标。解调可由相应的解调器进行,解调技术及解调器可以是通用的解调器,本发明不再赘述解调的实现细节。
在步骤405中,固化调制信号的相位,即将当前所确定出的延时作为调制信号的延时,将调制后信号作为输出信号,或者,将当前的调制信号作为输入信号。
图7为本发明载波多级调制时降干扰处理装置的结构示意图,如图7所示,是m个载波n级调制的应用情况。图中的延迟器组及调制器组与图6所示的延迟器组及调制器组的功能完全相同,各级调制器用于将对应的调制信号调制到被调信号上。多级调制时可以选择性的对一级或者多级的延迟进行调整。本发明对多级调制时的调制信号延迟的调整进行说明。整体上,多级调制时的调制信号的延迟调整与单级调制信号延迟调整的实现手段是完全相同的,不同的是多级调制时是判断最后输出的调制后信号是否满足设定的性能指标来确定调整是否结束,当最后输出的调制后信号满足设定的性能指标后,各级所确定调制信号即作为各级的输入基带信号。
调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,逐级对所对应的调制信号的延迟进行调整,调整的方式与前述图4所示的方式基本相同,只是判断标准不同而已,直到最后一级输出的调制后信号的性能指标满足设定性能指标时,将各级调制所确定出的调制信号作为输入的基带信号。
另一个实例是针对CDMA系统中做相邻配置的3载波EV-DO信号延迟的筛选,对比3载波1X信号延迟调整的方法和步骤是相同的,不同处就是在步骤301中输出信号的指标要求。衡量EV-DO信号的指标有:导频信道对应的波形质量Rho1,MAC信道对应的波形质量Rho2,DATA信道对应的波形质量Rho3,导频信道对应的MAX IT1,MAC信道对应的MAX IT2,DATA信道对应的MAX IT3。
另一个实例是CDMA系统中做相邻配置的2载波EV-DO信号和1载波1X信号的混合配置。区别前面的两个实例该实例的配置除了在步骤301中要同时输入1X和EV-DO性能指标外,在步骤303中还需要对优先级的配置略作改变。
在混合配置模式中首先要将EV-DO信号和1X信号分别区分开,分为两个纯EV-DO和纯1X信号组。将两组信号分别按照上面的实例中方法设置调整延迟的优先级,设置完成后将按照EV-DO的优先级总是高于1X优先级的原则重新调整优先级,最终得到混合模式下的优先级。
对于其它制式的无限通信系统,只需要根据不同制式的标准要求更改信号对应的性能指标参数,其他步骤将是相同的。
图8为本发明降低多载波相互干扰的装置的组成结构示意图,如图8所示,本发明降低多载波相互干扰的装置包括调整单元80、调制单元81、性能指标确定单元82、比较单元83和确定单元84,其中,调整单元80用于调整调制信号的延迟;调制单元81用于将调整后的调制信号调制到所述被调信号上;性能指标确定单元82用于确定调制后信号的性能指标;比较单元83将所述调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,触发调整单元80继续调整所述调制信号的延迟,满足设定性能指标时,触发确定单元84;确定单元84用于将当前调制后的信号作为输出信号,或者,将当前的调制信号作为输入信号。调整单元80对各载波的调制信号的延迟同时进行调整。调整单元80对各载波的调制信号依次进行调整。所述信号的性能指标包括载波非激活码道最大功率与激活码道总功率的比值MAX IT及波形质量Rho中的至少一个。
所述调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,调整单元80逐级对所对应的调制信号的延迟进行调整,直到比较单元83确定最后一级输出的调制后信号的性能指标满足设定性能指标时,确定单元84将各级调制所确定出的调制信号作为输入的基带信号。
如图8所示,本发明降低多载波相互干扰的装置还包括解调单元85,用于对所述调制后信号进行解调,所述信号的性能指标还包括解调单元85所解调出的调制信号是否正确,不正确时,调整单元80继续调整所述调制信号的延迟,正确时,确定单元84将当前的调制信号作为输入的基带信号。
本领域技术人员应当理解,本发明图8所示的降低多载波相互干扰的装置是为实现前述降低多载波相互干扰的方法而设计的,图8所示装置中的各处理单元的实现功能可参照前述降低多载波相互干扰的方法中的相关描述而理解,各单元的功能可通过运行于处理器上的程序而实现,也可通过相应的逻辑电路而实现。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (14)

1.一种降低多载波相互干扰的方法,其特征在于,包括:
调整调制信号的延迟;
将调整后的调制信号调制到被调信号上;以及
将调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,继续调整所述调制信号的延迟,满足设定性能指标时,将当前调制后信号作为输出信号;
其中,调整所述调制信号的延迟为:根据输入信号的参数和输出信号的性能指标对调制信号的延迟做指定;
所述继续调整调制信号的延迟为:根据优先级和步进量继续调整调制信号的延迟;
所述优先级是根据调制信号频率参数大小依次设置编号,并根据所述编号和调制信号的位置确定的;所述步进量根据所述调制后信号的性能指标与设定的性能指标的差值大小动态改变。
2.根据权利要求1所述的方法,其特征在于,调整调制信号的延迟,具体为:对各载波的调制信号的延迟同时进行调整。
3.根据权利要求1所述的方法,其特征在于,调整调制信号的延迟,具体为:对各载波的调制信号依次进行调整。
4.根据权利要求1所述的方法,其特征在于,所述调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,逐级对所对应的调制信号的延迟进行调整,直到最后一级输出的调制后信号的性能指标满足设定性能指标时,将各级调制所确定出的调制后信号作为输出信号。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述信号的性能指标包括载波非激活码道最大功率与激活码道总功率的比值MAX IT及波形质量Rho中的至少一个。
6.根据权利要求5所述的方法,其特征在于,所述信号的性能指标包括所解调出所述调制信号是否正确,不正确时,继续调整所述调制信号的延迟,正确时,将当前的调制信号作为输入的基带信号。
7.一种降低多载波相互干扰的方法,其特征在于,包括:
调整调制信号的延迟;
将调整后的调制信号调制到被调信号上;以及
将调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,继续调整所述调制信号的延迟,满足设定性能指标时,将当前的调制信号作为输入信号;
其中,调整所述调制信号的延迟为:根据输入信号的参数和输出信号的性能指标对调制信号的延迟做指定;
所述继续调整调制信号的延迟为:根据优先级和步进量继续调整调制信号的延迟;
所述优先级是根据调制信号频率参数大小依次设置编号,并根据所述编号和调制信号的位置确定的;所述步进量根据所述调制后信号的性能指标与设定的性能指标的差值大小动态改变。
8.一种降低多载波相互干扰的装置,其特征在于,包括:
调整单元,用于根据输入信号的参数和输出信号的性能指标对调制信号的延迟做指定,调整调制信号的延迟;
调制单元,用于将调整后的调制信号调制到所述被调信号上;
性能指标确定单元,用于确定调制后信号的性能指标;
比较单元,用于将所述调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,触发所述调整单元继续调整所述调制信号的延迟,满足设定性能指标时,触发确定单元;以及
确定单元,用于将当前的调制后信号作为输出信号;
所述调整单元继续调整调制信号的延迟为:调整单元根据优先级和步进量继续调整调制信号的延迟;
所述优先级是根据调制信号频率参数大小依次设置编号,并根据所述编号和调制信号的位置确定的;所述步进量根据所述调制后信号的性能指标与设定的性能指标的差值大小动态改变。
9.根据权利要求8所述的装置,其特征在于,所述调整单元对各载波的调制信号的延迟同时进行调整。
10.根据权利要求8所述的装置,其特征在于,所述调整单元对各载波的调制信号依次进行调整。
11.根据权利要求8所述的装置,其特征在于,所述调制信号的调制方式为级联调制时,从第一级调制对应的调制信号开始,所述调整单元逐级对所对应的调制信号的延迟进行调整,直到所述比较单元确定最后一级输出的调制后信号的性能指标满足设定性能指标时,所述确定单元将各级调制所确定出的调制后信号作为输出信号。
12.根据权利要求8至11所述的装置,其特征在于,所述信号的性能指标包括载波非激活码道最大功率与激活码道总功率的比值MAX IT及波形质量Rho中的至少一个。
13.根据权利要求12所述的装置,其特征在于,所述装置还包括:
解调单元,用于对所述调制后信号进行解调,所述信号的性能指标还包括所述解调单元所解调出的调制信号是否正确,不正确时,所述调整单元继续调整所述调制信号的延迟,正确时,所述确定单元将当前的调制信号作为输入的基带信号。
14.一种降低多载波相互干扰的装置,其特征在于,包括:
调整单元,用于根据输入信号的参数和输出信号的性能指标对调制信号的延迟做指定,调整调制信号的延迟;
调制单元,用于将调整后的调制信号调制到所述被调信号上;
性能指标确定单元,用于确定调制后信号的性能指标;
比较单元,用于将所述调制后信号的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,触发所述调整单元继续调整所述调制信号的延迟,满足设定性能指标时,触发确定单元;以及
确定单元,用于将当前的调制信号作为输入信号;
所述调整单元继续调整调制信号的延迟为:根据优先级和步进量继续调整调制信号的延迟;
所述优先级是根据调制信号频率参数大小依次设置编号,并根据所述编号和调制信号的位置确定的;所述步进量根据所述调制后信号的性能指标与设定的性能指标的差值大小动态改变。
CN200910165245.9A 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置 Active CN101998610B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200910165245.9A CN101998610B (zh) 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置
EP09848213.6A EP2458744B1 (en) 2009-08-08 2009-12-23 Method and apparatus for reducing mutual interference of multi-carrier
PCT/CN2009/075905 WO2011017883A1 (zh) 2009-08-08 2009-12-23 降低多载波相互干扰的方法与装置
US13/258,330 US9094271B2 (en) 2009-08-08 2009-12-23 Method and apparatus for reducing mutual interference of multi-carrier
IN1515DEN2012 IN2012DN01515A (zh) 2009-08-08 2009-12-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910165245.9A CN101998610B (zh) 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置

Publications (2)

Publication Number Publication Date
CN101998610A CN101998610A (zh) 2011-03-30
CN101998610B true CN101998610B (zh) 2014-06-11

Family

ID=43585872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910165245.9A Active CN101998610B (zh) 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置

Country Status (5)

Country Link
US (1) US9094271B2 (zh)
EP (1) EP2458744B1 (zh)
CN (1) CN101998610B (zh)
IN (1) IN2012DN01515A (zh)
WO (1) WO2011017883A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118336B (zh) * 2011-03-03 2014-01-01 清华大学 一种产生时分复用的光差分相移键控码的装置
CN110913494B (zh) * 2018-09-17 2023-04-07 成都鼎桥通信技术有限公司 上行语音业务的传输方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
CN101185269A (zh) * 2005-05-30 2008-05-21 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520697B2 (ja) 1987-10-23 1996-07-31 アンリツ株式会社 位相信号濾波装置
US7076168B1 (en) * 1998-02-12 2006-07-11 Aquity, Llc Method and apparatus for using multicarrier interferometry to enhance optical fiber communications
DE19961777A1 (de) 1999-12-21 2001-07-12 Rudolf Bannasch Verfahren und Vorrichtungen zur Informationsübertragung
US7522900B2 (en) 2001-03-20 2009-04-21 Broadcom Corporation DC offset correction for use in a radio architecture
US7266156B2 (en) * 2002-04-26 2007-09-04 Qualcomm Incorporated Method and apparatus for reducing peak to average power ratio of a multi-carrier signal
US7200188B2 (en) 2003-01-27 2007-04-03 Analog Devices, Inc. Method and apparatus for frequency offset compensation
JP3933628B2 (ja) * 2003-12-26 2007-06-20 株式会社東芝 マルチキャリア通信システムおよびこのシステムに用いられる送信装置、受信装置、送信方法、受信方法
DE102004029236B4 (de) * 2004-06-17 2006-08-03 Infineon Technologies Ag Verfahren und Vorrichtung zur Reduzierung des dynamischen Bereichs eines Funksignals
JP4958565B2 (ja) 2006-01-06 2012-06-20 パナソニック株式会社 無線通信装置
JP4825151B2 (ja) 2007-02-26 2011-11-30 日本無線株式会社 無線送受信機
CN101453257A (zh) 2007-12-03 2009-06-10 国家广播电影电视总局广播科学研究院 一种多载波调制系统中差分空时发射分集系统及实现方法
CN101404509B (zh) 2008-11-11 2012-08-29 桂林航天光比特科技股份公司 信号干扰对消器及信号干扰对消方法
CN101997795B (zh) * 2009-08-08 2015-01-28 中兴通讯股份有限公司 降低多载波相互干扰的方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
CN101185269A (zh) * 2005-05-30 2008-05-21 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-192000A 2005.07.14

Also Published As

Publication number Publication date
EP2458744A1 (en) 2012-05-30
IN2012DN01515A (zh) 2015-06-05
EP2458744A4 (en) 2017-05-24
CN101998610A (zh) 2011-03-30
US9094271B2 (en) 2015-07-28
EP2458744B1 (en) 2018-10-17
WO2011017883A1 (zh) 2011-02-17
US20120122445A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US5903614A (en) Communication method and receiving apparatus
US5914932A (en) Communication method and receiving apparatus
CN103201966A (zh) 用于无线系统的多址传输方案
CN102223322A (zh) 一种频率偏差的估计方法及装置
CN114268530B (zh) 一种信号的发送、接收方法、终端及装置
WO2008009011A2 (en) Uplink timing control signal
CN101998610B (zh) 降低多载波相互干扰的方法与装置
CN100563231C (zh) 一种正交频分复用接入系统的前导码生成方法及装置
CN100347962C (zh) 时域同步正交频分复用接收机去除相位噪声的方法及系统
JP2000269917A (ja) 送信装置および方法、並びに提供媒体
CN101997795B (zh) 降低多载波相互干扰的方法与装置
CN101998595B (zh) 降低多载波相互干扰的方法与装置
CN1210900C (zh) 利用传输参数信令抑制相位噪声的方法
CN101998592B (zh) 降低多载波相互干扰的方法与装置
CN101998593B (zh) 降低多载波相互干扰的方法与装置
CN101998594B (zh) 降低多载波相互干扰的方法与装置
US20200112404A1 (en) Receiver Circuit and Methods
CN101577689B (zh) 数字电视地面广播国家标准的残留频偏检测与纠正方法
CN101997794B (zh) 降低多载波相互干扰的方法与装置
CN100380957C (zh) 调整伪随机噪声序列并插入码元中的正交频分复用发射机
CN103188196A (zh) 正交频分复用系统的同步方法
JP2000092022A (ja) マルチキャリアディジタル変調伝送装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant