CN101994028B - 一种太阳能热利用真空管吸氢材料及其使用方法 - Google Patents

一种太阳能热利用真空管吸氢材料及其使用方法 Download PDF

Info

Publication number
CN101994028B
CN101994028B CN2009100918421A CN200910091842A CN101994028B CN 101994028 B CN101994028 B CN 101994028B CN 2009100918421 A CN2009100918421 A CN 2009100918421A CN 200910091842 A CN200910091842 A CN 200910091842A CN 101994028 B CN101994028 B CN 101994028B
Authority
CN
China
Prior art keywords
hydrogen
hydrogen absorption
rare earth
thermal utilization
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100918421A
Other languages
English (en)
Other versions
CN101994028A (zh
Inventor
李志念
王树茂
刘晓鹏
蒋利军
郝雷
吕芳
李国斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN2009100918421A priority Critical patent/CN101994028B/zh
Publication of CN101994028A publication Critical patent/CN101994028A/zh
Application granted granted Critical
Publication of CN101994028B publication Critical patent/CN101994028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种太阳能热利用真空管吸氢材料及其使用方法,其包括钛、钒铁合金和稀土金属,所述的稀土金属为单一的Y、La或Ce或Y、La和Ce按任意比例的混合物,它们的含量是:钛为30~79重量份,钒铁合金为20~69.5重量份,稀土金属为0.5~2.5重量份;还可以包括0.5~47.5重量份的过渡金属,所述的过渡金属为Mn、Co、Cr、Ni、Zr、Nb或Hf中的一种或其两种或两种以上按任意比例形成的混合物。所述的吸氢材料在真空条件下加热至200-450℃,活化10-30min,之后冷却到工作温度进行吸氢,所述的工作温度为25-350℃。本发明的吸氢材料具有制造工艺简单、活化温度低、吸氢容量大和吸氢速率快等显著优点。

Description

一种太阳能热利用真空管吸氢材料及其使用方法
技术领域
本发明涉及一种太阳能热利用真空管吸氢材料及其使用方法,特别是一种太阳能热利用真空管钛基多元吸氢材料及其使用方法,其最低可在200~250℃活化,工作温度为25~250℃,可替代目前太阳能热利用真空管内的Zr-Co-Re、Zr-V-Fe、钡基和锶基吸氢材料。
背景技术
太阳能光热利用已得到广泛普及,近年来,随着建筑节能、太阳能热发电等中高温太阳能光热技术发展的需要,对真空集热管的集热效率提出了越来越高的要求。而中高温太阳能真空集热管的工作温度高达200-400℃,在此温度下,集热管内的传热介质将在管内金属催化剂的作用下裂解产生氢气,并很容易借助渗透作用进入集热管的真空夹层,而H2在0℃的导热系数为0.163W/(m·K),分别为空气、O2、N2和CO2导热系数的7.0、6.8、7.2和11.9倍。因此,H2含量对真空集热管集热效率的影响极大,其良好的导热性将造成大量的热损失,即使是极微量的H2,对真空集热管的集热效率也会产生严重危害。为减少热损失,提高集热效率,需要在真空集热管的真空夹层中放入一定量的吸氢材料以降低其中的氢分压,提高管内真空度。目前,常用的真空吸氢材料有Zr-Co-Re(EP0869195)、Zr-V-Fe(US4312669)、Zr-V-Fe-Ti(ZL89106797.3)和Zr-Ni-V-Fe(ZL96106343.2),在真空集热管中放入上述合金中的一种,能吸附真空集热管工作中产生和渗透的氢,起到较好的隔热的效果。但上述合金吸氢速率和容量均较低,且需要450℃以上高温才能活化,难以满足中高温太阳能真空集热管的要求,因此,迫切需要一种活化温度低、吸氢容量高、吸氢速率快的吸氢材料,以满足太阳能中高温热利用真空管的高真空需求。
发明内容
本发明的目的是为了提供一种具有更高的吸氢容量和速率,可在更低温度(200~250℃)下活化的钛基多元吸氢材料,且其制造工艺简单,易掌握。
为实现上述目的,本发明采取以下技术方案:
一种太阳能热利用真空管吸氢材料,其特征在于:其包括钛Ti、钒铁合金VFe和稀土金属Re,所述的稀土金属Re为单一的Y、La或Ce或Y、La和Ce按任意比例的混合物,它们的含量是:钛Ti为30~79重量份,钒铁合金VFe为20~69.5重量份,稀土金属Re为0.5~2.5重量份。
一种太阳能热利用真空管吸氢材料,其特征在于:其包括钛Ti、钒铁合金VFe、过渡金属M和稀土金属Re,所述的过渡金属M为Mn、Co、Cr、Ni、Zr、Nb或Hf中的一种或其两种或两种以上按任意比例形成的混合物,所述的稀土金属Re为单一的Y、La或Ce或Y、La和Ce按任意比例的混合物,它们的含量是:钛Ti为30~79重量份,钒铁合金VFe为20~69.5重量份,过渡金属M为0.5~47.5重量份,稀土金属Re为0.5~2.5重量份。
一种优选的技术方案,其特征在于:所述的钒铁合金中,钒的含量为≥50wt%。
本发明的另一目的是提供一种上述太阳能热利用真空管吸氢材料的使用方法。为实现上述目的,本发明采取以下技术方案:
一种太阳能热利用真空管吸氢材料的使用方法,其特征在于:将所述的太阳能热利用真空管吸氢材料的合金粉末在真空条件下加热至200-450℃,活化10-30min,之后冷却到工作温度进行吸氢,所述的工作温度为25-350℃。
本发明的吸氢材料的制造工艺:按照合金成分设计范围分别称出块状金属钛、钒铁合金、过渡金属或合金和稀土金属或合金,将上述原材料烘烤除湿气后分别置于坩埚中,采用普通中频感应熔炼成锭,经氩气保护破碎和研磨,取-100目的颗粒粉末。
本发明的优点在于:
1、本发明的合金采用真空中频感应炉熔炼制备,具有制造工艺简单、活化温度低、吸氢容量大和吸氢速率快等显著优点。合金活化温度比通常的Zr基合金低200℃,其在25℃的吸氢容量和吸氢速率分别是Zr-V-Fe合金的2倍和5倍以上。本发明的吸氢材料最低可以在200-250℃下活化,活化时间小于30min,活化后正常工作温度为25-250℃。
2、本发明的产品有颗粒粉末、片和压制在金属镍带上的带和环,应用范围广泛,适用于中高温太阳能真空管,也可用于电光源元器件、惰性气体净化器和允许加热温度较低的真空器件如真空保温杯(瓶)和石油勘探隔热管中。
下面通过附图和具体实施方式对本发明做进一步说明,但并不意味着对本发明保护范围的限制。
附图说明
图1为Ti75(VFe)24.5Y0.5合金450℃活化后在25℃的吸氢速率随吸氢量变化的特征曲线。
图2为Ti51.5(VFe)36.5Mn10.5Y1.5合金200℃活化后在25℃的吸氢速率随吸氢量变化的特征曲线。
图3为Ti30(VFe)46.5Mn21Y2.5合金450℃活化后在25℃的吸氢速率随吸氢量变化的特征曲线。
图4为Ti45.5(VFe)30Mn12.5Nb10.5La1.5合金450℃活化后在25℃的吸氢速率随吸氢量变化的特征曲线。
具体实施方式
实施例1
原料采用Ti(纯度≥99.5%),VFe(V含量为50%),Y(纯度≥99.5%),合金按照Ti75(VFe)24.5Y0.5化学计量(即按照Ti:75wt%,VFe:24.5wt%,Y:0.5wt%,以下同),采用普通中频感应真空熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末后,取0.32g压制成Ф6×3mm的小片,按照GB/T 8763-1988测试合金片在室温下吸氢速率、容量随时间变化的关系。为了比较,采用相同工艺熔炼Zr-V-Fe(Zr:70wt%,V:24.6wt%,Fe:5.4wt%)合金并压制成Ф6×3mm的小片,进行了同样条件下吸氢性能的对比测试。测试条件为:样片在450℃,优于5×10-3Pa真空下活化10分钟,工作温度25℃,氢气工作压力2.7×10-4Pa,测试结果如图1所示。Ti75(VFe)24.5Ce0.5合金在25℃对H2在10分钟时的吸氢速率S10(cm3·S-1·g-1)和120分钟时的吸氢容量Q120(cm3·Pa·g-1)分别为4021cm3·S-1·g-1和6412.7cm3·Pa·g-1,而同条件测试的Zr-V-Fe合金对应值分别为876.4cm3·S-1·g-1和1454.5cm3·Pa·g-1,Ti75(VFe)24.5Y0.5合金吸氢性能比Zr-V-Fe合金的吸氢性能提高了4倍以上。
实施例2
原料采用Ti(纯度≥99.5%),VFe(V含量为80%),Mn(纯度≥98%),Y(纯度≥99.5%),合金按照Ti51.5(VFe)36.5Mn10.5Y1.5化学计量,采用普通中频感应真空熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末。取0.32g压制成Ф6×3mm的小片,按照GB/T 8763-1988测试合金片在室温下吸氢速率、容量随时间变化的关系。合金小片在优于5×10-3Pa真空、200℃下活化30分钟。测试工作压力2.7×10-4Pa,测试结果如图2所示,可见,Ti51.5(VFe)36.5Mn10.5Y1.5合金25℃对H2在10分钟时的吸氢速率S10(cm3·S-1·g-1)为1491.7cm3·S-1·g-1,吸氢速率在120分钟内基本保持恒定,120分钟时的吸氢容量Q120(cm3·Pa·g-1)为2830.9cm3·Pa·g-1
实施例3
原料采用Ti(纯度≥99.5%),VFe(V含量为80%),Mn(纯度≥98%),Y(纯度≥99.5%),合金按照Ti30(VFe)46.5Mn21Y2.5化学计量,采用普通中频感应真空熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末。取0.32g压制成100片Ф6×3mm规格的小片,任取其中一片,按照GB/T 8763-1988测试合金片在室温下吸氢速率、容量随时间变化的关系。测试条件为:样片在优于5×10-3Pa真空,450℃下活化10分钟,工作温度25℃,工作压力2.7×10-4Pa,测试结果如图3所示,Ti30(VFe)46.5Mn21Y2.5合金在25℃对H2在10分钟时的吸氢速率S10(cm3·S-1·g-1)和120分钟时的吸氢容量Q120(cm3·Pa·g-1)分别为4179.3cm3·S-1·g-1和7578.8cm3·Pa·g-1,表现出优异的吸氢性能。
实施例4
原料采用Ti(纯度≥99.5%),VFe(V含量为80%),Mn(纯度≥98%),Nb(纯度≥99%),La(纯度≥98.5%),合金按照Ti45.5(VFe)30Mn12.5Nb10.5La1.5化学计量,采用普通中频感应真空熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末。取0.32g压制成100片Ф6×3mm规格的小片,任取其中一片,按照GB/T 8763-1988测试合金片在室温下吸氢速率、容量随时间变化的关系。测试条件为:样片在优于5×10-3Pa真空,450℃下活化10分钟,工作温度25℃,工作压力2.7×10-4Pa,测试结果如图4所示,Ti45.5(VFe)30Mn12.5Nb10.5La1.5合金在25℃对H2在10分钟时的吸氢速率S10(cm3·S-1·g-1)和120分钟时的吸氢容量Q120(cm3·Pa·g-1)分别为4745.8cm3·S-1·g-1和8407.5cm3·Pa·g-1,合金吸氢速率高,稳定性好,吸氢容量大。
实施例5-18
原料为:Ti(纯度≥99.5%),VFe(V≥50%),Mn(纯度≥98%),Nb(纯度≥99%),La(纯度≥98.5%),Y(纯度≥99.5%),Ce(纯度≥98.5%),Co(纯度≥99.5%),Cr(纯度≥99.5%),Ni(纯度≥99.5%),Zr(纯度≥99%),Hf(纯度≥99%)。
按照表1中所示的各成分的重量份比配料,采用普通中频感应真空熔炼方法制备,熔炼后的铸锭经破碎,在氩气保护下研磨成-100目的颗粒粉末。
表1、实施例5-18中吸氢材料的组分及重量份
  Ti   VFe   Y   Ce   La   Mn   Co   Cr   Ni   Zr   Nb   Hf
  实施例5   30   67.5   2.5
  实施例6   79   20.5   0.5
  实施例7   30   69.5   0.1   0.1   0.3
  实施例8   79   20.5   0.2   0.2   0.1
  实施例9   40   58   1   0.5   0.5
  实施例10   30   69   0.5   0.5
  实施例11   30   20   2.5   47.5
  实施例12   46   30   1   23
  实施例13   30   64.5   0.2   0.3   5
  实施例14   30   20   2.5   20   27.5
  实施例15   45.5   26   1.5   26   0.5   0.5
  实施例16   30   23   0.5   4.5   22.5   19.5
  实施例17   30   22.5   0.5   0.5   17.5   10   6.5   12.5
  实施例18   36   20.5   2.5   10   15   5.5   10.5
实施例5-18中的钛基多元吸氢材料使用方法是:将-100目的合金粉末在真空条件下加热至200-450℃,保温抽真空10-30min完成活化过程,之后冷却到工作温度进行吸氢。合金的工作温度为25-350℃。所得吸氢材料的吸氢速率高,稳定性好,吸氢容量大。

Claims (4)

1.一种太阳能热利用真空管吸氢材料,其特征在于:其组成为钛、钒铁合金和稀土金属,所述的稀土金属为单一的Y、La或Ce或Y、La和Ce按任意比例的混合物,它们的含量是:钛为30~79重量份,钒铁合金为20~69.5重量份,稀土金属为0.5~2.5重量份。
2.一种太阳能热利用真空管吸氢材料,其特征在于:其组成为钛、钒铁合金、过渡金属和稀土金属,所述的过渡金属为Mn、Co、Cr、Ni、Zr、Nb或Hf中的一种或其两种或两种以上按任意比例形成的混合物,所述的稀土金属为单一的Y、La或Ce或Y、La和Ce按任意比例的混合物,它们的含量是:钛为30~79重量份,钒铁合金为20~69.5重量份,过渡金属为0.5~47.5重量份,稀土金属为0.5~2.5重量份。
3.根据权利要求1或2所述的太阳能热利用真空管吸氢材料,其特征在于:所述的钒铁合金中,钒的含量为≥50wt%。
4.权利要求1-3中任一项所述的太阳能热利用真空管吸氢材料的使用方法,其特征在于:将所述的太阳能热利用真空管吸氢材料的合金粉末在真空条件下加热至200~450℃,活化10~30min,之后冷却到工作温度进行吸氢,所述的工作温度为25~350℃。
CN2009100918421A 2009-08-27 2009-08-27 一种太阳能热利用真空管吸氢材料及其使用方法 Active CN101994028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100918421A CN101994028B (zh) 2009-08-27 2009-08-27 一种太阳能热利用真空管吸氢材料及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100918421A CN101994028B (zh) 2009-08-27 2009-08-27 一种太阳能热利用真空管吸氢材料及其使用方法

Publications (2)

Publication Number Publication Date
CN101994028A CN101994028A (zh) 2011-03-30
CN101994028B true CN101994028B (zh) 2012-12-26

Family

ID=43784777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100918421A Active CN101994028B (zh) 2009-08-27 2009-08-27 一种太阳能热利用真空管吸氢材料及其使用方法

Country Status (1)

Country Link
CN (1) CN101994028B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849835A (zh) * 2012-11-29 2014-06-11 北京有色金属研究总院 带有保护层的Zr-Co-Re薄膜吸气剂及其制备方法
CN104726745B (zh) * 2013-12-20 2017-07-11 北京有色金属研究总院 一种Ti‑Zr基轻质量高容量吸氢材料及其制备和使用方法
CN104745865B (zh) * 2013-12-31 2017-02-15 北京有色金属研究总院 一种非蒸散型低温激活钛基吸气剂合金及其制备方法
CN115786768B (zh) * 2022-11-17 2024-01-12 北京锦正茂科技有限公司 一种超低温真空杜瓦结构的气体吸附材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473948A (zh) * 2003-07-25 2004-02-11 中国科学院上海微系统与信息技术研究 高储氢量的钛-钒基储氢合金

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473948A (zh) * 2003-07-25 2004-02-11 中国科学院上海微系统与信息技术研究 高储氢量的钛-钒基储氢合金

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Yigang Yan,et al..A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity.《Journal of Power Sources》.2007, *
严义刚.V-Ti-Cr BCC型和Ti-Fe AB型贮氢合金的吸放氢特性研究.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ期》.2005,(第1期), *
严义刚.V-Ti-Cr-Fe贮氢合金的结构与吸放氢行为研究.《中国博士学位论文全文数据库 工程科技Ⅰ期》.2008,(第5期), *

Also Published As

Publication number Publication date
CN101994028A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
CN104726745B (zh) 一种Ti‑Zr基轻质量高容量吸氢材料及其制备和使用方法
Xie et al. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene
CN101994028B (zh) 一种太阳能热利用真空管吸氢材料及其使用方法
CN103436723B (zh) 一种快速制备高性能Mg2Si基热电材料的方法
CN112095035A (zh) 一种非蒸散型低温激活高温吸气合金及其制备方法
CN106654240B (zh) 一种Ce2Ni7型单相超晶格贮氢合金电极材料及其制备方法
CN111647773B (zh) 一种稀土储氢材料及其制备方法
CN103774020A (zh) 钼铼合金箔材的制备方法
CN101476074A (zh) 含钛的碳氮钒合金及其制备方法
CN104651652A (zh) 一种吸氢元件的制备方法
CN101693973B (zh) 一种微波烧结制备Nd-Mg-Ni储氢合金的方法及其装置
CN102618741A (zh) 一种锰铁磷硅磁致冷合金的制备方法
CN101786163A (zh) 高性能室温磁致冷纳米块体材料的制备方法
CN110436898A (zh) 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法
CN101575679A (zh) 一种Mg-Ni系储氢合金的制备方法
CN105731457B (zh) 一种纯净单相三元碳化物Co3W3C的制备方法
CN101886202B (zh) 一种微波辅助加热合成La-Mg储氢合金的方法
CN103924109B (zh) 一种自蔓延燃烧合成超快速制备高性能CoSb3基热电材料的方法
CN104909337A (zh) 一种偏硼酸锂掺杂氢化锂的储氢复合材料及其制备方法
CN105755381A (zh) 一种超高压金属氢化物氢压缩材料
CN103205590B (zh) 磁制冷材料的一种制备工艺
CN105986177B (zh) 高导热的室温磁制冷内生复合材料、其制备方法及应用
CN112301264A (zh) 一种非蒸散型低温激活吸气合金及其制备方法
CN104370278B (zh) 一种高纯度纳米AlN粉末的制备方法
CN113512674B (zh) 一种改性Mg-Ni-La纳米晶储氢合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190624

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088 No. 2 Xinjiekouwai Street, Haidian District, Beijing

Patentee before: General Research Institute for Nonferrous Metals