CN101966848B - 混合动力车变速器中的电动机辅助的换挡控制 - Google Patents

混合动力车变速器中的电动机辅助的换挡控制 Download PDF

Info

Publication number
CN101966848B
CN101966848B CN2010102395426A CN201010239542A CN101966848B CN 101966848 B CN101966848 B CN 101966848B CN 2010102395426 A CN2010102395426 A CN 2010102395426A CN 201010239542 A CN201010239542 A CN 201010239542A CN 101966848 B CN101966848 B CN 101966848B
Authority
CN
China
Prior art keywords
torque
joined
transfer clutch
power
motor generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102395426A
Other languages
English (en)
Other versions
CN101966848A (zh
Inventor
M-J·金
S·H·斯维尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101966848A publication Critical patent/CN101966848A/zh
Application granted granted Critical
Publication of CN101966848B publication Critical patent/CN101966848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本发明涉及混合动力车变速器中的电动机辅助的换挡控制。一种用于操作具有发动机、电动机-发电机和可自动换档的多档变速器的机动车辆混合动力系的方法,其中发动机和电动机-发电机操作以便为驱动车辆向变速器供应转矩。该方法包括在换档期间调整从电动机-发电机到变速器的转矩供应,以使变速器输出转矩干扰最小化。

Description

混合动力车变速器中的电动机辅助的换挡控制
技术领域
本发明涉及车辆变速器中的换挡控制,尤其地涉及混合动力车的变速器中的电动机辅助的换档控制。
背景技术
在现代车辆中,在车辆传动系统中利用可自动换挡的变速器,以增强车辆操作者的舒适与便利。通常,在开机模式中、即在发动机向变速器供应输入转矩时,实现在这样的变速器的前进档之间的升挡。这样的变速器可用作常规动力系、即采用单个发动机的动力系的一部分,或者用于将诸如发动机和电动机的两个或两个以上的不同的动力源用于推进车辆的混合动力系。
为了使混合动力车的燃料效率最大化,当车辆处于滑行模式时、即当车辆由于道路接触面和车辆传动系统摩擦、以及由于空气阻力、或在制动期间从高速减速时,发动机可关闭。在混合动力车处于滑行模式时,可将车辆惯性用于以发电机模式反向驱动电动机,以便对车辆电池再充电,从而进一步提高效率。还可经由再生制动系统提供混合动力车减速,其中同样发动机可关闭,并且类似地经由电动机回收否则将损失的制动能量。当混合动力车处于减速模式时,由于其发动机通常关闭,所以发动机不能向车辆的自动变速器提供转矩输入。因此,在混合变速器执行换挡的同时,这样的输入转矩中断可产生有害的传动系统干扰。
发明内容
提供一种用于操作具有发动机、电动机-发电机和多档可自动换挡的变速器的机动车辆混合动力系的方法。如在此所使用的,“多档可自动换挡”指的是通常采用诸如行星齿轮组或平行轴齿轮组的齿轮系装置的变速器。这样的变速器通常利用离散的传动比,以产生速度-转矩转换、即档位或减速,以便更加有效地为车辆提供动力。该方法在调档期间使变速器中的输出转矩干扰减小或最小化。
根据该方法,发动机和电动机-发电机分别以可操作的方式连接至变速器,以便为驱动车辆提供转矩供应。该方法包括在调档期间调整从电动机-发电机到变速器的转矩供应,以减小输出转矩干扰。除调整从电动机-发电机到变速器的转矩供应之外,该方法可包括调整来自发动机的转矩供应。
该方法可附加地包括经由待分离的离合器和待接合的离合器在变速器中启动从待分离的档位到待接合的档位的调档。该方法还可包括确定待接合的档位中与变速器输出速度对应的期望变速器输入速度,以及确定换挡期间输出转矩的大小的目标轨迹。此外,该方法还可包括开始待接合的离合器的接合,以及确定由待接合的离合器传递的转矩的大小。
该方法可附加地包括继续待接合的离合器的接合,以在待接合的档位中获得所确定的输出转矩的大小。此外,该方法可包括确定由待分离的离合器传递的转矩大小是否低于预定的转矩阈值,以及如果待分离的离合器的转矩低于预定的转矩阈值,则分离待分离的离合器。该方法还可包括确定待接合的离合器的转差速度是否低于预定的转差速度阈值,并且如果待接合的离合器的转差速度低于预定的转差速度阈值,则完成待接合的离合器的接合。因此,待接合的离合器的接合用于在待接合的档位中获得期望的变速器输入速度和所确定的输出转矩大小。
根据该方法,启动的变速器调档可以是停机降挡,即在发动机不向变速器供应动力的情况下执行的降挡。在这样的降挡过程中,可通过关闭发动机来实现调整来自发动机的转矩供应,并且可通过初始地供应从电动机-发电机到变速器的转矩的第一测量和随后的转矩的第二测量来实现调整来自电动机-发电机的转矩供应。另外,在降挡期间,可经由电动机-发电机再生或回收机动车辆的制动能量,以形成所谓的“再生”降挡。
根据该方法,在降挡期间,可根据表现在换挡期间待接合的离合器的转矩传送阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nidot=a2*Toff-going+b2*T1m-g确定在通过继续待接合的离合器的接合获得的待接合的档位中输出转矩的大小。在以上的转矩传送阶段关系式中,Tout为输出转矩的大小,Toff-going是待分离的离合器中的转矩,T1m-g是由电动机-发电机供应至变速器的转矩的第一测量,而Nidot为期望的变速器输入轴加速度。项a1、b1、a2和b2是由各种档位状态下变速器的运动学特性和惯性特性所确定的常数。
另外,在降挡期间,一旦待分离的离合器卸载并释放,根据表现在换挡期间待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定在通过完成待接合的离合器的接合获得的待接合的档位中输出转矩的大小。在以上的惯性阶段关系式中,Tout为输出转矩的大小,Ton-coming是待接合的离合器中的转矩,T2m-g是由电动机-发电机供应至变速器的转矩的第二测量,而Nidot为期望的变速器输入轴加速度。项c1、d1、c2、d2是由各种档位状态下变速器的运动学特性和惯性特性所确定的常数。
根据该方法,启动的变速器调档还可以是开机升挡。在这样的升挡过程中,可通过中止经由电动机-发电机向变速器供应转矩或供应负转矩来实现调整来自电动机-发电机的转矩供应。为了调整来自发动机的转矩供应,可经由发动机驱动电动机-发电机。在这样的升挡期间,可经由电动机-发电机再生或回收发动机的惯性能量。
本发明提供以下技术方案:
方案1.一种方法,其用于操作具有发动机、电动机-发电机和多档可自动换挡的变速器的机动车辆混合动力系,并用于在换挡期间减小所述变速器中的输出转矩干扰,所述发动机和所述电动机-发电机各自以可操作的方式连接至所述变速器,以便为驱动车辆提供转矩供应,所述方法包括:在换挡期间调整从所述电动机-发电机到所述变速器的转矩供应,充分地使得在所述换挡期间的输出转矩干扰最小化。
方案2.根据方案1所述的方法,还包括调整从所述发动机到所述变速器的转矩供应。
方案3.根据方案2所述的方法,还包括:经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的换挡;确定与变速器输出速度对应的期望变速器输入速度、以及所述待接合的档位中的输出转矩的大小;开始所述待接合的离合器的接合;确定由所述待接合的离合器传递的转矩的大小;继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;确定由所述待分离的离合器传递的转矩的大小是否低于预定的转矩阈值;如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩的大小。
方案4.根据方案3所述的方法,其中,所述变速器换挡是停机降挡。
方案5.根据方案2所述的方法,其中,通过关闭所述发动机来实现调整来自所述发动机的转矩供应,并且通过初始地供应从所述电动机-发电机到所述变速器的转矩的第一测量和随后的转矩的第二测量来实现调整来自所述电动机-发电机的转矩供应。
方案6.根据方案5所述的方法,还包括在所述降挡期间经由所述电动机-发电机再生所述机动车辆的制动能量。
方案7.根据方案5所述的方法,其中,根据表现在换挡期间所述待分离的离合器的转矩传送阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nidot=a2*Toff-going+b2*T1m-g确定在通过继续所述待分离的离合器的分离将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Toff-going是所述待接合的离合器中的转矩,T1m-g是由所述电动机-发电机供应至所述变速器的转矩的第一测量,Nidot为期望的变速器输入轴加速度,而a1、b1、a2和b2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
方案8.根据方案5所述的方法,其中,根据表现在换挡期间所述待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定在通过完成所述待接合的离合器的接合将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Ton-coming是所述待接合的离合器中的转矩,T2m-g是由所述电动机-发电机供应至所述变速器的转矩的第二测量,Nidot为期望的变速器输入轴加速度,而c1、d1、c2和d2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
方案9.根据方案3所述的方法,其中,所述变速器换档是开机升挡。
方案10.根据方案9所述的方法,其中,通过中止经由所述电动机-发电机向所述变速器供应转矩或供应负转矩来实现调整来自所述电动机-发电机的转矩供应,并且通过经由所述发动机驱动所述电动机-发电机来实现调整来自所述发动机的转矩供应。
方案11.根据方案10所述的方法,还包括经由所述电动机-发电机再生所述发动机的惯性能量。
方案12.根据方案1所述的方法,其中,调整来自所述电动机-发电机的转矩供应减少所述换挡的持续时间。
方案13.一种方法,其用于控制在混合动力车辆中采用的多档可自动换挡的变速器中的停机降挡,并在所述降挡期间减小所述变速器中的输出转矩干扰,所述车辆具有能够被开启和关闭的发动机、和电动机-发电机,所述发动机和所述电动机-发电机各自以可操作的方式连接以便为驱动所述车辆向所述变速器供应转矩,所述方法包括:经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的变速器停机降挡;经由所述电动机-发电机再生所述机动车辆的制动能量;确定与变速器输出速度对应的所述待接合档位中的期望变速器输入速度;确定所述降挡期间输出转矩的大小的目标轨迹;开始所述待接合的离合器的接合;确定由所述待接合的离合器传递的转矩的大小;由所述电动机-发电机向所述变速器施加转矩的第一测量;继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;确定由所述待分离的离合器传递的转矩大小是否低于预定的转矩阈值;如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;由所述电动机-发电机向所述变速器施加转矩的第二测量;确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩的大小,充分地使得在所述停机降挡期间的输出转矩干扰最小化。
方案14.根据方案13所述的方法,还包括在所述降挡期间关闭所述发动机。
方案15.根据方案13所述的方法,其中,根据表现在换挡期间所述待分离的离合器的转矩传送阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nidot=a2*Toff-going+b2*T1m-g确定在通过继续所述待分离的离合器的分离将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Toff-going是所述待接合的离合器中的转矩,T1m-g是由所述电动机-发电机供应至所述变速器的转矩的第一测量,Nidot为期望的变速器输入轴加速度,而a1、b1、a2和b2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
方案16.根据方案13所述的方法,其中,根据表现在换挡期间所述待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定在通过完成所述待接合的离合器的接合将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Ton-coming是所述待接合的离合器中的转矩,T2m-g是由所述电动机-发电机供应至所述变速器的转矩的第二测量,Nidot为期望的变速器输入轴加速度,而c1、d1、c2、d2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
方案17.一种方法,其用于控制在混合动力车辆中采用的多档可自动换挡的变速器中的开机升挡,并用于在所述升挡期间减小所述变速器中的输出转矩干扰,所述车辆具有发动机和电动机-发电机,所述发动机和所述电动机-发电机各自以可操作的方式连接,以便为驱动所述车辆向所述变速器供应转矩,所述方法包括:经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的变速器开机升挡;确定与变速器输出速度对应的所述待接合档位中的期望变速器输入速度;确定所述升挡期间输出转矩的大小的目标轨迹;开始所述待接合的离合器的接合;确定由所述待接合的离合器传递的转矩的大小;调整从所述电动机-发电机到所述变速器的转矩供应;调整从所述发动机到所述变速器的转矩供应;继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;确定由所述待分离的离合器传递的转矩大小是否低于预定的转矩阈值;如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩大小,充分地使得在所述开机升挡期间的输出转矩干扰最小化。
方案18.根据方案17所述的方法,其中,通过中止经由所述电动机-发电机向所述变速器供应转矩或供应负转矩来实现调整来自所述电动机-发电机的转矩供应,并且通过经由所述发动机驱动所述电动机-发电机来实现调整来自所述发动机的转矩供应。
方案19.根据方案18所述的方法,还包括经由所述电动机-发电机再生所述发动机的惯性能量。
当结合附图考虑时,本发明的以上的特征和优点、及其他的特征和优点将通过以下实施本发明的最佳模式的详细说明而显而易见。
附图说明
图1是根据现有技术的在具有恒定再生制动转矩的情况下、在典型的停机降挡挡位变换期间经历的自动变速器的输出转矩的时间曲线轨迹的图形图;
图2是根据第一实施例的在具有恒定再生制动转矩的情况下、在电动机-发电机辅助和受控的停机降挡换挡期间经历的自动变速器的输出转矩的时间曲线轨迹的图形图;
图3是根据现有技术的、在典型的升挡换挡期间经历的自动变速器的输出转矩的时间曲线轨迹的图形图;
图4是根据第二实施例的、在电动机-发电机辅助和受控的升挡换挡期间经历的自动变速器的输出转矩的时间曲线轨迹的图形图;
图5以流程图的形式示意性地图解一方法,该方法用于如图2和4所示在混合动力车的自动变速器中通过电动机-发电机辅助和控制调档。
具体实施方式
如本领域的技术人员所理解的,多档可自动换挡的变速器可用作用于如下类型的混合动力车的动力系的一部分,该类型的混合动力车包括火花点火或压缩点火类型的内燃机和电动机-发电机。这样的动力系可构造成P1或P2混合,其中电动机/发电机设置在变速器的例如离合器或制动器的换挡元件的上游。通常,P1是用于电机连接至发动机曲轴的混合的术语,而P2是用于电机连接至变速器输入的混合的术语。在P1或P2混合的任一情况下,车辆可由发动机、由电动机、或由两者的组合可选择地推进。通常,如在此所设想的,自动变速器利用多个换挡元件以完成调档,其中例如当接合一个离合器时脱离另一离合器。脱离的离合器通常称为待分离的离合器,而接合的离合器通常称为待接合的离合器。
在车辆减速期间,或者在车辆滑行期间或者在制动期间,通常反向驱动电动机-发电机,即经由车辆惯性使电动机-发电机以发电机模式操作,以回收或再生否则将损失的能量。这样回收的能量可用于对诸如电池的车辆车载储能装置充电,从而改善动力系总的能量效率。同时地,并且为了相同的目的,在再生期间,通常停止混合动力车的内燃机。同时,在发动机处于停机模式的情况下,需要混合动力车的多档可自动换挡的变速器在其挡位范围、即档位内降挡,以便一重新启动发动机就提供合适的发动机每分钟转速和响应。然而,在处于再生模式的同时,电动机-发电机产生附加的动力系阻力。这样的阻力通常导致明显的车辆减速、施加变速器输出转矩干扰和在主观的降挡感受中产生显著的恶化。根据第一实施例,为了使这样的变速器输出转矩干扰最小化,控制电动机-发电机以在停机降挡期间向变速器提供转矩辅助、即转矩输入。
在车辆加速期间,在发动机开动的情况下,通常使电动机-发电机以电动机模式操作,以便为提高车辆加速度提供动力辅助、或补充的转矩输入。在这样的加速期间,需要混合动力车的多档可自动换挡的变速器在其挡位范围或档位内升挡,以便提供合适的发动机每分钟转速和响应。然而,当变速器在该开机模式中升挡时,不管电动机-发电机是否提供转矩辅助,发动机输入转矩通常产生变速器输出转矩干扰,其可降低升挡的主观的平顺性。根据第二实施例,为了使这样的变速器输出转矩干扰最小化,控制电动机-发电机,以在开机升挡期间吸收发动机转矩的一部分。在以下提供的说明中,选择特定的变速器档位,以便以示例性方式图解在典型的变速器操作期间出现的调档。
参考相同的元件始终标以相同的附图标记的附图,图1图解在作为根据现有技术的混合动力系的一部分的自动变速器中典型的停机降挡换挡10(示出为从第三档降挡至第二档)。降挡换挡10的示意图包括表示待分离的离合器的转矩容量的趋势线12(第三档中的变速器输出转矩的时间曲线轨迹)、和表示待接合的离合器的转矩容量的趋势线14(第二档中的变速器输出转矩的时间曲线轨迹)。趋势线12示出第三档中的输出转矩,其在表示大约3.6-4.0秒的跨距的时间范围A1期间保持在大约150N-m。趋势线12还示出待分离的离合器的转矩容量,其在换挡的表示4.0-4.2秒的大致跨距的“转矩阶段”时间范围B1期间逐渐下降至0N-m。其后,趋势线12示出待分离的离合器的转矩容量,其在表示4.2-4.6秒的大致跨距的“惯性阶段”时间范围C1期间、和在表示4.6-5.0秒的大致跨距的时间范围D1期间保持在0N-m。趋势线14示出待接合的离合器的转矩容量在时间范围A1期间保持在大约0N-m。趋势线14还示出待接合的离合器的转矩容量在时间范围B1期间、通过时间范围C1、并进入时间范围D1逐渐增大至150N-m。如在此所使用的,术语“转矩阶段”表示待分离的离合器中的转矩的逐渐卸载和待接合的离合器的接合的开始。术语“惯性阶段”用于表示待接合的离合器和待分离的离合器的转差速度改变的调档的一部分。
降挡换挡10的示意图还包括表示实际待分离的离合器的转矩的时间曲线轨迹的趋势线16、和表示实际待接合的离合器的转矩的时间曲线轨迹的趋势线18。趋势线16示出待分离的离合器在时间范围A1期间始终传递大约50N-m,然后示出待分离的离合器传递的扭矩在时间范围B1期间在过渡的转矩阶段中逐渐下降至0N-m。趋势线16还示出待分离的离合器达到0N-m,并在时间范围C1和D1期间保持在该水平。趋势线18示出待接合的离合器在时间范围A1期间传递0N-m。趋势线18还示出待接合的离合器传递的转矩在时间范围B1期间逐渐增大,并进入过渡的惯性阶段时间范围C1,逐渐增大至大约120N-m。在大约4.6秒的标记之后,在时间范围D1期间,趋势线18示出待接合的离合器传递的转矩减小并最终稳定在大约30N-m的水平。
在降挡换挡10的示意图中还包括有表示由电动机-发电机吸收的输出转矩的趋势线20,以及表示变速器输出转矩干扰的趋势线22。趋势线20示出处于再生模式的电动机-发电机由车辆的惯性驱动,以在降挡的时间范围A1-D1期间对变速器产生具有大约-70N-m大小的稳定的阻力水平(示出为负转矩值)。趋势线22示出输出转矩干扰在时间范围A1期间相对平直地保持在大约-160N-m。输出转矩干扰趋势线22在时间范围B1期间开始波动并逐渐增大(由较大的负值表示),并示出在时间范围C1的大部分期间快速增加到大约-580N-m。在正好于4.7秒的标记(在时间范围D1期间)之前出现的急剧拐点之后,趋势线22示出变速器输出转矩快速减小并最终稳定在大约-220N-m的水平。因此,在发动机关闭的情况下,在待分离的离合器和待接合的离合器以它们各自的过渡阶段操作的情况下,输出转矩干扰由来自以再生模式操作的电动机-发电机的阻力而加重。结果,在大约0.5秒的时间间隔内随后的从-160N-m至-580N-m的输出转矩干扰快速增加在主观的降挡感受中造成显著的恶化。
图2图解在作为根据第一实施例的混合动力系的一部分的自动变速器中的电动机-发电机转矩辅助停机降挡挡位变换24(示出为从第三档降挡至第二档)。降挡挡位变换24的示意图包括表示待分离的离合器的转矩容量的趋势线26、和表示待接合的离合器的转矩容量的趋势线28。趋势线26和趋势线28分别与图1的趋势线12和趋势线14相同。因此,待分离的离合器的趋势线26的转矩容量在时间范围A2期间保持在大约150N-m,并在时间范围B2期间逐渐下降至0N-m,其后趋势线26的输出转矩保持在0N-m。相应地,待接合的离合器的趋势线28的转矩容量在时间范围A2期间保持在大约0N-m,并在时间范围B2期间、通过时间范围C2、并进入时间范围D2逐渐增大至150N-m。时间范围A2和B2与图1的时间范围A1和B1相同,然而时间范围C2表示大约4.2-4.4秒的跨距,而D2表示大约4.4-5.0秒的跨距。因此,图2说明了具有电动机-发电机辅助的停机降挡的过渡阶段大体上花费比对照的无辅助停机降挡的过渡阶段(如图1所示)短的时间。
降挡挡位变换24的示意图还包括表示实际待分离的离合器的转矩的时间曲线轨迹的趋势线30、和表示实际待接合的离合器的转矩的时间曲线轨迹的趋势线32。趋势线30和趋势线32分别类似于图1的趋势线16和趋势线18。趋势线30示出待分离的离合器在时间范围A2期间始终传递大约50N-m,然后示出待分离的离合器传递的扭矩在时间范围B2期间过渡的转矩阶段中逐渐下降至0N-m。趋势线30还示出待分离的离合器达到0N-m,并在时间范围C2和D2期间保持在该水平。趋势线32示出待接合的离合器在时间范围A2期间传递0N-m。趋势线32还示出待接合的离合器传递的转矩在时间范围B2期间并进入时间范围C2的过渡的惯性阶段中逐渐增大至大约70N-m。在大约时间范围C2期间的4.4秒的标记之后,趋势线32示出待接合的离合器传递的转矩减小并最终稳定在大约30N-m的水平。
在降挡挡位变换24的示意图中还包括有趋势线34,其表示在再生模式期间由电动机-发电机吸收的输出转矩、以及由电动机-发电机向变速器提供的转矩辅助。在降挡挡位变换24的示意图中还包括有表示换档期间的变速器输出转矩的目标轨迹的趋势线35。此外,挡位变换24的示意图包括表示如由电动机-发电机转矩辅助所改变的变速器输出转矩干扰的趋势线36。趋势线34示出调整电动机-发电机操作,以改变到变速器的转矩输入和来自变速器的转矩输出。趋势线34示出处于再生模式的电动机-发电机由车辆的惯性驱动,以在降挡的时间范围A2期间并进入时间范围D2对变速器产生具有大约70N-m大小的稳定的阻力水平。趋势线34示出电动机-发电机在时间范围B2内的4.1秒的标记附近变换成转矩辅助模式。趋势线34穿过0N-m的转矩阈值并开始向变速器提供转矩辅助,以便在时间范围C2内达到180N-m的转矩输入。不迟于时间范围D2,去除趋势线34的转矩辅助,并且使电动机-发电机恢复至提供具有大约70N-m大小的稳定的阻力水平的再生模式。
如图2所示,描绘输出转矩干扰的趋势线36通过时间范围A2和B2、并通过时间范围C2的大部分相对平直地保持在大约160N-m。输出转矩干扰趋势线36在4.5秒的标记附近示出具有大约30N-m的峰间(峰到峰)大小的可察觉的转矩波动。输出转矩干扰波动在时间范围D2期间继续并缓慢减弱,然而,这些波动与图1的趋势线22的输出转矩干扰具有大约420N-m的峰间大小的波动相比十分令人满意。如从图2所能看到的,输出转矩趋势线36在换档期间基本跟随变速器输出转矩趋势线35的目标轨迹。电动机辅助降挡的输出转矩趋势线36显得明显比无辅助的降挡的趋势线22平滑。因此,由趋势线36描绘的随后的输出转矩干扰与图1中无辅助的情形相比较已减小,并在实际车辆中产生停机降挡改善的主观感受。
与电动机-发电机不同,发动机在停机降挡期间不是混合变速器的有效转矩辅助源。发动机在这点上的无效是由于至少两条独立的原因:1)因为发动机制动是质量-惯性与摩擦的函数,所以其难于控制,并因此发动机转矩输出不是恒定的,即发动机转矩本身在相当大的程度上波动,以及2)在降挡期间,发动机可能停止或者从动力系的其余部分断开,以便再生。
图3图解在作为根据现有技术的混合动力系的一部分的自动变速器中典型的开机升挡换挡38(示出为从第二档升挡至第三档)。升挡换挡38的示意图包括表示待分离的离合器的转矩容量的趋势线40、和表示待接合的离合器的转矩容量的趋势线42。趋势线40示出待分离的离合器的转矩容量在表示大约3.6-3.8秒的跨距的时间范围E1期间初始地保持大约150N-m。在4.0秒的标记之后不久,在时间范围E1期间,趋势线40示出待分离的离合器的转矩容量开始减小。趋势线40示出待分离的离合器的转矩容量在包括大约3.8-4.0秒的跨距的时间范围F1期间继续下降并达到0N-m。趋势线40示出待分离的离合器的转矩容量在表示大约4.0-4.4秒的跨距的时间范围G1期间、以及在表示大约4.4-5.0秒的跨距的时间范围H1期间保持在0N-m。趋势线42示出待接合的离合器的转矩容量在时间范围E 1期间保持在大约0N-m。趋势线42还示出待接合的离合器的转矩容量在时间范围F1期间、通过时间范围G1、并进入时间范围H1逐渐增大至170N-m。
升挡换挡38的示意图还包括表示实际待分离的离合器的转矩的时间曲线轨迹的趋势线44、和表示实际待接合的离合器的转矩的时间曲线轨迹的趋势线46。趋势线44示出待分离的离合器在时间范围E1期间始终传递大约20N-m,然后示出待分离的离合器传递的扭矩在时间范围F1期间过渡的转矩阶段中逐渐下降至0N-m。趋势线44还示出待分离的离合器传递的转矩贯穿时间范围G1和H1保持在0N-m。趋势线46示出待接合的离合器在时间范围E1期间传递0N-m。趋势线46还示出待接合的离合器传递的转矩在时间范围F1期间过渡的惯性阶段中、通过时间范围G1、并在时间范围H1期间逐渐增大至大约170N-m。在时间范围H1期间的大约4.6秒的标记之后,趋势线46示出待接合的离合器传递的转矩快速减小并最终稳定在大约30N-m的水平。
在升挡换挡38的示意图中还包括有表示由电动机-发电机提供的输入转矩的趋势线48、以及表示变速器输出转矩干扰的趋势线50。趋势线48示出处于补充转矩输入模式的电动机-发电机,以辅助驱动车辆。如由趋势线48所描绘的,电动机-发电机在升挡的时间范围E1-H1期间通过提供具有大约70N-m(示出为正转矩值)大小的转矩辅助来补充发动机转矩。趋势线50示出输出转矩干扰在时间范围E1期间相对平直地保持在大约130N-m。趋势线50的输出转矩在时间范围F1期间开始波动,经历浅的50N-m的下降(从130N-m至80N-m),然后示出在时间范围H1的开始阶段期间到大约340N-m的快速增加。在正好于4.7秒的标记(在时间范围H1期间)之前出现的急剧拐点之后,趋势线50示出变速器输出转矩快速减小、波动、并最终稳定在大约120N-m的水平。因此,在发动机运转并向变速器提供转矩的情况下,在待分离的离合器和待接合的离合器以它们各自的过渡阶段操作的情况下,输出转矩干扰由来自以转矩辅助模式操作的电动机-发电机的输入而加重。结果,在大约0.5秒的时间间隔内随后的从130N-m至340N-m的输出转矩干扰快速增加在主观的升挡感受中造成显著的恶化。
图4图解在作为根据第二实施例的混合动力系的一部分的自动变速器中的电动机-发电机辅助的开机升挡挡位变换52(示出为从第二档升挡至第三档)。升挡挡位变换52的示意图包括表示待分离的离合器的转矩容量的趋势线54、和表示待接合的离合器的转矩容量的趋势线56。趋势线54和趋势线56分别与图3的趋势线40和趋势线42相同。因此,待分离的离合器的趋势线54的转矩容量在时间范围E2期间保持在大约150N-m,并在时间范围F2期间逐渐减小至0N-m,其后趋势线54的输出转矩保持在0N-m。相应地,待接合的离合器的趋势线56的转矩容量在时间范围E2期间保持在大约0N-m,并在时间范围F2期间、通过时间范围G2、并进入时间范围H2逐渐增大至150N-m。时间范围E2表示大约3.6-3.9秒的跨距,时间范围F2表示大约3.9-4.2秒的跨距,时间范围G2表示大约4.2-4.5秒的跨距,而时间范围H2表示大约4.5-5.0秒的跨距。电动机-发电机转矩辅助可用于缩短典型的开机升挡,总之,与典型的无辅助停机降挡相比较,换挡的过渡阶段花费较少的时间。
升挡挡位变换52的示意图还包括表示实际待分离的离合器的转矩的时间曲线轨迹的趋势线58、和表示实际待接合的离合器的转矩的时间曲线轨迹的趋势线60。趋势线58和趋势线60分别类似于图3的趋势线44和趋势线46。趋势线58示出待分离的离合器在时间范围E2期间始终传递大约20N-m,然后示出待分离的离合器传递的扭矩在时间范围F2期间过渡的转矩阶段中逐渐下降至0N-m。趋势线58还示出待分离的离合器传递的转矩贯穿时间范围G2和H2保持在0N-m。趋势线60示出待接合的离合器在时间范围E2期间传递0N-m。趋势线60还示出待接合的离合器传递的转矩在时间范围F2期间过渡的惯性阶段中、通过时间范围G2、并在时间范围G2期间逐渐达到大约140N-m。在时间范围G2期间的大约4.5秒的标记之后,趋势线60示出待接合的离合器传递的转矩快速减小并最终稳定在大约40N-m的水平。
在升挡挡位变换52的示意图中还包括有趋势线62,其表示从电动机-发电机向变速器输入以驱动车辆的转矩、以及由电动机-发电机吸收的转矩。在升挡挡位变换52的示意图中还包括有表示换档期间的变速器输出转矩的目标轨迹的趋势线63。此外,升挡挡位变换52的示意图还包括表示如由电动机-发电机辅助所改变的变速器输出转矩干扰的趋势线64,该电动机-发电机在该情况下吸收发动机转矩的一部分。趋势线62示出调整电动机-发电机操作,以改变到变速器的转矩输入和来自变速器的转矩输出。趋势线62示出处于驱动辅助模式的电动机-发电机,以在时间范围E2期间向变速器提供具有大约70N-m大小的稳定的转矩输入水平,并在升挡的时间范围F2期间逐渐上升到80N-m。趋势线62示出电动机-发电机在时间范围G2内的4.2秒的标记附近由于被发动机反向驱动而变换成转矩吸收模式。趋势线62穿过电动机-发电机开始吸收并再生发动机转矩的0N-m的转矩阈值,以便在4.5秒的标记附近逐渐吸收100N-m。不迟于时间范围H2,去除趋势线62的电动机-发电机辅助,并且使电动机-发电机恢复至其驱动辅助模式,在该驱动辅助模式下,电动机-发电机提供具有大约80N-m大小的稳定的转矩水平。
描绘输出转矩干扰的趋势线64通过范围E2和F2相对平直地保持在135N-m。在时间范围G2的4.2秒的标记附近,趋势线64示出显著的转矩波动。经历的输出转矩波动具有大约30N-m的峰间大小,并在时间范围G2期间并进入时间范围H2继续。在时间范围H2期间,转矩波动缓慢减弱,并且输出扭矩恢复至稳定的135N-m。如图4所示,输出转矩趋势线64在换档期间基本跟踪变速器输出转矩趋势线63的目标轨迹。通过比较图3和4,能够看出,趋势线64的输出转矩波动与趋势线50的无辅助升挡期间的转矩干扰具有大约290N-m的峰间大小的转矩波动相比令人满意。换句话说,电动机辅助升挡的输出转矩趋势线64显得明显比无辅助的升挡的趋势线50平滑。趋势线64这样的较平滑外观表示在实际车辆中改善的开机升挡感受。
除了如在图4中所看到的使升挡换挡平滑之外,电动机-发电机的反向驱动在待分离和待接合的离合器的过渡阶段期间附加地提供转矩再生。在待分离和待接合的离合器的过渡阶段期间,除了产生变速器输出转矩干扰之外,来自发动机的输入动力通常耗散为滑动式离合器中的热。因此,提供的否则在升挡换挡期间被浪费的再生回收能量,以电荷的形式,引至诸如电池的车载储能装置。
图5描绘了用于操作具有发动机、电动机-发电机和多档可自动换挡的变速器的机动车辆混合动力系的方法66,反映了在图2中所描绘的第一实施例和在图4中所描绘的第二实施例。方法66开始于框68,然后进入在用作混合动力系的一部分的自动变速器中启动电动机-发电机辅助调档或换档的框70。设想的换档可以是如参考图2所描述的根据第一实施例的停机降挡、或者如参考图4所描述的根据第二实施例的开机升挡。如本领域的技术人员所理解的,当在其他情况无辅助的换档通常是合适的时候,控制器,诸如电子控制单元(ECU),通常用于启动电动机-发电机辅助换档。
如本领域的技术人员所知的,在框70之后,方法66前进至框72,其中基于待接合的传动比确定在待接合的档位中与变速器输出速度对应的变速器期望输入速度。在框72之后,在框74中确定如以上参考图2所描述的在时间范围A-D期间、以及如以上参考图4所描述的在时间范围E-H期间的在换挡过程中的变速器输出转矩大小的目标轨迹。可通过在调档期间的离散时段处计算变速器输出转矩来确定输出转矩大小的目标轨迹。这样的时段应由ECU选择成提供足够的数据分辨率和电动机-发电机及发动机的合适的控制。
在框74中确定输出转矩大小的目标轨迹之后,方法66进入开始待接合的离合器的接合的框76。在框76之后,该方法前进至待接合的离合器的接合继续的框78。在框78之后,方法66进入确定待分离的离合器的转矩是否低于预定转矩阈值的框80。待分离的离合器的转矩阈值通常在混合动力系的设计及研发期间预先确定,并标明一转矩水平,低于该转矩水平则离合器不能传递足够的转矩以推进车辆。如果在框80中确定待分离的离合器的转矩等于或高于预定的转矩阈值,则该方法通过执行框82-86返回框78。
在框82中,确定待分离的离合器中在其过渡操作期间的转矩,诸如在图2的时间范围B2和C2中由趋势线30所描绘的。根据表现在换挡期间待接合的离合器的转矩阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nidot=a2*Toff-going+b2*T1m-g确定待分离的离合器的在其过渡操作期间的转矩。在对于转矩传送阶段而言的关系式中,Tout为输出转矩的大小,Toff-going是待分离的离合器中的转矩,T1m-g是由电动机-发电机供应至变速器的转矩的第一测量,而Nidot为期望的变速器输入轴加速度。如本领域的技术人员所理解的,项a1、b1、a2和b2是由各种档位状态下变速器的运动学特性和惯性特性所确定的分析确定的常数。
在框82之后,方法66进入调节或调整发动机的转矩的框84,并且该方法从框84前进至同样调节电动机-发电机的转矩的框86。因此,上述ECU用于调节发动机和电动机-发电机两者的转矩。然而,如果确定待分离的离合器的转矩低于预定的转矩阈值,则该方法前进至逐渐分离待分离的离合器使得其可能停止传递转矩的框88。
在框88之后,方法66进入确定待接合的离合器的转差速度是否高于预定速度阈值的框90。待接合的离合器的转差速度阈值标识出惯性阶段期间的一时刻,如图2中的时间范围C2和图4的时间范围G2所示,经过该时刻,则待接合的离合器在很大程度上同步,并且其转差速度几乎为零。因此,如果待接合的离合器的转差速度高于预定的速度阈值,则可在对动力系无明显干扰的情况下使该离合器完全接合。类似于待分离的离合器的转矩阈值,待接合的离合器的转差速度阈值通常在混合动力系的设计及研发期间预先确定。如果在框90中确定待接合的离合器的转差速度不高于预定的速度阈值,则该方法通过执行框92-96返回框88。
在框92中,确定待接合的离合器的在其过渡操作期间的转矩,诸如在图4的时间范围F2和G2中由趋势线60所描绘的。根据表现在换挡期间待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定待接合的离合器的在其过渡操作期间的转矩。在对于惯性阶段而言的关系式中,Tout为输出转矩的大小,Ton-coming是待接合的离合器中的转矩,T2m-g是由电动机-发电机供应至变速器的转矩的第二测量,而Nidot为期望的变速器输入轴加速度。如本领域的技术人员所理解的,项c1、d1、c2和d2是由各种档位状态下变速器的运动学特性和惯性特性所确定的分析确定的常数。
在框92之后,方法66进入调节或调整发动机的转矩的框94,并且该方法从框94前进至同样调节电动机-发电机的转矩的框96。然而,如果在框90中确定待接合的离合器的转差速度超过预定的速度阈值,则该方法进入框98。在框98中,方法66完成待接合的离合器的接合,然后进入框100,其中完成换挡并且,并且变速器完全实现下一个、在此以前待接合的档位。
尽管已详细描述实施本发明的最佳模式,但熟悉本发明所涉及领域的技术人员将认识到在所附权利要求的范围内实践本发明的各种替代性的设计和实施例。

Claims (18)

1.一种方法,其用于操作具有发动机、电动机-发电机和多档可自动换挡的变速器的机动车辆混合动力系,并用于在换挡期间减小所述变速器中的输出转矩干扰,所述发动机和所述电动机-发电机各自以可操作的方式连接至所述变速器,以便为驱动车辆提供转矩供应,所述方法包括:
在换挡期间调整从所述电动机-发电机到所述变速器的转矩供应,充分地使得在所述换挡期间的输出转矩干扰最小化;
经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的换挡;
确定与变速器输出速度对应的期望变速器输入速度、以及所述待接合的档位中的输出转矩的大小;
开始所述待接合的离合器的接合;
确定由所述待接合的离合器传递的转矩的大小;
继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;
确定由所述待分离的离合器传递的转矩的大小是否低于预定的转矩阈值;
如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;
确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及
如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩的大小。
2.根据权利要求1所述的方法,还包括调整从所述发动机到所述变速器的转矩供应。
3.根据权利要求1所述的方法,其中,所述变速器换挡是停机降挡。
4.根据权利要求2所述的方法,其中,通过关闭所述发动机来实现调整来自所述发动机的转矩供应,并且通过初始地供应从所述电动机-发电机到所述变速器的转矩的第一测量和随后的转矩的第二测量来实现调整来自所述电动机-发电机的转矩供应。
5.根据权利要求3所述的方法,还包括在所述降挡期间经由所述电动机-发电机再生所述机动车辆的制动能量。
6.根据权利要求1所述的方法,其中,根据表现在换挡期间所述待分离的离合器的转矩传送阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nidot=a2*Toff-going+b2*T1m-g确定在通过继续所述待分离的离合器的分离将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Toff-going是所述待接合的离合器中的转矩,Tlm-g是由所述电动机-发电机供应至所述变速器的转矩的第一测量,Nidot为期望的变速器输入轴加速度,而a1、b1、a2和b2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
7.根据权利要求1所述的方法,其中,根据表现在换挡期间所述待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定在通过完成所述待接合的离合器的接合将获得的所述待接合的档位中输出转矩的大小,其中,TOut为输出转矩的大小,Ton-coming是所述待接合的离合器中的转矩,T2m-g是由所述电动机-发电机供应至所述变速器的转矩的第二测量,Nidot为期望的变速器输入轴加速度,而c1、d1、c2和d2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
8.根据权利要求1所述的方法,其中,所述变速器换档是开机升挡。
9.根据权利要求8所述的方法,其中,通过中止经由所述电动机-发电机向所述变速器供应转矩或供应负转矩来实现调整来自所述电动机-发电机的转矩供应,并且通过经由所述发动机驱动所述电动机-发电机来实现调整来自所述发动机的转矩供应。
10.根据权利要求9所述的方法,还包括经由所述电动机-发电机再生所述发动机的惯性能量。
11.根据权利要求1所述的方法,其中,调整来自所述电动机-发电机的转矩供应减少所述换挡的持续时间。
12.一种方法,其用于控制在混合动力车辆中采用的多档可自动换挡的变速器中的停机降挡,并在所述降挡期间减小所述变速器中的输出转矩干扰,所述车辆具有能够被开启和关闭的发动机、和电动机-发电机,所述发动机和所述电动机-发电机各自以可操作的方式连接以便为驱动所述车辆向所述变速器供应转矩,所述方法包括:
经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的变速器停机降挡;
经由所述电动机-发电机再生所述机动车辆的制动能量;
确定与变速器输出速度对应的所述待接合档位中的期望变速器输入速度;
确定所述降挡期间输出转矩的大小的目标轨迹;
开始所述待接合的离合器的接合;
确定由所述待接合的离合器传递的转矩的大小;
由所述电动机-发电机向所述变速器施加转矩的第一测量;
继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;
确定由所述待分离的离合器传递的转矩大小是否低于预定的转矩阈值;
如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;
由所述电动机-发电机向所述变速器施加转矩的第二测量;
确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及
如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩的大小,充分地使得在所述停机降挡期间的输出转矩干扰最小化。
13.根据权利要求12所述的方法,还包括在所述降挡期间关闭所述发动机。
14.根据权利要求12所述的方法,其中,根据表现在换挡期间所述待分离的离合器的转矩传送阶段的特征的数学关系式Tout=a1*Toff-going+b1*T1m-g和Nifot=a2*Toffgoing+b2*T1m-g确定在通过继续所述待分离的离合器的分离将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Toff-going是所述待接合的离合器中的转矩,T1m-g是由所述电动机-发电机供应至所述变速器的转矩的第一测量,Nidot为期望的变速器输入轴加速度,而a1、b1、a2和b2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
15.根据权利要求12所述的方法,其中,根据表现在换挡期间所述待接合的离合器的惯性阶段的特征的数学关系式Tout=c1*Ton-coming+d1*T2m-g和Nidot=c2*Ton-coming+d2*T2m-g确定在通过完成所述待接合的离合器的接合将获得的所述待接合的档位中输出转矩的大小,其中,Tout为输出转矩的大小,Ton-coming是所述待接合的离合器中的转矩,T2m-g是由所述电动机-发电机供应至所述变速器的转矩的第二测量,Nidot为期望的变速器输入轴加速度,而c1、d1、c2、d2是由各档位状态下所述变速器的运动学特性和惯性特性所确定的常数。
16.一种方法,其用于控制在混合动力车辆中采用的多档可自动换挡的变速器中的开机升挡,并用于在所述升挡期间减小所述变速器中的输出转矩干扰,所述车辆具有发动机和电动机-发电机,所述发动机和所述电动机-发电机各自以可操作的方式连接,以便为驱动所述车辆向所述变速器供应转矩,所述方法包括:
经由待分离的离合器和待接合的离合器启动从待分离的档位到待接合的档位的变速器开机升挡;
确定与变速器输出速度对应的所述待接合档位中的期望变速器输入速度;
确定所述升挡期间输出转矩的大小的目标轨迹;
开始所述待接合的离合器的接合;
确定由所述待接合的离合器传递的转矩的大小;
调整从所述电动机-发电机到所述变速器的转矩供应;
调整从所述发动机到所述变速器的转矩供应;
继续所述待接合的离合器的接合,以在所述待接合的档位中获得所确定的输出转矩的大小;
确定由所述待分离的离合器传递的转矩大小是否低于预定的转矩阈值;
如果所述待分离的离合器的转矩低于所述预定的转矩阈值,则分离所述待分离的离合器;
确定所述待接合的离合器的转差速度是否低于预定的转差速度阈值;以及
如果所述待接合的离合器的转差速度低于所述预定的转差速度阈值,则完成所述待接合的离合器的接合,以在所述待接合的档位中获得所述期望的变速器输入速度和所确定的输出转矩大小,充分地使得在所述开机升挡期间的输出转矩干扰最小化。
17.根据权利要求16所述的方法,其中,通过中止经由所述电动机-发电机向所述变速器供应转矩或供应负转矩来实现调整来自所述电动机-发电机的转矩供应,并且通过经由所述发动机驱动所述电动机-发电机来实现调整来自所述发动机的转矩供应。
18.根据权利要求17所述的方法,还包括经由所述电动机-发电机再生所述发动机的惯性能量。
CN2010102395426A 2009-07-27 2010-07-27 混合动力车变速器中的电动机辅助的换挡控制 Active CN101966848B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/509781 2009-07-27
US12/509,781 2009-07-27
US12/509,781 US8298118B2 (en) 2009-07-27 2009-07-27 Motor-assist shift control in a hybrid vehicle transmission

Publications (2)

Publication Number Publication Date
CN101966848A CN101966848A (zh) 2011-02-09
CN101966848B true CN101966848B (zh) 2013-07-24

Family

ID=43497829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102395426A Active CN101966848B (zh) 2009-07-27 2010-07-27 混合动力车变速器中的电动机辅助的换挡控制

Country Status (3)

Country Link
US (1) US8298118B2 (zh)
CN (1) CN101966848B (zh)
DE (1) DE102010031905A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2534465C2 (ru) * 2010-06-15 2014-11-27 Хонда Мотор Ко., Лтд. Приводная система гибридного транспортного средства
DE102010061826A1 (de) * 2010-11-24 2012-05-24 Zf Friedrichshafen Ag Verfahren zur Beschleunigung der Entkopplung der die elektrische Maschine mit dem Getriebeeingang lösbar verbindenden Anfahrkupplung in einem Hybrid-Antriebsstrang eines Kraftfahrzeugs
US9493148B2 (en) * 2011-04-13 2016-11-15 Ford Global Technologies, Llc Torque modulation in a hybrid vehicle downshift during regenerative braking
WO2013125693A1 (ja) * 2012-02-24 2013-08-29 アイシン・エィ・ダブリュ株式会社 制御装置
DE102012208845A1 (de) 2012-05-25 2013-11-28 Robert Bosch Gmbh Fahrzeug mit Rekuperationssystem
US9481351B2 (en) 2012-07-02 2016-11-01 Ford Global Technologies, Llc Hybrid vehicle and associated engine start and stop control method
US8657045B2 (en) * 2012-07-02 2014-02-25 Ford Global Technologies, Llc Hybrid vehicle and associated engine speed control method
KR101786126B1 (ko) * 2012-10-26 2017-10-17 현대자동차주식회사 변속기 장착 ev차량의 모터토크 제어방법
US8795131B2 (en) * 2012-11-28 2014-08-05 Ford Global Technologies, Llc Method and apparatus for reducing torque during a transmission upshift for a hybrid vehicle
DE102012024213A1 (de) * 2012-12-11 2014-06-12 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Antriebsstrangs eines Kraftfahrzeuges
JP5994794B2 (ja) * 2013-01-08 2016-09-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5790672B2 (ja) * 2013-01-18 2015-10-07 トヨタ自動車株式会社 車両の変速制御装置
US9102312B2 (en) * 2013-06-07 2015-08-11 Caterpillar Inc. System for controlling a transmission
CN105757142B (zh) * 2013-08-26 2018-03-23 浙江吉利汽车研究院有限公司 一种用于车辆自动变速器的离合器接合的控制方法及装置
CN103498879B (zh) * 2013-08-26 2016-04-27 浙江吉利汽车研究院有限公司 一种用于车辆自动变速器的离合器接合的控制方法及装置
CN104842996B (zh) * 2014-06-18 2017-10-10 北汽福田汽车股份有限公司 一种混合动力汽车换挡方法及系统
US9533673B2 (en) * 2014-08-27 2017-01-03 Ford Global Technologies, Llc Methods and system for improving hybrid driveline operation
KR101628545B1 (ko) * 2014-11-27 2016-06-08 현대자동차주식회사 하이브리드 차량의 회생제동 제어방법
FR3029155B1 (fr) * 2014-12-02 2016-12-02 Renault Sa Procede de controle des changements etat d'une chaine cinematique
JP6156403B2 (ja) * 2015-02-13 2017-07-05 トヨタ自動車株式会社 車両の駆動装置
US9944269B2 (en) * 2015-04-14 2018-04-17 Ford Global Technologies, Llc Input torque trim for transmission shift control during regenerative braking
JP6384464B2 (ja) 2015-12-14 2018-09-05 トヨタ自動車株式会社 動力伝達装置の制御装置
US9783188B2 (en) * 2016-01-13 2017-10-10 Ford Global Technologies, Llc EV mode shift strategy for hybrid vehicle
KR101822285B1 (ko) * 2016-06-13 2018-01-26 현대자동차주식회사 하이브리드 차량용 변속 제어방법
KR101756026B1 (ko) * 2016-06-16 2017-07-10 현대자동차주식회사 하이브리드 차량용 변속 제어방법
GB201701312D0 (en) * 2017-01-26 2017-03-15 Jaguar Land Rover Ltd A method for reducing vehicle fuel consumption during coasting
US20180274463A1 (en) * 2017-03-21 2018-09-27 Cummins Inc. Fast torque control with electric accessories
US9989146B1 (en) * 2017-04-05 2018-06-05 GM Global Technology Operations LLC Adaptive clutch slip learning for critical capacity clutch fusing in a continuously variable transmission
CN107166024B (zh) * 2017-07-03 2018-11-06 合肥工业大学 一种大马力拖拉机恒扭矩动力的降挡控制方法
CN107152524B (zh) * 2017-07-03 2019-01-11 合肥工业大学 一种大马力拖拉机恒扭矩动力的升挡控制方法
WO2020142914A1 (zh) * 2019-01-09 2020-07-16 舍弗勒技术股份两合公司 滑行降挡控制方法和控制系统
DE102019103689A1 (de) * 2019-02-14 2020-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Hybridelektrokraftfahrzeugs, Steuereinrichtung sowie Hybridelektrokraftfahrzeug
GB2582551B (en) * 2019-03-19 2021-10-06 Jaguar Land Rover Ltd A control module for a vehicle powertrain
CN111071236B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 一种混合动力等时长换挡控制方法
CN111071239B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 一种混动系统无缝升挡控制方法
CN111071240B (zh) * 2019-12-29 2021-08-03 吉泰车辆技术(苏州)有限公司 混动系统中无缝升挡控制方法
DE102020200138A1 (de) * 2020-01-08 2021-07-08 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Hybrid-Antriebsstranges eines Fahrzeugs, insbesondere eines Kraftfahrzeuges
CN111106782B (zh) * 2020-01-20 2022-06-03 河北兴邦电力器材有限公司 超高转差率电动机控制设备
CN111193455A (zh) * 2020-01-20 2020-05-22 河北兴邦电力器材有限公司 超高转差率电动机控制方法、装置、存储介质和电子设备
CN111795139B (zh) * 2020-06-15 2022-07-15 北京汽车股份有限公司 混合动力变速箱的换挡控制方法、装置、车辆和电子设备
US11225242B1 (en) * 2020-09-29 2022-01-18 Ford Global Technologies, Llc Hybrid vehicle control with rate-limited energy management torque

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833570A (en) * 1996-05-28 1998-11-10 Toyota Jidosha Kabushiki Kaisha Vehicle transmission shift control apparatus wherein torque of motor connected to automatic transmission is controlled to reduce shifting shock of transmission
US6465977B1 (en) * 2001-11-29 2002-10-15 Ecostar Electric Drive Systems L.L.C. System and method for controlling torque in an electrical machine
CN1771144A (zh) * 2004-03-24 2006-05-10 丰田自动车株式会社 混合动力车辆的驱动装置的控制装置和控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459663U (en) * 2000-10-13 2001-10-11 Nat Science Council Hybrid electric system
JP3858898B2 (ja) * 2004-02-13 2006-12-20 日産自動車株式会社 ハイブリッド変速機のモード切り替え制御装置
WO2007073711A1 (de) * 2005-12-24 2007-07-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftfahrzeugantriebsstrang und verfahren zur reduzierung von rupfschwingungen in einem solchen
US8414449B2 (en) * 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
JP2009261178A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 車両用駆動装置の制御装置
US8224513B2 (en) * 2008-06-27 2012-07-17 Ford Global Technologies, Llc Torque modulation control of a hybrid electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833570A (en) * 1996-05-28 1998-11-10 Toyota Jidosha Kabushiki Kaisha Vehicle transmission shift control apparatus wherein torque of motor connected to automatic transmission is controlled to reduce shifting shock of transmission
US6465977B1 (en) * 2001-11-29 2002-10-15 Ecostar Electric Drive Systems L.L.C. System and method for controlling torque in an electrical machine
CN1771144A (zh) * 2004-03-24 2006-05-10 丰田自动车株式会社 混合动力车辆的驱动装置的控制装置和控制方法

Also Published As

Publication number Publication date
DE102010031905A1 (de) 2011-04-07
US8298118B2 (en) 2012-10-30
US20110021311A1 (en) 2011-01-27
CN101966848A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
CN101966848B (zh) 混合动力车变速器中的电动机辅助的换挡控制
JP4529940B2 (ja) ハイブリッド車両の伝動状態切り替え制御装置
US7150698B2 (en) Power transmission apparatus for automobile
US9738271B2 (en) Hybrid electric vehicle and method for controlling a powertrain therein
US7954581B2 (en) Drive state shift control apparatus and method for vehicle
US8002059B2 (en) Controlling device and method for hybrid vehicle
CN105121244B (zh) 混合动力车辆的控制装置
CN103562033B (zh) 控制装置
CN103386965B (zh) 在驾驶员踩下踏板/松开踏板期间控制传动系齿隙的方法
US10046642B2 (en) Control method of dual clutch transmission for hybrid electric vehicle and control system for the same
CN101612936B (zh) 混合动力电动车辆中变速器的输出扭矩调节控制
CN105398450B (zh) 车辆的控制装置
CN101898549B (zh) 混合动力电动动力系
CN101031460B (zh) 混合动力车用驱动装置及其控制方法
CN101959731A (zh) 用于控制混合动力车辆的控制设备和方法
EP2940348B1 (en) Eletric vehicle gearshift control method and device
DE102008002677A1 (de) System und Verfahren zum Steuern eines Kupllungseingriffs bei einem Hybridfahrzeug
CN103282254B (zh) 电动车辆的控制设备
US9944269B2 (en) Input torque trim for transmission shift control during regenerative braking
CN101765530A (zh) 在并联式混合动力车辆中按负载换挡期间起动内燃机的方法
CN104364546B (zh) 车辆的控制装置
CN106256626A (zh) 车辆控制装置
DE112010001090B4 (de) Steuerungsvorrichtung für leistungsübertragungsvorrichtung
CN104471269A (zh) 车辆的控制装置
CN102192312B (zh) 车辆驱动系统的控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant