CN101903807B - 隐形眼镜的制造方法 - Google Patents

隐形眼镜的制造方法 Download PDF

Info

Publication number
CN101903807B
CN101903807B CN2008801218073A CN200880121807A CN101903807B CN 101903807 B CN101903807 B CN 101903807B CN 2008801218073 A CN2008801218073 A CN 2008801218073A CN 200880121807 A CN200880121807 A CN 200880121807A CN 101903807 B CN101903807 B CN 101903807B
Authority
CN
China
Prior art keywords
mould
pegization
phosphatidyl
ethanolamine
contact lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008801218073A
Other languages
English (en)
Other versions
CN101903807A (zh
Inventor
J·D·普鲁伊特
L·C·温特顿
B·赛费尔林
J·沃格特
H·博特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcon Inc
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis AG filed Critical Novartis AG
Publication of CN101903807A publication Critical patent/CN101903807A/zh
Application granted granted Critical
Publication of CN101903807B publication Critical patent/CN101903807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Eyeglasses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及制备具有改进的镜片质量和改进产率的隐形眼镜的制造方法和流体组合物。本发明的方法包括,将磷脂加入含有镜片-成形材料的流体组合物中,相比于不使用磷脂的情况,所述磷脂以足够降低平均模具分离力至少大约40%的量存在。

Description

隐形眼镜的制造方法
本发明涉及制造隐形眼镜的方法。特别地,本发明涉及在隐形眼镜的铸塑成型工艺中,利用磷脂(phospholipid)作为脱模剂来促进模具分离以及由模具上移出的镜片、因而加强生产的隐形眼镜的质量和产率的方法。
背景技术
隐形眼镜能够以大规模生产的方式来进行经济地制备,其通过包括可抛弃模具的常规铸塑成型工艺(例如,PCT公开专利申请No.WO/87/04390、EP-A 0367513、U.S.专利No.5,894,002,其全部在此全部引入作为参考)或通过改善的铸塑成型工艺,其包括可重复使用的模具和在空间限制的光化辐射下进行的固化(U.S.专利No.5,508,317、5,583,163、5,789,464和5,849,810)。利用模具的镜片生产中一个关键步骤是开模和在不破坏镜片的情况下镜片从模具上的脱出。在隐形眼镜成型工艺完成后,聚合的镜片倾向于牢固地粘附在模具上。在开模以及从模具上脱出隐形眼镜的过程中,镜片中会出现裂纹、裂缝和/或撕裂或者在最坏的情况下,隐形眼镜甚至会完全破裂。具有这样缺陷的镜片必须丢弃,这样就降低了总体的生产率。
已经开发或提出了几种方法。一种脱出镜片的方法是水合镜片,即,模具分离后,模具组件中的镜片被置于装有水的水合罐中。通常,单独的水合作用不能将镜片从模具上脱出。镜片随后必须通过手来温和地从模具上脱出。这样手工辅助的镜片脱出增加了镜片损毁的可能性。US 5,264,161公开了从模具上脱出镜片的一种改进方法,其中将表面活性剂加入到水合浴中来促进镜片从模具上脱出。然而,在水合浴中使用表面活性剂并没有提供更容易的模具分离。通过水合镜片可能不会使在模具分离过程中发生的镜片损坏减到最小。
镜片脱出的另一个方法是如U.S.专利No.4,159,292所述的,将表面活性剂引入模具自身中作为内部脱模剂。向模具中引入内部脱模剂能够减少镜片和模具之间的粘附。然而,当模具被重复使用时,作为内部脱模剂的表面活性剂会因为渗出而耗尽。
镜片脱出的另一方法是以膜或涂层的形式在模具的成型表面(moldingsurface)上应用外部脱模剂(例如,表面活性剂)(例如,在U.S.专利No.4,929,707和5,542,978中公开的那些)。当使用了外部脱模剂时,一部分用来处理模具的成型表面的试剂会迁移到聚合的镜片的表面和内部。
镜片脱出的另一个方法是将内部脱模剂结合进入用于制备隐形眼镜的镜片形成组合物中。内部脱模剂可以是表面活性剂(U.S.专利No.4,534,916、4,929,707、4,946,923、5,013,496、5,021,503、5,126,388、5,594,088、5,753,730)或非可聚合聚合物(U.S.专利No.6,849,210)。通过将内部脱模剂结合进入镜片形成组合物(或镜片配方物)中,模具和镜片之间的粘附力可以被减少,可需要相对较小的力就能分离模具,并且花费较少的努力就能使镜片从模具脱离。一部分内部脱模剂需要迁移到聚合的镜片的表面以有效减少模具和镜片之间的粘附力。已经努力开发了具有高精度、保真度和再现性以及低成本的水凝胶隐形眼镜的铸塑成型技术。一种此类的制造技术为所谓的Lightstream TechnologyTM(CIBA Vision),其包括基本不含单体的且包含具有烯属不饱和基团的充分纯化的预聚物的镜片形成组合物,可再次使用的模具,和在光化辐射(例如UV)的空间限制下固化,如美国专利号5,508,317、5,583,463、5,789,464和5,849,810中记载。
然而,存在阻碍硅酮水凝胶隐形眼镜的生产中这种技术的所有重大潜力的实现的某些实际限制。例如,当在本申请人拥有的美国专利号7,091,283、7,268,189和7,238,750中公开的含硅酮预聚物用来制备硅酮水凝胶镜片配方物时,通常需要有机溶剂溶解预聚物。当这种镜片配方物根据Lightstream TechnologyTM用来生产硅酮水凝胶时,UV交联后模具中固化的镜片在溶剂交换为水前仍然溶胀在有机溶剂中。这种镜片不能经受得住开模和脱模工艺,因为固化镜片为在有机溶剂中的溶胀态并且具有不足的硬度和韧性(例如太低)。因而,产率可能很低且由于衍生自开模和脱模工艺中产生的镜片缺陷的低产率而生产成本可能更高。然而,在从含硅酮预聚物制备隐形眼镜的过程中,传统的脱模剂对减少在开模和脱模工艺中产生的镜片缺陷不是行之有效的。在模具分离期间产生的缺陷在用含硅酮预聚物根据Lightstream TechnologyTM向隐形眼镜的制造中会是一个大问题。
因此,需要一种使用新的脱模剂来成型隐形眼镜的方法。还需要一种使用新的脱模剂来成型硅酮水凝胶隐形眼镜的方法。还需要一种具有提高的质量和提高的产率的铸塑成型隐形眼镜的方法,其是由通过使用用于Lightstream TechnologyTM工艺成型含硅酮预聚物隐形眼镜新的脱模剂降低模具分离力和镜片-模具粘附力来达到的。
发明概述
在一方面,本发明提供了一种具有相对较高质量和具有相对较高产率的隐形眼镜的制造方法。该方法包括以下步骤:(1)将流体组合物引入用于制造隐形眼镜的模具中,其中该流体组合物包含镜片形成材料和磷脂,其中该镜片形成材料是可通过光化辐射来交联和/或聚合的;(2)对模具中的镜片形成材料进行交联/聚合来形成具有聚合物基体的镜片;以及(3)分离模具,与不含磷脂相比,其中磷脂以足够降低平均模具分离力至少大约40%的量存在。
在另一方面,本发明提供了一种具有相对较高质量和具有相对较高产率的隐形眼镜的生产方法。该方法包括以下步骤:(1)提供隐形眼镜模具,(2)在模具的至少一部分成型表面上施涂磷脂溶液的层,(3)至少部分地干燥所述层,(4)将流体组合物引入用于制造隐形眼镜的模具,其中流体组合物包含镜片形成材料,其中镜片形成材料可通过光化辐射来进行交联和/或聚合;(5)在模具中对镜片形成材料进行交联/聚合来形成具有聚合物基体的镜片;以及(6)分离该模具,相对于不含磷脂或其衍生物的情况,磷脂在溶液中以足够降低平均模具分离力至少大约40%的量存在。
优选实施方案的详细说明
现在将对本发明的实施方案进行详细描述。对本领域技术人员而言,显而易见的是,在不脱离本发明范围或精神的情况下可对本发明作出各种修改和变化。例如,作为一个实施方案一部分而说明或描述的特征可用于另外一个实施方案以产生另外的实施方案。因此,本发明旨在涵盖落入所附权利要求及其同等方式的这些改进和变化。本发明的其它目的、特征和方面在下面的详细说明中得到公开或从下面的详细说明中是显而易见的。对本领域普通技术人员而言,可以理解本发明的论述仅是示例性实施方案的描述,而不旨在限制本发明的更宽方面。
除非另外定义,此处使用的所有的技术和科学术语具有与本发明所属领域的普通技术人员通常所理解的含义。通常,本文使用的术语和实验程序为本领域技术人员所熟知并且是本领域中通常采用的。传统方法用于这些程序,例如本领域和各种一般参考文献中提供的那些。以单数提供术语时,发明人还考虑那些术语的复数。本文使用的术语和下述实验程序为本领域众所周知和通常采用的那些。单数形式的“一”和“该”包括了复数方面,除非文中清楚地作出了其它指示。因此,例如,磷脂的表述包括单一磷脂,以及两种或更多磷脂。此处所用的命名法以及如下所述的实验方法是公知的并且是在本领域中常用的那些。如贯穿在本公开文本中使用的,下列术语,除非另有说明,应被理解为具有以下含义。
本文中所用的“眼科设备”是指隐形眼镜(硬性或软性)、眼内镜片、角膜覆盖物、用在眼睛上或附近或眼睛周围的其它眼科设备(例如支架(stent)、青光眼分流器等)。
“隐形眼镜”是指可放置在佩带者的眼睛上或内部的结构。隐形眼镜能够矫正、改善或改变使用者的视力,但并非必须如此。隐形眼镜可为本领域已知的或未来开发的任何合适的材料的,且可为软性镜片、硬性镜片、或混合镜片。“硅酮水凝胶隐形眼镜”是指包含硅酮水凝胶材料的隐形眼镜。
本文中所用的隐形眼镜的“正或前面”是指佩戴过程中其面远离眼睛的镜片表面。通常基本上为凸起的前面还可称为镜片的前部曲线。
本文中所用的隐形眼镜的“背或后面”是指佩戴过程中其面朝向眼睛的镜片表面。通常基本上为凹入的后面还可称为镜片的基础曲线(basecurve)。
“水凝胶”或“水凝胶材料”是指当它完全水合时可吸收至少10重量%水的聚合物材料。
“硅酮水凝胶”是指通过可聚合组合物的共聚而得到的含硅酮水凝胶,所述组合物包含至少一种含硅酮单体或至少一种含硅酮大单体或至少一种可交联的含硅酮预聚物。
本文中所用的“亲水性”描述了比脂类更容易与水缔合的材料或其一部分。
“单体”是指可聚合的低分子量化合物并且包含一种或多种可光化交联的基团。低分子量通常是指平均分子量低于700道尔顿。
“可光化交联的基团”是指在光化辐射下可与同类型或不同类型的另一基团反应形成共价键的基团。可光化交联的基团的实例包括但不限于丙烯酰基、硫醇基和含烯基团。丙烯酰基可在光化辐射下进行自由基链式反应。硫醇基(SH)和含烯基团可参与如2006年12月13日递交的本申请人拥有的待审美国专利申请号60/869,812(标题为“PRODUCTION OFOPHTHALMIC DEVICES BASED ON PHOTO-INDUCED STEPGROWTH POLYMERIZATION”,其全部内容引入本文供参考)中记载的硫醇-烯逐步自由基聚合。
“丙烯酰基”为具有式
Figure BPA00001160541400051
Figure BPA00001160541400052
的有机基,条件为羰基连接O或N。
“含烯基团”为包含不直接连接羰基(-CO-)、氮原子或氧原子的碳-碳双键的单价或二价基团并且定义为式(I)-(III)中任一式
Figure BPA00001160541400062
Figure BPA00001160541400063
其中R1为氢、或C1-C10烷基;R2和R3彼此独立为氢、C1-C10烯烃二价基、C1-C10烷基或-(R18)a-(X1)b-R19,其中R18为C1-C10烯烃二价基、X1为醚键(-O-)、氨基甲酸酯键(-N)、脲键、酯键、酰胺键、或羰基,R19为氢、单键、氨基、羧基、羟基、羰基、C1-C12氨基烷基、C1-C18烷基氨基烷基、C1-C18羧基烷基、C1-C18羟烷基、C1-C18烷基烷氧基、C1-C12氨基烷氧基、C1-C18烷基氨基烷氧基、C1-C18羧基烷氧基、或C1-C18羟基烷氧基,a和b彼此独立为0或1,条件是R2和R3中仅一个为二价基团;R4-R9彼此独立为氢、C1-C10烯烃二价基、C1-C10烷基或-(R18)a-(X1)b-R19,条件是R4-R9中仅一个或两个为二价基;n和m彼此独立为0-9的整数,条件是n和m的总和为2-9的整数;R10-R17彼此独立为氢、C1-C10烯烃二价基、C1-C10烷基、或-(R18)a-(X1)b-R19,条件是R10-R17中仅一个或两个为二价基;
本文中所用的“乙烯基单体”是指具有烯属不饱和基团并且可光化聚合或热聚合的单体。
术语“烯属不饱和基团”或“烯键式不饱和基团”在本文中取其最宽泛的含义,并且包括任何含>C=C<基团的基团。示例性的烯键式不饱和基团包括但不限于丙烯酰基、甲基丙烯酰基、烯丙基、乙烯基、苯乙烯基、或其它含C=C基团。
本文中所用的关于可聚合组合物、预聚物或材料的固化、交联或聚合的“光化”是指通过光化辐射,例如UV照射、离子辐射(例如γ射线或X-射线辐照)、微波照射等来实现的固化(例如交联和/或聚合)。热固化或光固化法对于本领域技术人员来说是众所周知的。
“亲水性单体”是指可聚合形成水溶性或可吸收至少10重量%水的聚合物的单体。
本文中所用的“疏水性单体”是指可聚合形成不溶于水并且可吸收少于10重量%水的聚合物的单体。
“大单体”是指可聚合和/或交联的并且含有一个或多个光化可交联基团的中等和高分子量化合物。中等或高分子量通常是指平均分子量大于700道尔顿。
“预聚物”是指包含光化可交联基团并且可被光化固化(如交联)以获得分子量远远高于起始聚合物的交联聚合物的起始聚合物。
“含硅酮预聚物”是指包含硅酮并且可光化交联以获得分子量远远高于起始聚合物的交联聚合物的预聚物。
除非另外特别注明或除非试验条件另外显示,本文中所用的聚合物材料(包括单体或大单体材料)的“分子量”是指数均分子量。
“聚合物”是指由一种或多种单体聚合形成的材料。
本文中所用的术语“多”是指3或更多。
“光引发剂”是指通过利用光引发自由基交联/聚合反应的化学品。合适的光引发剂包括但不限于苯偶姻甲基醚、二乙氧基苯乙酮、氧化苯甲酰基膦、1-羟基环己基苯基酮、
Figure BPA00001160541400071
型和
Figure BPA00001160541400072
型,优选
Figure BPA00001160541400073
1173和
Figure BPA00001160541400074
2959。
“热引发剂”是指通过利用热能引发自由基交联/聚合反应的化学品。合适的热引发剂的实例包括但不限于,2,2’-偶氮二(2,4-二甲基戊腈)、2,2’-偶氮二(2-甲基丙腈)、2,2’-偶氮二(2-甲基丁腈),过氧化物如过氧化苯甲酰等。优选热引发剂为2,2’-偶氮二异丁腈(AIBN)。
“光化辐射的空间限制”是指射线形式的能量辐射直接通过如掩膜或屏蔽或其组合的手段以空间限制的方式撞击到具有界限分明的外围边界的区域上的行为或过程。例如,UV照射的空间限制可通过使用具有被UV不可穿透区域(掩蔽区域)围绕的透明或开放区域(未掩蔽区域)的掩膜或屏蔽来实现,例如美国专利号US 6,627,124(全部内容引入本文供参考)的图1-9中所示意性列举。未掩蔽区域与掩蔽区域具有界限分明的外围边界。
关于镜片的“可见性着色”是指镜片的染色(或着色)以能使使用者容易在镜片存储器、消毒或清洁容器内的透明溶液中找到镜片。本领域众所周知的是,染料和/或颜料可用于可见性着色镜片。
“染料”是指可溶于溶剂并赋予颜色的物质。染料通常为半透明的,并且吸收但不散射光。任何合适的生物相容性染料可用于本发明。
“颜料”是指悬浮在液体中的粉状物质,它不溶于液体。颜料可为荧光颜料、磷光颜料、珠光颜料或常规颜料。尽管可采用任何合适的颜料,目前优选颜料为耐热、无毒并且不溶于水性溶液中的。
本文中所用的术语“流体”表示材料能够类似于液体地流动。
本文中所用的“表面改性”是指制品在制品形成之前或之后已经在表面处理工艺(或表面改性工艺)中处理过,其中(1)将涂层施用于制品表面,(2)使化学物质吸附到制品表面上,(3)改变制品表面上化学基团的化学性质(例如静电荷),或(4)另外改性制品的表面性质。示例性的表面处理工艺包括但不限于通过能量(例如等离子体、静电荷、辐射或其它能源)的表面处理、化学处理、在制品表面上接枝亲水性单体或大单体,美国专利号6,719,929(全部内容引入本文供参考)中公开的模转移涂布工艺、美国专利号6,367,929和6,822,016(其全部内容引入本文供参考)提出的将润湿剂引入镜片配方物中用于制备隐形眼镜、美国专利申请号60/811,949(全部内容引入本文供参考)中公开的增强型模转移涂布、和根据美国专利系列号6,451,871、6,719,929、6,793,973、6,811,805、6,896,926(其全部内容引入本文供参考)中记载的方法获得的逐层涂层(“LbL涂层”)。
本文中所用的“抗微生物剂”是指能够降低或消除或抑制微生物生长的化学品,例如本领域中公知的术语。
“抗微生物金属纳米粒子”是指主要由抗微生物金属制备并且粒度小于1微米的颗粒。抗微生物金属在抗微生物金属纳米粒子中可以一种或多种其氧化态存在。例如,含银纳米粒子可包含以一种或多种其氧化态的银,例如Ag0、Ag1+和Ag2+
本文中所用的镜片的“氧传递率”为氧通过特定镜片的速率。氧传递率,Dk/t,通常以barrer/mm为单位表示,其中t为被测量区域之中材料的平均厚度[单位为mm]且“barrer/mm”定义为:
[(cm3氧)/(cm2)(sec)(mm2Hg)]×10-9
镜片材料的本征“氧渗透率”Dk,不取决于镜片厚度。本征氧渗透率为氧通过材料的速率。氧渗透率通常以barrer为单位表示,其中“barrer”定义为:
[(cm3氧)(mm)/(cm2)(sec)(mm2Hg)]×10-10
这些为本领域中常用的单位。因此,为了与本领域中使用一致,单位“barrer”将具有如上定义的含义。例如,Dk为90barrer(“氧渗透率barrer”)和厚度为90微米(0.090mm)的镜片将具有100barrer/mm
Figure BPA00001160541400091
的Dk/t(氧传递率barrer/mm)。根据本发明,关于材料或隐形眼镜的高氧渗透率的特征在于,根据实施例中记载的库仑计法采用厚度100微米的样品(膜或镜片)测量的表观氧渗透率为至少40barrer或更大。
通过镜片的“离子渗透率”与Ionoflux扩散系数和Ionoton离子渗透系数二者相关。
Ionoflux扩散系数D通过运用Fick定律测量如下:
D=-n’/(Axdc/dx)
其中,n’=离子传递速率[mol/min]
A=暴露的镜片面积[mm2]
D=Ionoflux扩散系数[mm2/min]
dc=浓度差[mol/L]
dx=镜片厚度[mm]
然后根据以下等式测定Ionoton离子渗透率系数P:
ln(1-2C(t)/C(0))=-2APt/Vd
其中,C(t)=时间t时钠离子在接收池中的浓度
C(0)=钠离子在供给池中的起始浓度
A=膜面积,即暴露于池的镜片面积
V=池空间的容积(3.0ml)
d=暴露面积中的平均镜片厚度
P=渗透系数
优选Ionoflux扩散系数D为大于约1.5×10-6mm2/min,同时更优选大于约2.6×10-6mm2/min且最优选大于约6.4×10-6mm2/min。
众所周知,需要镜片的眼镜上运动以确保良好眼泪交换,且最终确保良好角膜健康。离子渗透率是眼镜上运动的一种预测方式,因为认为离子的渗透性与水的渗透率成正比。
本文使用的术语“模具分离力”是指在模具中成型隐形眼镜后分离模具所需的力。模具分离力与模具和在其中铸塑成型的镜片之间的粘附力是成比例的。
“平均模具分离力”是指将至少10个模具分离力的独立测量值(例如,10个测试样品)取平均获得的值。
一般而言,本发明涉及用以降低模具(或半模)与在模具中铸塑成型的隐形眼镜之间的粘附力的方法。本发明方法依靠的是在镜片形成配方物(组合物)中作为内部脱模剂的磷脂。本发明方法还依靠的是将磷脂溶液涂覆在模具表面的作为外部脱模剂的磷脂。相比于不含磷脂的情况,本发明的磷脂被选择以便降低平均模具分离力至少40%。
本发明部分地基于这样的发现,即,磷脂,诸如,例如胆碱磷脂或PEG化(PEG-ylated)磷脂酰乙醇胺,能够在包括含预聚物的光化可交联硅酮作为镜片形成材料的镜片形成组合物中用作有效的脱模剂。
本发明还基于这样的发现,即,当可重复使用的模具被用于制造镜片时,磷脂,诸如,例如胆碱磷脂或PEG化磷脂酰乙醇胺,能够在包括含预聚物的光化可交联硅酮作为镜片形成材料的镜片形成组合物中用作有效的脱模剂,其中可重复使用的模具是由诸如玻璃、PMMA、石英、
Figure BPA00001160541400111
或CaF2这些材料制造的。降低硅酮水凝胶隐形眼镜与可重复使用模具的粘附力的优势增强了质量并且提高了生产率。本发明还基于这样的发现,即,磷脂,诸如,例如胆碱磷脂或PEG化磷脂酰乙醇胺,不仅仅能够降低模具分离力,还能够使硅酮水凝胶隐形眼镜的表面变得更加亲水性,例如,使它们变成水可润湿的。水或水基液体的充分地润湿对硅酮水凝胶隐形眼镜的利用而言经常是一个先决条件。为了使隐形眼镜变得亲水性,另外的工艺步骤通常是必需的。通过使用胆碱磷脂和/或PEG化磷脂酰乙醇胺,这样另外的工艺步骤能够被减少或者去除。
尽管发明者不希望被任何特定理论所束缚,相信由通过使用脱模剂的模具分离力的降低是由于磷脂能够通过包括含有具有亲水性片段的预聚物的可光化交联的硅酮的镜片形成组合物迁移到模具与在模具中的镜片形成组合物之间界面。不同于常规的脱模剂,磷脂能够在模具表面形成单层或双层。这种差异可能是由于磷脂的独特的结构以及物理和化学性能。
在一个方面,本发明提供了一种具有相对较高质量和具有相对较高产率的隐形眼镜的制造方法。该方法包括以下步骤:(1)将流体组合物引入用于制造隐形眼镜的模具中,其中该流体组合物包含镜片形成材料和磷脂,其中该镜片形成材料可通过光化辐射来进行交联和/或聚合;(2)对模具中的镜片形成材料进行交联/聚合来形成具有聚合物基体的镜片;以及(3)分离模具,与不含磷脂相比,其中磷脂以足够降低平均模具分离力至少大约40%的量存在。
在另一方面,本发明提供了一种具有相对较高质量和具有相对较高产率的隐形眼镜的生产方法。该方法包括以下步骤:(1)提供隐形眼镜模具,(2)在模具的至少一部分成型表面上施涂磷脂溶液的层,(3)至少部分地干燥所述层,(4)将流体组合物引入用于制造隐形眼镜的模具,其中流体组合物包含镜片形成材料,其中镜片形成材料可通过光化辐射来进行交联和/或聚合;(5)在模具中对镜片形成材料进行交联/聚合来形成具有聚合物基体的镜片;以及(6)分离该模具,相对于不含磷脂的情况,磷脂或其衍生物在溶液中以足够降低平均模具分离力至少大约40%的量存在。
根据本发明,增加的生产产率指的是,隐形眼镜的产率通过在镜片形成组合物中添加脱模剂而提高。“提高的镜片质量”指的是,与不使用脱模剂相比,生产的隐形眼镜的质量在镜片形成组合物中存在脱模剂的情况下提高。
在一个优选实施方案中,磷脂是以足够减少模具分离力的不均衡性的量来存在的。
根据本发明,流体组合物是溶液或无溶剂液体或在低于约80℃的温度下的熔体。流体组合物能够任选地进一步包括各种组分,诸如,光引发剂、可见性着色剂、填料,等等。本发明的流体组合物进一步地包括其它组分,诸如光引发剂、可见性着色剂、填料、抗微生物剂、润滑剂、UV阻挡剂、光敏剂或它们的混合物。
本发明可使用任何的镜片形成材料。适合于隐形眼镜制造的镜片形成材料通过很多公开的US专利来进行说明并且其对本领域技术人员而言是熟知的。优选的镜片形成材料能够形成水凝胶。镜片形成材料可以是预聚物、预聚物的混合物、单体的混合物或一种或多种预聚物和一种或多种单体和/或大分子单体的混合物。应该清楚的是任何含硅酮预聚物或任何无硅酮预聚物都可被用于本发明。
镜片形成材料的溶液可以通过在任何本领域技术人员已知的合适溶剂中溶解镜片形成材料来形成。合适的溶剂的实例有水、醇,诸如较低级的烷醇(例如,乙醇、甲醇或异丙醇)、羧酸酰胺(例如,二甲基甲酰胺)、偶极无质子溶剂,诸如二甲基亚砜或甲基乙基酮、酮(例如,丙酮或环己酮)、烃(例如,甲苯、醚、THF、二甲氧基乙烷或二噁烷),以及卤代烃(例如,三氯乙烷),和合适的溶剂的混合物(例如,水和醇的混合物、水/乙醇或水/甲醇混合物)。
用于制备隐形眼镜的可聚合材料(或形成硅酮水凝胶镜片的材料)对本领域技术人员是众所周知的。可聚合材料可包含至少一种含硅预聚物、单体、大单体或其混合物。根据本发明,可聚合材料包含至少一种含硅酮预聚物。硅酮预聚物包含光化可交联基团,优选至少3个选自丙烯酰基、硫醇基、含烯基团及其组合组成的组的光化可交联基团。
当本发明预聚物的交联基于自由基链增长聚合的机理时,该预聚物包含至少2个丙烯酰基,优选至少3个丙烯酰基。
当本发明预聚物的交联基于硫醇-烯逐步自由基聚合的机理时,预聚物的光化可交联的基团优选包含至少3个硫醇基或至少3个含烯基团。
当预聚物包含多个含烯基团时,这些基团在可由具有两个或更多个硫醇基团的逐步交联剂提供的硫醇基的存在下进行硫醇-烯逐步自由基聚合。类似地,当预聚物含多个硫醇基时,这些基团在可由具有两个或更多个含烯基团的逐步交联剂提供的含烯基团的存在下进行硫醇-烯逐步自由基聚合。
任何合适的可光化交联的含硅酮预聚物可用于本发明。优选地,含硅酮预聚物包括亲水性链段和疏水性链段。含硅酮预聚物的实例为在以下专利中记载的那些:本申请人拥有的美国专利号6,039,913、7,091,283、7,268,189和7,238,750,和2000年3月14日递交的美国专利申请号09/525,158(标题为“Organic Compound”)、11/825,961、2006年12月13日递交的60/869,812(标题为“Production of Ophthalmic Devices Based onPhoto-Induced Step Growth Polymerization”)、2006年12月13日递交的60/869,817(标题为“Actinically Curable Silicone Hydrogel Copolymers andUses thereof”)、2007年3月22日递交的60/896,325(“Prepolymers withDangling Polysiloxane-Containing Polymer Chains”)、2007年3月22日递交的60/896,326(“Silicone-Containing Prepolymers  with DanglingHydrophilic Polymeric Chains”),US 2008/0015315(“Novel Polymer”)和US 2008/0152800(“Process for the Coating of Biomedical Articles”),其全部内容引入本文供参考。
本发明的含硅酮预聚物能够,优选在没有任何亲水性乙烯基单体的情况下,形成硅酮水凝胶或隐形眼镜,其具有高氧渗透率(特征为表观氧渗透率为至少40barrer,优选至少约60barrer,甚至更优选至少80barrer)和亲水性表面(特征为平均水接触角为低于约90度或更小,优选约80度或更小,更优选约70度或更小,甚至更优选约60度或更小)。硅酮水凝胶材料或隐形眼镜优选具有高离子渗透率(特征为Ionoflux扩散系数D为大于约1.5×10-6mm2/min,优选大于约2.6×10-6mm2/min,更优选大于约6.4×10-6mm2/min)。硅酮水凝胶材料或隐形眼镜的弹性模量优选为约0.2MPa-约2.0MPa,优选约0.3MPa-约1.5MPa,更优选约0.4MPa-约1.2MPa。当完全水合时,硅酮水凝胶材料或隐形眼镜的含水量优选为约15重量%-约80重量%,更优选约20重量%-约65重量%。可根据如US5,849,811中公开的Bulk Technique测量硅酮水凝胶隐形眼镜的含水量。
优选本发明中使用的预聚物以任意已知方法预先纯化,例如通过用有机溶剂如丙酮沉淀、过滤和洗涤、在合适的溶剂中萃取、渗析或超滤,特别优选超滤。通过该纯化方法,可以极纯形式获得预聚物,例如以无或至少基本上无反应产物如盐和起始原料的浓溶液形式。在本发明方法中所用预聚物的优选纯化方法,超滤法,可以本领域技术人员已知的方法进行。超滤可以重复进行,例如2次到10次。另外,超滤可连续进行,直到获得选定的纯度为止。选定的纯度原则上可为任意高。例如合适的对纯度的测量标准为作为副产物获得的溶解盐类的浓度,其可简单地以已知的方法确定。因此,聚合后,设备不需要后续的提纯如未聚合的基质形成原料的昂贵和复杂的抽提。此外,预聚物交联可无溶剂或在水溶液中进行以使得不需要后续的溶剂交换或水合步骤。
适合于制备隐形眼镜的任何单体可用于本发明。优选地,乙烯基单体用于本发明。
含硅酮乙烯基单体单体的实例包括但不限于甲基丙烯酰氧基烷基硅氧烷、3-甲基丙烯酰氧基丙基五甲基二硅氧烷、双(甲基丙烯酰氧基丙基)四甲基-二硅氧烷、单甲基丙烯酸酯化聚二甲基硅氧烷、巯基封端聚二甲基硅氧烷、N-[三(三甲基硅烷氧基)甲硅烷基丙基]丙烯酰胺、N-[三(三甲基硅烷氧基)甲硅烷基丙基]甲基丙烯酰胺、三(五甲基二甲硅氧烷基)-3-甲基丙烯酰氧基丙基硅烷(T2)和甲基丙烯酸三三甲基甲硅烷基氧甲硅烷基丙酯(tristrimethylsilyloxysilylpropyl methacrylate)(TRIS)。优选的含硅氧烷单体为TRIS,它是指3-甲基丙烯酰氧基丙基三(三甲基甲硅烷氧基)硅烷并且由CAS No.17096-07-0所表示。术语“TRIS”还包括3-甲基丙烯酰氧基丙基三(三甲基甲硅烷氧基)硅烷的二聚物。
任何合适的具有烯属不饱和基团的含硅氧烷大单体可用于生产硅酮水凝胶材料。特别优选的含硅氧烷大单体选自US 5,760,100中所述的Macromer A、Macromer B、Macromer C和Macromer D,其全部内容引入本文供参考。含两个或更多个可聚合基团(乙烯类基团)的大单体还可用作交联剂。还可使用由聚二甲基硅氧烷和聚氧化亚烃(polyakyleneoxide)构成的二和三嵌段大单体。这种大单体可用丙烯酸酯、甲基丙烯酸酯或乙烯基单或二官能化。例如人们可使用甲基丙烯酸酯封端的聚氧乙烯-嵌段-聚二甲基硅氧烷-嵌段-聚氧乙烯提高氧渗透率。
根据本发明,可聚合材料还可包含亲水性乙烯基单体。几乎任何可作为增塑剂的亲水性乙烯基单体都可用于本发明的流体组合物中。其中优选的亲水性单体为N,N-二甲基丙烯酰胺(DMA)、2-甲基丙烯酸羟乙基酯(HEMA)、丙烯酸羟乙基酯(HEA)、丙烯酸羟丙基酯、甲基丙烯酸羟丙基酯(HPMA)、盐酸2-羟基丙基甲基丙烯酸三甲基铵、甲基丙烯酸二甲基氨基乙酯(DMAEMA)、甲基丙烯酸二甲基氨基乙基酯、丙烯酰胺、甲基丙烯酰胺、烯丙醇、乙烯基吡啶、甲基丙烯酸甘油酯、N-(1,1-二甲基-3-氧丁基)丙烯酰胺、N-乙烯基-2-吡咯烷酮(NVP)、丙烯酸、甲基丙烯酸和N,N-二甲基丙烯酰胺(DMA)。
可聚合材料还可包含疏水性单体。通过在可聚合流体组合物中引入一定量疏水性乙烯基单体,可改进所形成的聚合物的机械性能(例如弹性模量)。
水溶性的光化可交联预聚物的实例包括但不限于描述在US专利No.6,479,587或U.S.专利申请公开文本No.2005/0113549A1(在此全文引入作为参考)中的水溶性可交联聚脲预聚物;描述在U.S.专利No.5,583,163和6,303,687(在此全文引入作为参考)中的水溶性可交联聚(乙烯醇)预聚物;公开在U.S.专利申请公开文本No.2004/0082680A1(在此全文引入作为参考)中的水溶性可交联含聚(氧化烯)聚氨基甲酸酯预聚物;公开在提交于2004年11月22日的发明名称为“CrosslinkablePoly(oxyalkylene)-Containing Polyamide Prepolymers”的共同未决U.S.专利申请No.60/630,164(在此全文引入作为参考)中的水溶性可交联含聚(氧化烯)聚酰胺预聚物;聚乙烯醇、聚乙烯亚胺或聚乙烯胺的衍生物,其公开在US 5,849,841(在此全文引入作为参考)中;可交联聚丙烯酰胺;可交联乙烯基内酰胺、MMA和共聚用单体的统计共聚物,其公开在EP 655,470和US 5,712,356中;乙烯基内酰胺、醋酸乙烯酯和乙烯醇的可交联共聚物,其公开在EP 712,867和US 5,665,840中;带有可交联侧链的聚醚-聚酯共聚物,其公开在EP 932,635和US 6,492,478中;支化聚烷撑二醇-氨基甲酸乙酯预聚物,其公开在EP 958,315和US 6,165,408中;聚烷撑二醇-四(甲基)丙烯酸酯预聚物,其公开在EP 961,941和US 6,221,303中;以及公开在PCT专利申请WO 2000/31150和US 6,472,489中的可交联聚烯丙胺葡萄糖酸内酯预聚物。
可聚合材料可以任选地,但是优选并不包含一种或多种单体和/或一种或多种交联剂(即,两个或更多个乙烯基团或三个或更多个硫醇或含烯基团且分子量小于700道尔顿的化合物)。然而,那些组分的量应该较低,这样最终的眼科装置就不包含不可接受水平的未聚合的单体和/或交联剂。不可接受水平的未聚合单体和/或交联剂的存在将需要进行抽提来移除它们,这就需要昂贵且低效率的额外步骤。但是,优选地,可聚合材料基本上不含单体和交联剂(即,优选约2重量%或更少、更优选大约1重量%或更少、更优选大约0.5重量%或更少的单体和交联剂的组合)。
应当理解的是流体组合物还可包含本领域技术人员已知的各种组分,例如聚合引发剂(例如,光引发剂或热引发剂)、可见性着色剂(例如染料、颜料、或其混合物)、UV阻挡(吸收)剂、光敏剂、抑制剂、抗微生物剂(例如,优选银纳米颗粒或稳定化的银纳米颗粒)、生物活性剂、可浸出的润滑剂、填料等。
流体组合物优选进一步包含抗微生物剂,优选抗微生物的金属纳米颗粒,更优选银纳米颗粒。这些抗微生物剂应该结合入所形成的隐形眼镜中以便赋予所形成的隐形眼镜抗微生物性能。
流体组合物优选进一步包含可结合进所形成的隐形眼镜的可浸出的润湿剂。“可浸出的润湿剂”是指并非以共价键方式连接所形成的隐形眼镜的聚合物基质而是代之以物理地截留在所形成眼镜的聚合物基质中的润湿材料。
任何不可交联的亲水性聚合物都可用作本发明的可浸出的润湿剂。示例性的不可交联的亲水性聚合物包括但不限于聚乙烯醇(PVA)、聚氧乙烯、聚乙烯-聚丙烯嵌段共聚物、聚酰胺、聚酰亚胺、聚内酯、上述式(I)所示的乙烯基内酰胺的均聚物、存在或不存在一种或多种亲水性乙烯基共聚单体下至少一种上述式(I)所示的乙烯基内酰胺的共聚物、丙烯酰胺或甲基丙烯酰胺的均聚物、丙烯酰胺或甲基丙烯酰胺与一种或多种亲水性乙烯基单体的共聚物、其混合物。
不可交联的亲水性聚合物的数均分子量Mn优选为20,000-500,000,更优选为30,000-100,000,甚至更优选为35,000-70,000。
例如,镜片形成材料中可包括选自众所周知用于聚合领域的材料的引发剂,由此促进、和/或提高聚合反应速率。引发剂是能够引发聚合反应的化学品。该引发剂可为光引发剂或热引发剂。
光引发剂可通过利用光引发自由基聚合和/或交联。合适的光引发剂为苯偶姻甲基醚、二乙氧基苯乙酮、苯甲酰基氧化膦、1-羟基环己基苯基酮和Darocure和Irgacure类,优选Darocur
Figure BPA00001160541400181
和Darocur
Figure BPA00001160541400182
苯甲酰基膦引发剂的实例包括2,4,6-三甲基苯甲酰基二苯基氧化膦(2,4,6-trimethylbenzoyldiphenylophosphine oxide);双-(-二氯苯甲酰基)-4-N-丙苯基氧化膦;和双-(2,6-二氯苯甲酰基)-4-N-丁苯基氧化膦。例如,可引入大单体中或可用作特殊单体的反应性光引发剂同样合适。反应性光引发剂的实例为EP 632329中公开的那些,其全部内容引入本文供参考。从而可通过光化辐射,例如光,特别是合适波长的UV光引发聚合。合适的话,从而通过添加合适的光敏剂可控制光谱要求。
合适的热引发剂的实例包括但不限于2,2’-偶氮二(2,4-二甲基戊腈)、2,2’-偶氮二(2-甲基丙腈)、2,2’-偶氮二(2-甲基丁腈),过氧化物如过氧化苯甲酰等。优选热引发剂为偶氮二异丁腈(AIBN)。
优选的颜料的实例包括医疗设备中容许的和由FDA许可的任意着色剂,例如D&C Blue No.6、D&C Green No.6、D&C Violet No.2、咔唑紫、某些铜络合物、某些氧化铬、各种铁氧化物、酞菁绿、酞菁蓝、二氧化钛等。参见Marmiom DM Handbook of U.S.Colorants,其给出了本发明可以使用的一系列着色剂。颜料的更优选实施方式包括(C.I.为Colour Index序号)但不限于,对于蓝色,酞菁蓝(颜料蓝15:3,C.I.74160)、钴蓝(颜料蓝36,C.I.77343)、Toner cyan BG(Clariant)、Permajet Bule B2G(Clariant);对于绿色,酞菁绿(颜料绿7,C.I.74260)和三氧化二铬;对于黄色、红色、棕色和黑色,各种铁氧化物;PR122,PY154,对于紫色,咔唑紫;对于黑色,Monolith Black C-K(CIBA Specialty Chemicals)。
聚合物基质中引入的生物活性剂是可以防止眼睛中疾病或者减轻眼部疾病的症状的任意化合物。生物活性剂可为药物、氨基酸(例如牛磺酸、甘氨酸等)、多肽、蛋白质、核酸、或其任意组合。本文中所用药物的实例包括但不限于瑞巴派特(rebamipide)、酮替芬、olaptidine、cromoglycolate、环孢霉素、奈多罗米(nedocromil)、立复汀(levocabastine)、洛度沙胺、酮替芬,或者其药学上可接受的盐或酯。生物活性剂的其它实例包括2-吡咯烷酮-5-羧酸(PCA)、α羟基酸(例如,乙醇酸、乳酸、苹果酸、酒石酸、扁桃酸和柠檬酸及其盐等)、亚油酸和γ亚油酸、和维生素(例如,B5、A、B6等)。
本发明的流体组合物可通过将至少一种含硅酮预聚物和其它组分溶解在溶剂或溶剂的混合物中制备。
只要可以溶解可聚合材料以形成溶液,任何合适的有机溶剂可用于本发明。有机溶剂的实例包括但不限于四氢呋喃、三丙二醇甲基醚、二丙二醇甲基醚、乙二醇正丁基醚、二乙二醇正丁基醚、二乙二醇甲基醚、乙二醇苯基醚、丙二醇甲基醚、丙二醇甲基醚乙酸酯、二丙二醇甲基醚乙酸酯、丙二醇正丙基醚、二丙二醇正丙基醚、三丙二醇正丁基醚、丙二醇正丁基醚、二丙二醇正丁基醚、三丙二醇正丁基醚、丙二醇苯基醚二丙二醇二甲基醚、聚乙二醇、聚丙二醇、乙酸乙酯、乙酸丁酯、乙酸戊酯、乳酸甲酯、乳酸乙酯、乳酸异丙酯、二氯甲烷、2-丁醇、2-丙醇、薄荷醇、环己醇、环戊醇和exonorborneol、2-戊醇、3-戊醇、2-己醇、3-己醇、3-甲基-2-丁醇、2-庚醇、2-辛醇、2-壬醇、2-癸醇、3-辛醇、降冰片、叔丁醇、叔戊醇、2-甲基-2-戊醇、2,3-二甲基-2-丁醇、3-甲基-3-戊醇、1-甲基环己醇、2-甲基-2-己醇、3,7-二甲基-3-辛醇、1-氯-2-甲基-2-丙醇、2-甲基-2-庚醇、2-甲基-2-辛醇、2-2-甲基-2-壬醇、2-甲基-2-癸醇、3-甲基-3-己醇,3-甲基-3-庚醇、4-甲基-4-庚醇、3-甲基-3-辛醇、4-甲基-4-辛醇、3-甲基-3-壬醇、4-甲基-4-壬醇、3-甲基-3-辛醇、3-乙基-3-己醇、3-甲基-3-庚醇、4-乙基-4-庚醇、4-丙基-4-庚醇、4-异丙基-4-庚醇、2,4-二甲基-2-戊醇、1-甲基环戊醇、1-乙基环戊醇、1-乙基环戊醇、3-羟基-3-甲基-1-丁烯、4-羟基-4-甲基-1-环戊醇、2-苯基-2-丙醇、2-甲氧基-2-甲基-2-丙醇2,3,4-三甲基-3-戊醇、3,7-二甲基-3-辛醇、2-苯基-2-丁醇、2-甲基-1-苯基-2-丙醇和3-乙基-3-戊醇、1-乙氧基-2-丙醇、1-甲基-2-丙醇、叔戊醇、异丙醇、1-甲基-2-吡咯烷酮、N,N-二甲基丙酰胺、二甲基甲酰胺、二甲基乙酰胺、二甲基丙酰胺、N-甲基吡咯烷酮及其混合物。
在优选的实施方案中,有机溶剂为C1-C3链烷醇,优选丙醇或异丙醇。优选地,溶剂混合物包含为C4-C18链烷醇的第二有机溶剂。
流体组合物可以根据任何已知的方法引入由模具形成的空腔中。
根据本发明,任何磷脂都可被用于本发明,只要它能够减小平均模具分离力。磷脂是脂类的一种,并且和糖脂、胆固醇和蛋白质一起是所有生物膜的主要成分。在其最简单的形式中,磷脂是由一个甘油键接到一个或两个脂肪酸和一个磷酸基上组成的。磷脂具有两性的特性。头部(极性磷酸基)是亲水性的;尾部(两个脂肪酸)是疏水性的。当置于水中时,磷脂形成许多脂类相的一种。在生物学体系中,这被限制在双层,其中亲油的尾部彼此相对排列起来,形成具有两边朝向水的亲水性头部的膜。这允许其自发地形成脂质体,或小脂囊泡(small lipid vesicle)。
磷脂可以是任何自然的或合成的磷脂,例如但不限于,磷脂酰胆碱(PC)、诸如蛋黄磷脂酰胆碱、氢化蛋黄磷脂酰胆碱、大豆磷脂酰胆碱、氢化大豆磷脂酰胆碱、二月桂酰磷脂酰胆碱、二肉豆蔻酰磷脂酰胆碱、二油酰磷脂酰胆碱、二棕榈酰磷脂酰胆碱,和二硬脂酰磷脂酰胆碱;磷脂酰乙醇胺(PE),诸如蛋黄磷脂酰乙醇胺、大豆磷脂酰乙醇胺、二月桂酰磷脂酰乙醇胺、二肉豆蔻酰磷脂酰乙醇胺、二油酰磷脂酰乙醇胺、二棕榈酰磷脂酰乙醇胺,和二硬脂酰磷脂酰乙醇胺;磷脂酰甘油(PG),诸如蛋黄磷脂酰甘油、二月桂酰磷脂酰甘油、二肉豆蔻酰磷脂酰甘油、二油酰磷脂酰甘油、二棕榈酰磷脂酰甘油,和二硬脂酰磷脂酰甘油;磷脂酰肌醇(PI),诸如氢化蛋黄磷脂酰肌醇、大豆磷脂酰肌醇、二月桂酰磷脂酰肌醇、二肉豆蔻酰磷脂酰肌醇、二油酰磷脂酰肌醇、二棕榈酰磷脂酰肌醇,和二硬脂酰磷脂酰肌醇;磷脂酰丝氨酸(PS),诸如二月桂酰磷脂酰丝氨酸、二肉豆蔻酰磷脂酰丝氨酸、二油酰磷脂酰丝氨酸、二棕榈酰磷脂酰丝氨酸,和二硬脂酰磷脂酰丝氨酸;磷脂酸(PA),诸如二月桂酰磷脂酸、二肉豆蔻酰磷脂酸、二油酰磷脂酸、二棕榈酰磷脂酸,和二硬脂酰磷脂酸;心磷脂,诸如四月桂酰心磷脂、四肉豆蔻酰心磷脂、四油酰心磷脂、四棕榈酰心磷脂,和四硬脂酰心磷脂;鞘磷脂;以及磷脂酰基-胆碱、丝氨酸、肌醇、乙醇胺脂类衍生物诸如蛋磷脂酰胆碱(EPC)、二月桂酰磷脂酰乙醇胺、二肉豆蔻酰磷脂酰乙醇胺、二棕榈酰-磷脂酰乙醇胺、二硬脂酰膦脂酰乙醇胺、二油酰-磷脂酰乙醇胺、二硬脂酰-磷脂酰丝氨酸、二亚油酰磷脂酰肌醇(dilinoleoylphosphatidylinositol),以及它们的混合物。
优选的磷脂是PEG化磷脂酰乙醇胺和磷脂酰胆碱(PC)。磷脂酰胆碱(PC)可以被划分为饱和与不饱和磷脂酰胆碱,如通式1所示:
Figure BPA00001160541400211
其中R和R’可以相同或不同,并且各自是脂肪酸链。当R和R’都是饱和脂肪酸链时,其被称作饱和磷脂酰胆碱(SPC)。Dipalmiphatidylcholine(DPPC)包含两个饱和脂肪酸链,并且是SPC。当R和R’中的至少一个或二者都是不饱和脂肪酸链时,其被称作不饱和磷脂酰胆碱(USPC)。
USPC的实例是棕榈酰-油酰基-磷脂酰胆碱(POPC)、棕榈酰-亚油酸基-磷脂酰胆碱(palmitoyl-linoleoyl-phosphatidylcholine,PLPC)、dilioleoyl-磷脂酰胆碱(DLPC)、二油酰-磷脂酰胆碱(DOPC)、硬脂酰-亚油酸基-磷脂酰胆碱(SLPC),和硬脂酰-araidonoyl-磷脂酰胆碱(SAPC)。
PEG化磷脂酰乙醇胺、聚(乙二醇(PEG)-改性磷脂酰乙醇胺(PE)是两性含脂类配合物(conjugate),其包括磷脂酰乙醇胺(“PE”)和聚乙二醇(PEG)的配合物。磷脂酰乙醇胺(“PE”)的实例包括二棕榈酰磷脂酰乙醇胺(“DPPE”)、棕榈酰油酰磷脂酰乙醇胺(“POPE”)、二油酰磷脂酰乙醇胺(“DOPE”)或二硬脂酰磷脂酰乙醇胺(“DSPE”)。优选的磷脂酰乙醇胺是二硬脂酰磷脂酰乙醇胺(“DSPE”)。PEG或聚氧乙烯具有从约50到约5000的分子量,优选的PEG具有约1000到约5000的分子量。具有1000的分子量的PEG或聚氧乙烯被确定为PEG(1000)。优选的PEG化磷脂酰乙醇胺是DSPE-PEG(1000)、DSPE-PEG(2000)、DSPE-PEG(3000)、DSPE-PEG(4000),或DSPE-PEG(5000)。PEG化磷脂酰乙醇胺的实例是N-(羧基-甲氧基聚乙二醇-5000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺、钠盐)和N-(羧基-甲氧基聚乙二醇-2000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺、钠盐)和N-(羧基-甲氧基聚乙二醇-1000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺、铵盐),以上购自AVANTI POLAR LIPIDS,Inc.(USA)。
磷脂在流体组合物中以与不含磷脂的那些相比(即,与当用对比组合物替换流体组合物后获得的平均模具分离力相比)足够将平均模具分离力减少至少约40%的量存在,优选至少约50%,更优选至少约60%。对比组合物包含所有的组分,除了流体组合物的磷脂(即,不含磷脂)。
根据本发明,平均模具分离力被减小到优选约35N或更低,更优选约30N或更低,更优选约25N或更低。
根据本发明,磷脂能被用作内部脱模剂。在这些实施方案中,磷脂在流体组合物中的存在量可以最高10重量%,优选最高5重量%,更优选从0.1重量%到5重量%,更优选从0.5重量%到4重量%,特别地从1重量%到2重量%,各自都基于流体组合物的全部重量。
根据本发明,磷脂还可以被用作外部脱模剂。在这个实施方案中,在被应用到模具表面前,磷脂可以溶于本领域技术人员已知的任何合适的溶剂。然后,模具表面可至少被部分地干燥。合适的溶剂的实例是水、醇,诸如较低的烷醇(例如,乙醇、甲醇或异丙醇)、羧酸酰胺(例如,二甲基甲酰胺)、偶极无质子溶剂,诸如二甲基亚砜或甲基乙基酮、酮(例如,丙酮或环己酮)、烃(例如,甲苯、醚、THF、二甲氧基乙烷或二噁烷)、和卤代烃(例如,三氯乙烷),以及合适的溶剂的混合物(例如,水与醇的混合物,水/乙醇或水/甲醇混合物)。溶液包含,基于溶液的全部重量,0.01%到50%,优选0.1到10%,更优选1到20%,特别地5到15%的磷脂。磷脂的溶液可以通过任何已知的方法应用到模具表面,例如,通过喷雾、拭抹、浸渍或冲压(stamping),这样表面就被均匀地涂敷了。优选利用喷嘴进行喷雾。将磷脂溶液应用到模具表面并且至少部分地干燥所需的时间并非关键。然而,必须指出的是,即使是非常短的周期时间,例如,小于10秒,用于今天的隐形眼镜生产中,也可获得特别有利的结果。
用于制备隐形眼镜的镜片模具对本领域技术人员是众所周知的,并且例如采用铸塑成型或旋转浇铸法。例如,模具(对于完全铸塑成型)通常包含至少两个模具段(或部分)或半模,即第一和第二半模。第一半模限定第一成型(或光学)表面而第二半模限定第二成型(或光学)表面。将第一和第二半模进行配置,使得两者相互接纳,从而在第一成型表面和第二成型表面之间形成镜片形成空腔。半模的成型表面为模具的形成腔的表面并直接与镜片形成材料接触。
制造用于铸塑成型隐形眼镜的模具部分的方法通常为本领域普通技术人员所熟知。本发明的方法不限于形成模具的任何特别方法。事实上,形成模具的任何方法都可被用于本发明中。第一和第二半模能够通过各种技术形成,诸如注射成型法或覆以板条(lathing)。形成半模的合适方法的实例公开在发明人为Schad的U.S.专利No.4,444,711;发明人为Boehm等人的4,460,534;发明人为Morrill的5,843,346;以及发明人为Boneberger等人的5,894,002中,其也是在此引入作为参考。
本领域已知的制造模具的所有材料事实上都可被制造用于制造隐形眼镜的模具。例如,聚合材料,诸如聚乙烯、聚丙烯、聚苯乙烯、PMMA、COC 8007-S10级(乙烯和降冰片烯的透明无定形共聚物,购自Summit,New Jersey和Frankfurt,Germany的Ticona GmbH)或类似的,均可被使用。优选的模具材料是允许UV光透过并可用于制造可重复使用模具的那些,诸如石英、玻璃、CaF2、PMMA和蓝宝石。
本领域技术人员熟知怎样在镜片形成空腔中对镜片形成材料进行光化或热交联和/或聚合(即,固化)来形成隐形眼镜。
在一个优选的实施方案中,其中流体组合物是任选地在其它成分存在下的一种或多种预聚物的溶液、无溶剂液体,或熔体,使用可重复使用的模具,在空间限制的光化辐射下将镜片形成材料进行光固化以形成隐形眼镜。优选的可重复使用的模具的实例是1994年7月14日提交的U.S.专利申请No.08/274,942、提交于2003年12月10日的10/732,566、提交于2003年11月25日的10/721,913,以及U.S.专利No.6,627,124中公开的那些,其被全文引入作为参考。
在这一情况下,将流体组合物加入由两个半模组成的模具中,该两个半模并不彼此接触但是具有设置在它们之间的环形设计的细小间隙。该间隙与模腔连接,这样过量的镜片材料可以流到该间隙中。可使用可重复使用的石英、玻璃、蓝宝石模具代替仅可使用一次的聚丙烯模具,因为,在镜片生产后,能够利用水或合适的溶剂将这些模具进行快速清洁并且有效地去除未交联的预聚物及其它残留物,并且能够用空气干燥。可重复使用的模具也可以由COC 8007-S10级(乙烯和降冰片烯的透明无定形共聚物,购自Summit,New Jersey和Frankfurt,Germany的TiconaGmbH)组成。由于半模的可重复使用性,为了获得极高精度和再现性的模具,在它们的生产的时候,会消耗比较高的成本。由于在生产镜片的区域即空腔或实际的成型表面半模没有彼此接触,作为接触结果的损害被消除。这保证了模具的高使用寿命,其特别地,也保证了生产的隐形眼镜的高再现性。
隐形眼镜的两个相反的表面(前表面和后表面)由两个成型表面界定,而边缘由光化辐射的空间限制来界定而不是通过模壁的方式界定。一般地,仅位于由两个成型表面和该空间限制的清晰外围边界的投影限定的区域内的镜片形成材料被交联,而在该空间限制的外围边界之外和周围附近的任何镜片形成材料没有交联,因此隐形眼镜的边缘应该是光滑的并且是光化辐射空间限制的尺寸和几何形状的精确复制。这些制备隐形眼镜的方法描述在1994年7月14日提交的U.S.专利申请No.08/274,942、2003年12月10日提交的10/732,566、2003年11月25日提交的10/721,913,以及U.S.专利No.6,627,124中,其全文引入作为参考。
空间限制的光化辐射(或空间限制的能量冲击)可通过对所用特定形式能量至少部分不透过的模具掩蔽而实现,如在1994年7月14日提交的U.S.专利申请No.08/274,942和U.S.专利No.6,627,124(在此全文引入作为参考)中所说明的,或者由这样的模具实现,即该模具至少一侧对引起交联的能量形式是高度可透过的并且具有对该能量是不透过性或弱可透过性的模具部分,如在2003年12月10提交的U.S.专利申请No.10/732,566、2003年11月25日提交的10/721,913以及U.S.专利No.6,627,124(此处将其全面引入作为参考)中所说明的。用于交联的能量是辐射能,尤其是UV辐射、γ辐射、电子辐射或热辐射,辐射能优选为基本上是平行光束的形式,一方面为了实现良好的限制,另一方面为了实现能量的有效利用。
可以根据本领域技术人员已知的任何合适的方法开模。将模具分离成阳半模和阴半模,其中成型的镜片附着在两个半模之一上。在开模之后,将镜片从其附着的半模上卸下(脱出),并且镜片可以经历以下已知工序中的一个或多个:抽提、表面处理(例如,等离子涂敷、LbL涂敷、电晕处理,等等)、水合、平衡、包装和消毒(例如,高压釜)。
预聚物、磷脂、单体、液体组合物、模具和磷脂的量的优选的实例是以上描述过的那些。
前述公开的内容将使本领域普通技术人员能够实施本发明。为了使读者能够更好地理解具体的实施方案以及它们的有点,建议参考以下的实施例。
实验
脱模剂:
DSPE-PEG(5000):N-(羧基-甲氧基聚乙二醇-5000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺,钠盐)(1a),可购自AVANTI POLAR LIPIDS,Inc.(USA)。
DSPE-PEG(2000):N-(羧基-甲氧基聚乙二醇-2000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺,钠盐)(1b),可购自AVANTI POLAR LIPIDS,Inc.(USA)。
DSPE-PEG(1000):N-(羧基-甲氧基聚乙二醇-1000)-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺,铵盐)(1c),可购自AVANTI POLAR LIPIDS,Inc.(USA)。
DDPC:1,2-二癸酰基-sn-甘油-3-胆碱磷酸;可购自AVANTI POLARLIPIDS,Inc.(USA)。
DMPC:二肉豆蔻酰磷脂酰胆碱;可购自AVANTI POLAR LIPIDS,Inc.(USA)。
DLPC:1,2-二月桂酰-sn-甘油-3-胆碱磷酸;可购自AVANTI POLARLIPIDS,Inc.(USA)。
大豆卵磷脂Lipoid S 100(2),可购自LIPOID AG(CH)
模具:
可重复使用的Lightstream模具(根据专利US 6800225设计)分别是由玻璃或PMMA制成阴半模,石英或CaF2制成阳半模。
镜片生产:
UV交联是利用UV光源,对填装有合适配方物的模具进行辐照来实施的。
测定:
模具分离力(MSF)是在隐形眼镜制造后开模对所需的力。MSF是由拉伸试验机(Zwick 2.5)测定的。在该测试中,将一个半模刚性地安装,另一个半模被固定在双万向夹具(cardanic mounting)上以使能够不受力地对准。相对开模力是对于包含添加剂的配方物的MSF与没有添加剂的对比例配方物所需的力的比。
对生成的镜片目视检查其透光度和润湿性并且用手指摩擦来测定其润滑性。
水接触角(WCA)测定通过左滴方法(sessile drop method),用KriissGmbH,Germany的DSA 10滴外形分析系统对纯水(Fluka,表面张力72.5mN/m,20℃)进行分析来进行。基于测量的目的,用镊子将隐形眼镜从存储溶液中取出,并轻柔晃动除去多余的存储液。将隐形眼镜放在镜片模具的阳模部分上,并用干燥和清洁的布擦拭干净。然后将水滴(大约1μl)加到镜片顶点上,观测水滴的接触角随着时间发生的变化(WCA(t),圆拟合模式(circle fitting mode))。通过图将WCA(t)外推到t=0,来计算WCA值。
实施例1
(1a)PDMS交联剂I的制备
在4L烧杯中,将24.13g的Na2CO3、80g的NaCl和1.52公斤的去离子进行混合直到溶解。在另一4L烧杯中,将700g的双-3-氨丙基-聚二甲硅氧烷(Shin-Etsu,MW大约11500)溶解在1000g的己烷中。将4L反应器装上带有涡轮搅拌机的高架搅拌和带有微流动控制器的250mL加料漏斗。然后将两溶液加入到反应器中,并在强烈搅拌下混合15分钟来生成乳液。将14.5g的丙烯酰氯溶于100ml的己烷中并加入到加料漏斗。在强烈搅拌下,在一小时内逐滴加入丙烯酰氯溶液到乳液中。添加结束后,搅拌乳液30分钟,然后停止搅拌并且放置过夜允许其分层。将水相倾注出,并且用2.0kg的2.5%NaCl在水中形成的混合物洗涤有机相两次。然后通过硫酸镁干燥有机相,用1.0μm筛子过滤,并在旋转蒸发器中进行浓缩。得到的油通过高真空干燥进行提纯直到恒重。得到的产品用滴定法进行分析,显示0.175mEq/g的C=C双键。
(1b)PDMS交联剂II的制备
在4L烧杯中,将61.73g的Na2CO3、80g的NaCl和1.52公斤的去离子进行混合直到溶解。在另一4L烧杯中,将700g的双-3-氨丙基-聚二甲硅氧烷(Shin-Etsu,MW大约4500)溶解在1000g的己烷中。将4L反应器装上带有涡轮搅拌机的高架搅拌和带有微流动控制器的250mL加料漏斗。然后将两溶液加入到反应器中,并在强烈搅拌下混合15分钟来生成乳液。将36.6g的丙烯酰氯溶于100ml的己烷中并加入到加料漏斗。在强烈搅拌下,在一小时内逐滴加入丙烯酰氯溶液到乳液中。添加结束后,搅拌乳液30分钟,然后停止搅拌并且放置过夜允许其分层。将水相倾注出,并且用2.0kg的2.5%NaCl在水中形成的混合物洗涤有机相两次。然后通过硫酸镁干燥有机相,用1.0μm筛子过滤,并在旋转蒸发器中进行浓缩。得到的油通过高真空干燥进行提纯直到恒重。得到的产品用滴定法进行分析,显示0.435mEq/g的C=C双键。
(1c)可交联的共聚物A的制备
将2L夹套反应器装备上加热/冷却环路、回流冷凝器、N2入口/真空适配器、加料管道适配器和高架机械搅拌。将90.00g的根据(1a)制得的PDMS交联剂I和30.00g的根据(1b)制得的PDMS交联剂II溶解在480g的1-丙醇中,制得溶液。将溶液加入到反应器中,并冷却到8℃。将溶液通过抽气到低于15mBar,并保持在真空15分钟,接着用干燥氮气再次增压来进行脱气。重复该脱气程序共3次。将反应器保持在干燥的氮气氛中。
在另外一个烧瓶中,将1.50g的盐酸半胱胺、0.3g的AIBN、55.275g的DMA、18.43g的HEA和364.5g的1-丙醇进行混合来制备单体溶液。用Waterman 540滤纸将溶液进行过滤,然后将溶液通过脱气单元和3.0mL/分钟流速的HPLC泵加入到反应器中。然后通过约1小时的逐渐加热,提升反应温度到68℃。
在又一个烧瓶中,将4.5g的盐酸半胱胺和395.5g的1-丙醇进行混合来制备料液,然后用Waterman 540滤纸进行过滤。当反应器温度达到68℃时,将该溶液通过脱气装置/HPLC泵,在3小时内缓慢加入到反应器中。然后在68℃下继续反应另外3小时,然后停止加热,让反应器冷却到室温。
将反应混合物转移到烧瓶中,在40℃,在真空下,在旋转蒸发器中除去溶剂,直到剩余1000g的样品。然后在快速搅拌下,将溶液慢慢地与2000g去离子水进行混合。进一步除去附加的溶剂,直到剩余约2000g的样品。在这一除去过程中,溶液逐渐变成乳液。得到的材料通过10kD分子量截止膜(molecular weight cut-off membrane)进行超滤来提纯,直到渗透物电导低于2.5μS/cm。
然后将这一乳液加入到2L反应器中,其安装有高架搅拌、冷却环路、温度计和pH指示计,和Metrohm Model 718 STAT Titrino的加料头。然后将反应混合物冷却到1℃。将7.99g的NaHCO3加入到乳液中并且搅拌直到溶解。Titrino被设置在保持pH在9.5,其通过间歇添加15%氢氧化钠溶液来进行。然后将11.59ml的丙烯酰氯,通过注射器泵在一小时内加入。将乳液接着搅拌一个小时,然后将Titrino设置为通过加入氢氯酸的15%溶液来中和反应混合物。产品再次通过10kD分子量截止膜进行超滤来提纯,直到渗透物电导低于2.5μS/cm。最终大分子单体通过冻干法(lypophilization)进行分离。
(1d)实施例1基本配方物的制备
将12.13g的(1c)中生产的可交联的共聚物A、Irgacure 2959在1-丙醇中的3.006g的溶液(1.00%重量/重量)和4.881g的1-丙醇的混合物在约25℃下进行磁力搅拌过夜。得到的混合物确定为实施例1的基本配方物。
实施例2
(2a)PDMS交联剂III的制备
在4L烧杯中,将24.13g的Na2CO3、80g的NaCl和1.52公斤的去离子进行混合直到溶解。在另一4L烧杯中,将700g的双-3-氨丙基-聚二甲硅氧烷(Shin-Etsu,MW大约11500)溶解在1000g的己烷中。将4L反应器装上带有涡轮搅拌机的高架搅拌和带有微流动控制器的250mL加料漏斗。然后将两溶液加入到反应器中,并在强烈搅拌下混合15分钟来生成乳液。将14.5g的丙烯酰氯溶于100ml的己烷中并加入到加料漏斗。在强烈搅拌下,在一小时内逐滴加入丙烯酰氯溶液到乳液中。添加结束后,搅拌乳液30分钟,然后停止搅拌并且放置过夜允许其分层。将水相倾注出,并且用2.0kg的2.5%NaCl在水中形成的混合物洗涤有机相两次。然后通过硫酸镁干燥有机相,用1.0μm筛子过滤,并在旋转蒸发器中进行浓缩。得到的油通过高真空干燥进行提纯直到恒重。得到的产品用滴定法进行分析,显示0.175mEq/g的C=C双键。
(2b)PDMS交联剂IV的制备
在4L烧杯中,将61.73g的Na2CO3、80g的NaCl和1.52公斤的去离子进行混合直到溶解。在另一4L烧杯中,将700g的双-3-氨丙基-聚二甲硅氧烷(Shin-Etsu,MW大约4500)溶解在1000g的己烷中。将4L反应器装上带有涡轮搅拌机的高架搅拌和带有微流动控制器的250mL加料漏斗。然后将两溶液加入到反应器中,并在强烈搅拌下混合15分钟来生成乳液。将36.6g的丙烯酰氯溶于100ml的己烷中并加入到加料漏斗。在强烈搅拌下,在一小时内逐滴加入丙烯酰氯溶液到乳液中。添加结束后,搅拌乳液30分钟,然后停止搅拌并且放置过夜允许其分层。将水相倾注出,并且用2.0kg的2.5%NaCl在水中形成的混合物洗涤有机相两次。然后通过硫酸镁干燥有机相,用1.0μm筛子过滤,并在旋转蒸发器中进行浓缩。得到的油通过高真空干燥进行提纯直到恒重。得到的产品用滴定法进行分析,显示0.435mEq/g的C=C双键。
(2c)可交联的共聚物B的制备
将2L夹套反应器装备上加热/冷却环路、回流冷凝器、N2入口/真空适配器、加料管道适配器和高架机械搅拌。将90.00g的根据(2a)制得的PDMS交联剂III和30.00g的根据(2b)制得的PDMS交联剂IV溶解在480g的1-丙醇中,制得溶液。将溶液加入到反应器中,并冷却到8℃。将溶液通过抽气到低于15mBar,并保持在真空15分钟,接着用干燥氮气再次增压来进行脱气。重复该脱气程序共3次。将反应器保持在干燥的氮气氛中。
在另外一个烧瓶中,将1.50g的盐酸半胱胺、0.3g的AIBN、55.275g的DMA、18.43g的HEA和364.5g的1-丙醇进行混合来制备单体溶液。用Waterman 540滤纸将溶液进行过滤,然后将溶液通过脱气单元和3.0mL/分钟流速的HPLC泵加入到反应器中。然后通过约1小时的逐渐加热,提升反应温度到68℃。
在又一个烧瓶中,将4.5g的盐酸半胱胺和395.5g的1-丙醇进行混合来制备料液,然后用Waterman 540滤纸进行过滤。当反应器温度达到68℃时,将该溶液通过脱气装置/HPLC泵,在3小时内缓慢加入到反应器中。然后在68℃下继续反应另外3小时,然后停止加热,让反应器冷却到室温。
将反应混合物转移到烧瓶中,在40℃,在真空下,在旋转蒸发器中除去溶剂,直到剩余1000g的样品。然后在快速搅拌下,将溶液慢慢地与2000g去离子水进行混合。进一步除去附加的溶剂,直到剩余约2000g的样品。在这一除去过程中,溶液逐渐变成乳液。得到的材料通过10kD分子量截止膜进行超滤来提纯,直到渗透物电导低于2.5μS/cm。
将提纯的共聚物溶液通过与实施例3中描述的相同方法进行丙烯酸酯化,除了在该反应中使用了7.99g的NaHCO3和11.59ml的丙烯酰氯。产品再次通过10kD分子量截止膜进行超滤来提纯,直到渗透物电导低于2.5μS/cm。最终大分子单体通过冻干法进行分离。
(2d)实施例2基本配方物的制备
将32.83g的(2c)中生产的可交联的共聚物B、Irgacure 2959在1-丙醇中的8.224g的溶液(1.00%重量/重量)和8.948g的1-丙醇的混合物在约25℃下进行磁力搅拌过夜。
实施例3
实施例3基本配方物的制备
将13.13g的(2c)中生产的可交联的共聚物B、0.033mg的Irgacure 2959和6.84g的2-甲基-1-戊醇的混合物在约25℃下进行磁力搅拌过夜。
实施例4到16
选择DSPE-PEG(1000)、DSPE-PEG(2000)、DSPE-PEG(5000)或大豆卵磷脂Lipoid S 100作为添加剂来生产预聚物溶液并且生产镜片,如表1所示:向3.0g的实施例1到3中的配方物添加合适量的DSPE-PEG(1000)、DSPE-PEG(2000)、DSPE-PEG(5000)或大豆卵磷脂Lipoid S100,如表1所示。在搅拌下,将混合物加热到最高40℃,保持这一温度15分钟,并且过滤。
在合适的阴模和阳模之间添加合适量的特定配方物。然后将配方物用UV光源进行辐射(4.0Mw/cm2,25s)。随后,测定所生产的隐形眼镜的MSF。
得到的镜片从模具中松开,并通过EtOH来进行抽提,并用PBS在小玻璃瓶和高压釜中进行包装。随后评价该镜片的透明度/浊度以及评估缺陷,即,镜片撕裂、撕破和星状破裂。如果合适的话,还可以通过肉眼评价镜片的溜动性(slipperiness)和水可润湿性,以及水接触角。
Figure BPA00001160541400341
实施例17
链扩展的聚二甲基硅氧烷(CE-PDMS)的制备
第一步骤中,将49.85g的α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷与11.1g异氟尔酮二异氰酸酯(IPDI)在150g的干燥甲基乙基酮中,在0.063g的二月桂酸二丁基锡(DBTDL)存在下进行反应,来将α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷(Mn=2000,Shin-Etsu,KF-6001a)用异氟尔酮二异氰酸酯进行封端。将反应在40℃下保持4.5小时,形成IPDI-PDMS-IPDI。在第二步骤中,将164.8g的α,ω-双(2-羟基乙氧基丙基)-聚二甲基硅氧烷(Mn=3000,Shin-Etsu,KF-6002)和50g的干燥甲基乙基酮的混合物,逐滴添加到已加入另外的0.063g DBTDL的IPDI-PDMS-IPDI溶液中。将反应器保持在40℃下4.5小时,形成HO-PDMS-IPDI-PDMS-IPDI-PDMS-OH。然后在减压条件下除去MEK。在第三步骤中,通过添加7.77g的异氰酸酯乙基甲基丙烯酸酯(IEM),在另外的0.063g的DBTDL存在下,来将末端羟基基团用甲基丙烯酰氧基乙基进行封端,形成IEM-PDMS-IPDI-PDMS-IPDI-PDMS-IEM。
实施例18
改性有机基聚硅氧烷大单体的制备。
将Shin-Etsu Silicones的240.43g的KF-6001,羟基封端的聚(二甲基硅氧烷)加入到1L反应器中,所述反应器装备有搅拌、温度计、低温控制器、滴液漏斗,和氮气/真空入口适配器。通过高度真空(2×10-2mBar)来干燥硅酮。然后,保持干燥的氮气氛,然后将320g的蒸馏甲基乙基酮添加进去,搅拌混合物直到溶解。将0.235g二月桂酸二丁锡加入到反应器中,并将反应器加热到45℃。将45.86g的异氟尔酮二异氰酸酯加入到加料漏斗中,并在十分钟内在温和搅拌下加入到反应器中。发生直到60℃的放热,然后将反应器保持在60℃下达另外2小时。将630g的KF-6002溶于452g的蒸馏MEK中,然后一次加入烧瓶,搅拌直到均匀溶液。将0.235g的二丁基锡-二月桂酸酯加入,在干燥的氮气氛下,将反应器保持在55℃过夜。第二天,通过闪蒸除去甲基乙基酮。反应器冷却,然后加入22.7g的异氰酸酯乙基甲基丙烯酸酯到反应器中,随后加入0.235g的二丁基。在3小时后,加入另外的3.3g IEM,让反应进行过夜。第二天,将反应混合物冷却到18℃,并将产品装瓶。
实施例19
在125ml棕色瓶子中,先称量0.25g DSPE-PEG(2000),然后添加11.70g的1-丙醇溶剂,接着11.50g DMA。在Mini Vortexer(Ciba Vision 31787)中涡旋混合混合物3分钟来生成透明溶液。往溶液中,添加10.25g三-丙烯酰胺,并再涡旋混合3分钟。之后,将实施例17中制得的15.75gCE-PDMS、0.50g Darocur 1173和0.052g Visitint依次添加。在振荡瓶子10秒钟后,将瓶子放置在PAULO ABBE(model No LJRM)的辊上,速率42rpm,并过夜。然后,将配方物转移入30ml的Luer-LokTM注射器中,其连接到Cameo 30N注射器过滤器,尼龙,5.0微米,30mm,50/Pk(产品目录号DDR50T3050)。将配方物过滤到5cc一次性注射器
Figure BPA00001160541400361
并供进行镜片浇铸。镜片在玻璃/石英模具上进行浇铸,使用了4mW/cm2强度的Hamamatsu灯和330nm滤光器截断(filter cutoff)27秒。在Zwick Z2.5测试机上测得模具分离力(16N)。
实施例20
在125ml棕色瓶子中,先称量0.50g DDPC(1,2-二癸酰基-sn-甘油3-胆碱磷酸),然后添加11.50g的1-丙醇溶剂,接着11.50g DMA。在MiniVortexer中涡旋混合混合物3分钟来生成透明溶液。往溶液中,添加9.40g三-甲基丙烯酰胺,并再涡旋混合3分钟。之后,将实施例17中制得的16.50gCE-PDMS、0.25g Darocur 1173依次添加。将瓶子放置在PAULOABBE(model No LJRM)的辊上,速率42rpm,并过夜。然后,将配方物转移入30ml的Luer-LokTM注射器中,其连接到Cameo 30N注射器过滤器,尼龙,5.0微米,30mm,50/Pk(产品目录号DDR50T3050)。将配方物过滤到5cc一次性注射器并供进行镜片浇铸。镜片在玻璃/石英模具上进行浇铸,使用了4mW/cm2强度的Hamamatsu灯和330nm滤光器截断120秒。在Zwick Z2.5测试机上测得模具分离力(22N)。
实施例21
首先在20ml瓶中称量0.5g的DSPE-PEG(2000)。然后加入24.5g的1-丙醇溶剂并在Mini Vortexer Ciba Vision 31787中涡旋混合3分钟。往该瓶中,依次加入,按实施例17方法生产的33.0g CE-PDMS、17.0g三-甲基丙烯酰胺、24.0g DMA和1.0g 1.0g Darocur 1173。将瓶在PAULOABBE model No LJRM上,以42的速率,辊转至少2小时。然后,将配方物转移到5cc注射器中并且以4500rpm的速率离心15分钟,以便不需要过滤而进行浇铸。镜片在球形的CaF2/PMMA模具上进行浇铸,使用了4mW/cm2强度的WG335+TM 297截断滤光器120秒。在Zwick Z2.5测试机上测得模具分离力(16N)。
实施例22(对比例)
使用与实施例20相同的方法来制备样品,除了不加入L-PEG-2000。
实施例23
往67.5%按实施例18所述的方法进行制备的固态改性有机硅氧烷大分子单体中加入含有0.25%Irgacure 2959和1.0%水、2.5%DMPC(二肉豆蔻酰磷脂酰胆碱,dimyristoylphosphatidylcholine)的1-丙醇溶液,搅拌直到制成清澈溶液。将配方物转移到5cc一次性注射器中,并加入到带有隔离环的玻璃/石英模具。在无滤光器聚光器强度4.0mW/cm2的5点固化点将镜片固化10秒。在Zwick Z2.5测试机上测得模具分离力为40N。这些镜片是清澈的并且无缺陷。
实施例24
往5cc的一次性注射器中,加入0.08g DLPC和0.005g Irgacure 2959和0.815g 1-丙醇。在Mini Vortexer将混合物涡旋混合30秒钟来制得清澈溶液。往溶液中,加入实施例18制得的改性有机聚硅氧烷大分子单体。再次蜗旋3分钟。将配方物加入到玻璃/石英模具中。使用了4mW/cm2强度的Hamamatsu灯和330nm滤光器截断14秒固化镜片。在Zwick Z2.5测试机上测得模具分离力(57N)。
Figure BPA00001160541400391

Claims (14)

1.一种制造隐形眼镜的方法,其包括如下步骤:
(1)将流体组合物引入用于制造隐形眼镜的模具中,其中该流体组合物包含镜片形成材料和PEG化磷脂酰乙醇胺;
(2)对模具中的镜片形成材料进行聚合来形成具有聚合物基体的镜片,其中至少部分PEG化磷脂酰乙醇胺迁移到模具和形成的镜片的聚合物基体之间的界面;以及
(3)分离模具,与不含PEG化磷脂酰乙醇胺相比,其中PEG化磷脂酰乙醇胺以足够降低平均模具分离力至少大约40%的量存在。
2.权利要求1的方法,其中,PEG化磷脂酰乙醇胺是选自由PEG化二棕榈酰磷脂酰乙醇胺(DPPE-PEG)、PEG化棕榈酰油酰磷脂酰乙醇胺(POPE-PEG)、PEG化二油酰磷脂酰乙醇胺(DOPE-PEG)或PEG化二硬脂酰磷脂酰乙醇胺(DSPE-PEG)所组成的组中的至少一种。
3.权利要求1的方法,其中PEG化磷脂酰乙醇胺是PEG化二硬脂酰磷脂酰乙醇胺(DSPE-PEG)。
4.权利要求1的方法,其中流体组合物包含0.5%到10%的PEG化磷脂酰乙醇胺。
5.权利要求4的方法,其中流体组合物包含1.0%到6.0%的PEG化磷脂酰乙醇胺。
6.权利要求5的方法,其中流体组合物包含1.5%到4.0%的PEG化磷脂酰乙醇胺。
7.权利要求1的方法,其中镜片形成材料包含至少一种预聚物。
8.权利要求7的方法,其中预聚物是含硅酮预聚物。
9.权利要求8的方法,其中在无任何单体和/或交联剂的情况下,含硅酮预聚物能够形成硅酮水凝胶隐形眼镜,其具有至少一种选自如下组成的组中的性能:至少40barrer的表观氧渗透率、大于约1.5×10-6mm2/min的Ionoflux扩散系数D、从约0.2MPa到约2.0MPa的弹性模量、和当完全水合时从约15重量%到约80重量%的水含量。
10.权利要求7的方法,其中预聚物是可溶于水的无硅酮预聚物。
11.权利要求1的方法,其中镜片形成材料包含至少一种具有两个或更多个硫醇基或具有两个或更多个含烯基团的预聚物。
12.权利要求9的方法,其中流体组合物包含选自如下所组成的组的至少一种组分:聚合引发剂、可见性着色剂、UV阻挡剂、光敏剂、抑制剂、抗微生物剂、生物活性剂、脱模剂、可浸出的润滑剂。
13.权利要求1的方法,其中交联和/或聚合步骤在光化辐射的空间限制下进行,来形成具有第一表面、相对的第二表面和边缘的隐形眼镜,其中模具是具有两个成型表面的可重复使用的模具,其中第一和第二表面通过两个成型表面来定义,边缘通过光化辐射的空间限制来限定。
14.一种改进隐形眼镜的质量和生产率的方法,其包括如下步骤:1)将PEG化磷脂酰乙醇胺加入包含有镜片形成材料的流体组合物,与不含PEG化磷脂酰乙醇胺相比,所述PEG化磷脂酰乙醇胺以足够降低平均模具分离力至少大约40%的量存在,2)对模具中的镜片形成材料进行聚合来形成具有聚合物基体的镜片。
CN2008801218073A 2007-12-20 2008-12-18 隐形眼镜的制造方法 Active CN101903807B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US855407P 2007-12-20 2007-12-20
US61/008,554 2007-12-20
PCT/US2008/087345 WO2009085902A1 (en) 2007-12-20 2008-12-18 Method for making contact lenses

Publications (2)

Publication Number Publication Date
CN101903807A CN101903807A (zh) 2010-12-01
CN101903807B true CN101903807B (zh) 2013-01-09

Family

ID=40430118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801218073A Active CN101903807B (zh) 2007-12-20 2008-12-18 隐形眼镜的制造方法

Country Status (14)

Country Link
US (3) US7780879B2 (zh)
EP (1) EP2238480B1 (zh)
JP (1) JP5355588B2 (zh)
KR (1) KR101565624B1 (zh)
CN (1) CN101903807B (zh)
AR (2) AR069938A1 (zh)
AT (1) ATE544086T1 (zh)
AU (1) AU2008343162B2 (zh)
BR (1) BRPI0821158A2 (zh)
CA (1) CA2704018C (zh)
RU (1) RU2488863C2 (zh)
TW (1) TWI467267B (zh)
WO (1) WO2009085902A1 (zh)
ZA (1) ZA201002497B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968018B2 (en) * 2007-04-18 2011-06-28 Coopervision International Holding Company, Lp Use of surfactants in extraction procedures for silicone hydrogel ophthalmic lenses
TWI401155B (zh) * 2008-02-01 2013-07-11 Nat Univ Tsing Hua 光學元件製造方法
PT2285364E (pt) * 2008-05-07 2015-02-24 Univ California Reposição e enriquecimento terapêutico de lubrificação da superficie ocular
US8506944B2 (en) 2008-05-07 2013-08-13 The Regents Of The University Of California Replenishment and enrichment of ocular surface lubrication
US20100109176A1 (en) * 2008-11-03 2010-05-06 Chris Davison Machined lens molds and methods for making and using same
TWI506333B (zh) * 2008-12-05 2015-11-01 Novartis Ag 用以傳遞疏水性舒適劑之眼用裝置及其製造方法
NZ592674A (en) 2008-12-18 2012-08-31 Novartis Ag Method for making silicone hydrogel contact lenses
US20120316256A1 (en) * 2009-11-02 2012-12-13 Abdul Rashid Polymers for Contact Lenses
SI2461767T1 (sl) 2010-07-30 2013-08-30 Novartis Ag Silikonske hidrogelne leče s površinami, bogatimi z vodo
US8618187B2 (en) * 2011-04-01 2013-12-31 Novartis Ag Composition for forming a contact lens
US9170349B2 (en) * 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
SG194955A1 (en) * 2011-06-09 2013-12-30 Novartis Ag Silicone hydrogel lenses with nano-textured surfaces
US8865685B2 (en) * 2011-06-30 2014-10-21 Johnson & Johnson Vision Care, Inc. Esters for treatment of ocular inflammatory conditions
EP2744634B1 (de) * 2011-08-18 2021-02-24 Momentive Performance Materials GmbH Bestrahlungs- bzw. formeinheit
US9358735B2 (en) 2011-11-29 2016-06-07 Novartis Ag Method of treating a lens forming surface of at least one mold half of a mold for molding ophthalmic lenses
US9988433B2 (en) 2013-03-14 2018-06-05 Mosaic Biosciences, Inc. Covalent modification of biological macromolecules
EP2822533B1 (en) 2012-02-02 2021-01-20 Mosaic Biosciences, Inc. Biomaterials for delivery of blood extracts and methods of using same
US9283718B2 (en) 2012-05-25 2016-03-15 Johnson & Johnson Vision Care, Inc. Reduced-tilt back plastic feature for a contact lens mold
SG11201504763UA (en) 2012-12-17 2015-07-30 Novartis Ag Method for making improved uv-absorbing ophthalmic lenses
US20140175685A1 (en) * 2012-12-20 2014-06-26 Novartis Ag Method for Making Silicone Hydrogel Contact Lenses
EP3052535B1 (en) * 2013-09-30 2019-03-06 Novartis AG Silicone hydrogel lenses with relatively-long thermal stability
HUE040618T2 (hu) 2013-10-31 2019-03-28 Novartis Ag Eljárás szemészeti lencsék elõállítására
WO2015089285A1 (en) 2013-12-13 2015-06-18 Novartis Ag Method for making contact lenses
WO2015095157A1 (en) 2013-12-17 2015-06-25 Novartis Ag A silicone hydrogel lens with a crosslinked hydrophilic coating
PL3140332T3 (pl) * 2014-05-07 2020-06-29 Tubitak Formulacja i sposób wytwarzania do produkcji soczewek wewnątrzgałkowych (IOL)
US11002884B2 (en) 2014-08-26 2021-05-11 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
KR101646222B1 (ko) * 2014-12-02 2016-08-05 한국표준과학연구원 고분자 기반 인공 안구 제작 방법 및 장치
EP3256167B1 (en) 2015-02-09 2020-11-11 Mosaic Biosciences, Inc. Degradable thiol-ene polymers and methods of making thereof
SG11201803726VA (en) 2015-12-15 2018-06-28 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
CN108072981A (zh) * 2016-11-18 2018-05-25 海昌隐形眼镜有限公司 一种硬性角膜接触镜片的制作方法
WO2018212063A1 (ja) * 2017-05-19 2018-11-22 東レ株式会社 コンタクトレンズ用組成物、およびコンタクトレンズとその製造方法
TWI640557B (zh) * 2017-07-05 2018-11-11 晶碩光學股份有限公司 具表面修飾的隱形眼鏡及其製備方法
KR101944717B1 (ko) * 2017-11-17 2019-02-01 주식회사 인터로조 자외선 차단 기능을 갖는 소프트 콘택트렌즈 및 이의 제조방법
EP3724697B1 (en) 2017-12-13 2022-01-12 Alcon Inc. Method for producing mps-compatible water gradient contact lenses
TWI678553B (zh) * 2018-09-12 2019-12-01 優你康光學股份有限公司 隱形眼鏡表面親水之塗層方法
EP4146461B1 (en) 2020-05-07 2024-03-13 Alcon Inc. Method for producing silicone hydrogel contact lenses
CN111610274B (zh) * 2020-06-05 2022-05-17 海昌隐形眼镜有限公司 一种检测角膜接触镜多组分可沥滤物含量的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130706A (en) * 1977-08-08 1978-12-19 E. I. Du Pont De Nemours And Company Hydrophilic, oxygen permeable contact lens
US4826901A (en) * 1985-09-07 1989-05-02 Rohm Gmbh Curable casting resins
CN1108175A (zh) * 1993-08-06 1995-09-13 希巴-盖吉股份公司 光致交联的聚合物
CN1032795C (zh) * 1989-08-21 1996-09-18 博士伦有限公司 制造亲水性接触透镜的改进方法
US6008281A (en) * 1998-01-13 1999-12-28 Planet Polymer Technologies, Inc. Powder and binder systems for use in metal and ceramic powder injection molding
US6149842A (en) * 1998-11-12 2000-11-21 Novartis Ag Methods and compositions for manufacturing tinted ophthalmic lenses
CN1278924A (zh) * 1997-11-14 2001-01-03 诺瓦提斯公司 制造着色眼用透镜的方法和组合物
CN1106580C (zh) * 1995-06-07 2003-04-23 庄臣及庄臣视力产品有限公司 亲水性接触透镜及其制造方法
CN1639586A (zh) * 2001-03-07 2005-07-13 诺瓦提斯公司 生产模制品的方法

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US37897A (en) * 1863-03-17 Machine for removing
US4159292A (en) * 1977-05-25 1979-06-26 Neefe Optical Lab. Inc. Method of controlling the release of a cast plastic lens from a resinous lens mold
GB2041377B (en) * 1979-01-22 1983-09-28 Woodroof Lab Inc Bio compatible and blood compatible materials and methods
US4444711A (en) * 1981-12-21 1984-04-24 Husky Injection Molding Systems Ltd. Method of operating a two-shot injection-molding machine
US4460534A (en) 1982-09-07 1984-07-17 International Business Machines Corporation Two-shot injection molding
CS239282B1 (en) * 1983-08-17 1986-01-16 Otto Wichterle Preparation method of objects made from hydrophilic gelsnamely contact lences by polymer casting
GB8401534D0 (en) * 1984-01-20 1984-02-22 Royal Free Hosp School Med Biocompatible surfaces
US5229162A (en) * 1984-01-20 1993-07-20 Biocompatibles Ltd. Article having biocompatible surface
US5380904A (en) * 1984-01-20 1995-01-10 Biocompatibles Ltd. Process for rendering a surface biocompatible, and articles containing the same
US4828581A (en) 1985-09-20 1989-05-09 Battelle Development Corporation Low inlet gas velocity high throughput biomass gasifier
GB8601967D0 (en) 1986-01-28 1986-03-05 Coopervision Optics Manufacturing contact lenses
US5753730A (en) 1986-12-15 1998-05-19 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur-containing urethane resin lens and lens prepared thereby
US5594088A (en) 1986-12-15 1997-01-14 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur containing urethane resin lens and lens prepared thereby
US4865984A (en) * 1988-02-08 1989-09-12 Mount Sinai School Of Medicine Of The City University Of New York Dynamic continuous flow enzyme reactor
US4929707A (en) * 1988-02-16 1990-05-29 Mitsui Toatsu Chemicals, Inc. Polyurethane base lens resin, plastic lens comprising the resin and preparation method of the lens
EP0329387B1 (en) * 1988-02-17 1994-06-15 MITSUI TOATSU CHEMICALS, Inc. Plastic lens, and method for its preparation
DE68917171T2 (de) * 1988-02-18 1995-03-30 Mitsui Toatsu Chemicals S-alkylthiocarbamat-Basisharz, dieses Harz enthaltende Kunststofflinse und Verfahren zu ihrer Herstellung.
CA1316315C (en) * 1988-02-22 1993-04-20 Nobuyuki Kajimoto Highly-refractive plastic lens and process for making the lens
ES2076216T3 (es) 1988-11-02 1995-11-01 British Tech Group Moldeo por vaciado y envasado de lentes de contacto.
US5063090A (en) * 1990-06-29 1991-11-05 Difco Laboratories Lecithin as a wettability enhancing coating for plastic
GB9022938D0 (en) * 1990-10-22 1990-12-05 Biocompatibles Ltd Non-thrombogenic surfaces
CA2112411C (en) * 1991-07-05 2001-01-02 Roderick W. J. Bowers Polymeric surface coatings
US5264161A (en) 1991-09-05 1993-11-23 Bausch & Lomb Incorporated Method of using surfactants as contact lens processing aids
US5374434B1 (en) * 1991-11-04 1999-01-19 Creative Products Inc Food release compositions
US5567456A (en) * 1991-11-04 1996-10-22 Creative Products Inc. Of Rossville Food release compositions with organic fluidizing agents
US5217743A (en) * 1992-02-07 1993-06-08 Paradigm Biotechnologies Partnership Biomaterials of enhanced biocompatibility
TW328535B (en) * 1993-07-02 1998-03-21 Novartis Ag Functional photoinitiators and their manufacture
SG49612A1 (en) * 1993-07-19 2003-03-18 Novartis Ag A process and device for the manufacture of moulding and mouldings manufactured in accordance with that process
US6800225B1 (en) 1994-07-14 2004-10-05 Novartis Ag Process and device for the manufacture of mouldings and mouldings manufactured in accordance with that process
US5712356A (en) * 1993-11-26 1998-01-27 Ciba Vision Corporation Cross-linkable copolymers and hydrogels
US5894002A (en) * 1993-12-13 1999-04-13 Ciba Vision Corporation Process and apparatus for the manufacture of a contact lens
US5542978A (en) * 1994-06-10 1996-08-06 Johnson & Johnson Vision Products, Inc. Apparatus for applying a surfactant to mold surfaces
US5843346A (en) 1994-06-30 1998-12-01 Polymer Technology Corporation Method of cast molding contact lenses
US5760100B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US5665840A (en) * 1994-11-18 1997-09-09 Novartis Corporation Polymeric networks from water-soluble prepolymers
TW349967B (en) * 1995-02-03 1999-01-11 Novartis Ag Process for producing contact lenses and a cross-linkable polyvinylalcohol used therefor
ATE178414T1 (de) * 1995-02-03 1999-04-15 Novartis Ag Vernetzte polymere enthaltend ester- oder amidgruppen
EP0733918B1 (en) * 1995-03-24 2003-07-30 Ocular Research of Boston, Inc. Hydrogel lens pre-coated with lipid layer
US5583463A (en) 1995-05-30 1996-12-10 Micron Technology, Inc. Redundant row fuse bank circuit
JP3480622B2 (ja) * 1995-06-07 2003-12-22 辻製油株式会社 レシチン改質体含有油脂組成物
US5587009A (en) * 1995-06-12 1996-12-24 Ecolab Inc. Adhesive release agent applied to surface for improved cleaning
GB9519654D0 (en) * 1995-09-27 1995-11-29 Nycomed Imaging As Stabilised phospholipid compositions
JPH1044633A (ja) * 1996-05-28 1998-02-17 Oji Paper Co Ltd 溶融型熱転写記録用受容紙
JP2001502734A (ja) * 1996-10-21 2001-02-27 ノバルティス アクチエンゲゼルシャフト 架橋性ポリマー
US6113970A (en) * 1997-02-03 2000-09-05 Lipton, Division Of Conopco, Inc. Lecithin based spray product
TW425403B (en) * 1997-02-04 2001-03-11 Novartis Ag Branched polyurethane (meth)acrylate prepolymers, opthal-mic mouldings derived therefrom and processes for their manufacture
JP4144902B2 (ja) * 1997-02-21 2008-09-03 ノバルティス アクチエンゲゼルシャフト 眼用成形品
AU9743298A (en) * 1997-09-16 1999-04-05 Novartis Ag Crosslinkable polyurea polymers
TW429327B (en) 1997-10-21 2001-04-11 Novartis Ag Single mould alignment
US6451871B1 (en) * 1998-11-25 2002-09-17 Novartis Ag Methods of modifying surface characteristics
US6367929B1 (en) * 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US7195726B1 (en) * 1998-08-26 2007-03-27 Dow Global Technologies Inc. Internal mold release for low density reaction injection molded polyurethane foam
US6039913A (en) * 1998-08-27 2000-03-21 Novartis Ag Process for the manufacture of an ophthalmic molding
US6844458B2 (en) * 1998-11-20 2005-01-18 Ip Holdings, L.L.C. Vegetable oil refining
EP1002807A1 (en) * 1998-11-20 2000-05-24 Novartis AG Functionalized resin derived from polyallylamine
US6441209B1 (en) * 1998-11-20 2002-08-27 Ip Holdings, L.L.C. Method for treating organic acid-treated phosphatides
EP1035142A1 (en) * 1999-03-09 2000-09-13 Nidek Co., Ltd. Acrylic copolymer materials suitable for ophthalmic devices
TW434854B (en) 1999-11-09 2001-05-16 Advanced Semiconductor Eng Manufacturing method for stacked chip package
US6793973B2 (en) * 2000-02-04 2004-09-21 Novartis Ag Single-dip process for achieving a layer-by-layer-like coating
US6719929B2 (en) 2000-02-04 2004-04-13 Novartis Ag Method for modifying a surface
CA2401865C (en) 2000-03-24 2010-01-12 Novartis Ag Crosslinkable or polymerizable prepolymers
US6811805B2 (en) 2001-05-30 2004-11-02 Novatis Ag Method for applying a coating
US20030209818A1 (en) * 2002-05-13 2003-11-13 Harald Bothe Pretreatment of contact lens moulds
WO2004016671A1 (en) * 2002-08-14 2004-02-26 Novartis Ag Radiation-curable prepolymers
US6896926B2 (en) 2002-09-11 2005-05-24 Novartis Ag Method for applying an LbL coating onto a medical device
US7387759B2 (en) * 2002-12-17 2008-06-17 Novartis Ag System and method for curing polymeric moldings having a masking collar
WO2005027933A1 (en) 2003-09-23 2005-03-31 The Corporation Of The Trustees Of The Order Of The Sisters Of Mercy In Queensland Unsaturated phosphatidylcholines and uses thereof
US7977430B2 (en) * 2003-11-25 2011-07-12 Novartis Ag Crosslinkable polyurea prepolymers
US20050112339A1 (en) * 2003-11-26 2005-05-26 Sandel Bonnie B. Antimicrobial protection for plastic structures
CA2577513A1 (en) * 2004-11-22 2006-05-26 Novartis Ag Crosslinkable poly(oxyalkylene)-containing polyamide prepolymers
JP4791067B2 (ja) * 2005-03-30 2011-10-12 テルモ株式会社 リポソーム製剤の製造方法
US20070037897A1 (en) 2005-08-12 2007-02-15 Guigui Wang Method for making contact lenses
WO2007068453A2 (en) * 2005-12-14 2007-06-21 Novartis Ag Method for preparing silicone hydrogels
RU2008129681A (ru) * 2005-12-20 2010-01-27 Джонсон Энд Джонсон Вижн Кэа, Инк. (Us) Способы и система для выщелачивания и высвобождения силиконовых гидрогелевых глазных линз с помощью растворов поверхностно-активного веществ
RU2389608C2 (ru) * 2005-12-20 2010-05-20 Джонсон Энд Джонсон Вижн Кэа, Инк. Способы и системы для выщелачивания и извлечения офтальмологических линз на основе силиконового гидрогеля спиртовыми растворами
US7858000B2 (en) * 2006-06-08 2010-12-28 Novartis Ag Method of making silicone hydrogel contact lenses
MX2009000316A (es) * 2006-07-12 2009-01-26 Novartis Ag Copolimeros actinicamente reticulables para la fabricacion de lentes de contacto.
JP5669396B2 (ja) * 2006-12-13 2015-02-12 ノバルティス アーゲー 化学線硬化性シリコーンヒドロゲルコポリマーおよびその使用
AR064286A1 (es) * 2006-12-13 2009-03-25 Quiceno Gomez Alexandra Lorena Produccion de dispositivos oftalmicos basados en la polimerizacion por crecimiento escalonado fotoinducida
EP2101838B1 (en) * 2006-12-21 2010-12-01 Novartis AG Process for the coating of contact lenses
US20080231796A1 (en) 2007-03-21 2008-09-25 La Loop, Llc Necklace-eyeglass system
JP5484916B2 (ja) * 2007-03-22 2014-05-07 ノバルティス アーゲー ダングリングポリシロキサン含有ポリマー鎖を有するプレポリマー
WO2008116132A2 (en) * 2007-03-22 2008-09-25 Novartis Ag Silicone-containing prepolymers with hydrophilic polymeric chains

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130706A (en) * 1977-08-08 1978-12-19 E. I. Du Pont De Nemours And Company Hydrophilic, oxygen permeable contact lens
US4826901A (en) * 1985-09-07 1989-05-02 Rohm Gmbh Curable casting resins
CN1032795C (zh) * 1989-08-21 1996-09-18 博士伦有限公司 制造亲水性接触透镜的改进方法
CN1108175A (zh) * 1993-08-06 1995-09-13 希巴-盖吉股份公司 光致交联的聚合物
CN1106580C (zh) * 1995-06-07 2003-04-23 庄臣及庄臣视力产品有限公司 亲水性接触透镜及其制造方法
CN1278924A (zh) * 1997-11-14 2001-01-03 诺瓦提斯公司 制造着色眼用透镜的方法和组合物
US6008281A (en) * 1998-01-13 1999-12-28 Planet Polymer Technologies, Inc. Powder and binder systems for use in metal and ceramic powder injection molding
US6149842A (en) * 1998-11-12 2000-11-21 Novartis Ag Methods and compositions for manufacturing tinted ophthalmic lenses
CN1639586A (zh) * 2001-03-07 2005-07-13 诺瓦提斯公司 生产模制品的方法

Also Published As

Publication number Publication date
KR20100103522A (ko) 2010-09-27
AR069938A1 (es) 2010-03-03
KR101565624B1 (ko) 2015-11-03
JP5355588B2 (ja) 2013-11-27
AU2008343162B2 (en) 2012-02-23
TWI467267B (zh) 2015-01-01
US20090160074A1 (en) 2009-06-25
CN101903807A (zh) 2010-12-01
US8092724B2 (en) 2012-01-10
RU2488863C2 (ru) 2013-07-27
US20100276824A1 (en) 2010-11-04
CA2704018C (en) 2016-01-19
TW200935117A (en) 2009-08-16
RU2010129547A (ru) 2012-01-27
BRPI0821158A2 (pt) 2015-06-16
EP2238480B1 (en) 2012-02-01
AR106734A2 (es) 2018-02-14
US20100276823A1 (en) 2010-11-04
US8440735B2 (en) 2013-05-14
JP2011508905A (ja) 2011-03-17
AU2008343162A1 (en) 2009-07-09
ATE544086T1 (de) 2012-02-15
ZA201002497B (en) 2011-06-29
CA2704018A1 (en) 2009-07-09
EP2238480A1 (en) 2010-10-13
US7780879B2 (en) 2010-08-24
WO2009085902A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CN101903807B (zh) 隐形眼镜的制造方法
TWI703168B (zh) 親水化的聚二有機矽氧烷乙烯基交聯劑及其用途
EP2432821B1 (en) Actinically-crosslinkable siloxane-containing copolymers
CN101641615B (zh) 具有悬挂的亲水性聚合物链的含硅酮预聚物
CN102257408B (zh) 制造硅酮水凝胶接触透镜的方法
CA2671960C (en) Production of ophthalmic devices based on photo-induced step growth polymerization
MX2011005926A (es) Dispositivos oftalmicos para el suministro de agentes hidrofobicos de comodidad.
WO2007146137A2 (en) Method for making silicone hydrogel contact lenses with good coating durability
JP2010066774A (ja) 色付けされた高Dk眼科用成形品及び同成形品の製造方法
MX2007013739A (es) Dispositivos oftalmicos para el suministro sostenido de compuestos activos.
CN103298602A (zh) 制造硅酮水凝胶接触透镜的方法
CN1914028B (zh) 制备着色接触透镜的方法
EP3391100B1 (en) Amphiphilic branched polydiorganosiloxane macromers
EP2232304B1 (en) Method for making silicone hydrogel contact lenses
SG190218A1 (en) Method for making contact lenses
CN105980124A (zh) 用于制造硅酮水凝胶接触镜片的改进的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: NOVARTIS CO., LTD.

Free format text: FORMER NAME: NOVARTIS AG

CP01 Change in the name or title of a patent holder

Address after: Basel

Patentee after: Novartis Ag

Address before: Basel

Patentee before: Novartis AG

TR01 Transfer of patent right

Effective date of registration: 20191211

Address after: Fribourg

Patentee after: Alcon Company

Address before: Basel

Patentee before: Novartis Co., Ltd.

TR01 Transfer of patent right