CN101872730A - 用碳纳米管簇填充硅通孔的方法 - Google Patents

用碳纳米管簇填充硅通孔的方法 Download PDF

Info

Publication number
CN101872730A
CN101872730A CN 201010220449 CN201010220449A CN101872730A CN 101872730 A CN101872730 A CN 101872730A CN 201010220449 CN201010220449 CN 201010220449 CN 201010220449 A CN201010220449 A CN 201010220449A CN 101872730 A CN101872730 A CN 101872730A
Authority
CN
China
Prior art keywords
silicon
carbon nano
carbon nanotube
holes
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010220449
Other languages
English (en)
Other versions
CN101872730B (zh
Inventor
刘建影
张霞
王腾
张燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SHANG DA RUI HU MICROSYSTEM INTEGRATION TECHNOLOGY Co Ltd (SMIT LTD)
Original Assignee
SHANGHAI SHANG DA RUI HU MICROSYSTEM INTEGRATION TECHNOLOGY Co Ltd (SMIT LTD)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI SHANG DA RUI HU MICROSYSTEM INTEGRATION TECHNOLOGY Co Ltd (SMIT LTD) filed Critical SHANGHAI SHANG DA RUI HU MICROSYSTEM INTEGRATION TECHNOLOGY Co Ltd (SMIT LTD)
Priority to CN 201010220449 priority Critical patent/CN101872730B/zh
Publication of CN101872730A publication Critical patent/CN101872730A/zh
Application granted granted Critical
Publication of CN101872730B publication Critical patent/CN101872730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种用于微电子封装微中的用碳纳米管簇填充硅通孔的方法。该方法是:用光刻技术及深反应离子腐蚀技术在硅片上制造具有特定形状和排列的孔。将由三氧化二铝和铁组成的催化层沉积于孔的底部。在一定气体流量和温度下碳纳米管簇自孔底部开始生长。然后,在硅片上表面及碳纳米管簇表面溅射一层由硅和光刻胶组成的支撑层。用研磨和化学机械平坦化方法磨出整齐平整的碳纳米管簇表面和硅表面。在碳纳米管簇表面镀钛/金金属化镀层作为焊盘。去除硅片背面的硅直到碳纳米管簇底部露出为止。最后,在硅片背面也镀一层钛/金金属化镀层,便可得到用碳纳米管簇填充的硅通孔。通过本发明中的方法可得到孔径接近20微米的硅通孔,进而满足未来电子元器件密集化和小型化的要求。

Description

用碳纳米管簇填充硅通孔的方法
技术领域
本发明涉及一种用于微电子封装的互联技术,主要应用于三维叠加芯片的封装形式。具体的说是采用碳纳米管簇填充硅通孔的方法。
背景技术
几十年来,电子产品发展的总体趋势一直表现为在日益缩小的产品尺寸内实现更快的速度和更多的功能。这主要通过两个途径来实现。其一是不断地在芯片上集成更多的晶体管来提高运算速度,增大存储空间,实现更多功能。根据著名的“摩尔定律”所述,每十八至二十四个月,相同面积的芯片上可集成的晶体管数目翻一番。其二是通过各种高密度封装技术在产品中集成更多的器件。近年来,由于基本物理定律的限制,以摩尔定律所述的速度提高芯片中晶体管的数量愈发困难。普遍认为,在未来相当长一段时间内电子产品尺寸的进一步缩小和速度功能的提升将主要通过更高密度的封装技术来实现。
在这些高密度封装技术中,三维封装技术备受瞩目。在这种技术中,通过在垂直于基板的方向叠加芯片,可以实现非常高的集成密度,并缩短芯片间互联的距离,提高信号传输速度。实现高密度三维封装的一个关键技术是在硅片上制造出小尺寸,高深宽比的导电通孔。目前业界主要是通过在孔中镀铜来实现电连接。
本发明的重点在于使用碳纳米管簇来代替铜填充硅通孔。碳纳米管的微观结构可以看成卷成管状的石墨碳原子层,其直径一般为几个到几十个纳米。取决于原子层数,碳纳米管可以被分类为单壁和多壁碳纳米管。作为一种新型的纳米材料,近二十年来,碳纳米管一直是研究的热点之一。各种基于碳纳米管的应用被陆续开发出来。原因就在于碳纳米管具有许多独特和优越的特性,包括高强度,高导热性,高导电性,等等。合成碳纳米管的方法有电弧放电,激光烧蚀,和化学气相沉淀(CVD)。其中由于能在各种形状的催化剂层上生长定向排列的碳纳米管,化学气相沉淀法的应用最为广泛。使用化学气相沉淀法生长碳纳米管,主要有加热型和等离子加强型两种类别。在本发明中,我们即使用热化学气相沉淀法在硅通孔中生长碳纳米管簇。
发明内容
本发明的目的是提供一种通过碳纳米管簇填充硅通孔的制造方法。此种方法可以显著缩小硅通孔直径。孔径可缩小至20微米以下。
本发明的目的是通过下述技术方案实现的。
一种用碳纳米管簇填充硅通孔的方法,其特征在于该方法具有以下的工艺过程和步骤:
1.使用光刻工艺和深反应离子腐蚀法在硅片上制造出有特定形状和排列的孔。孔径为20~50微米。通过对腐蚀时间的控制,可控制孔的深度。孔深为100~150微米。光刻工艺中覆盖在硅表面的光刻胶暂不去除,如图1(a)(b)。
2.使用电子束蒸镀法在被光刻胶覆盖并有孔的硅片上沉积一层由6~12纳米厚的三氧化二铝和1~3纳米厚的铁组成的催化层。由于电子束蒸镀法的台阶覆盖能力非常弱,因此在这一步骤中,只有光刻胶的表面和孔的底部被催化层覆盖,如图1(c)。
3.使用异丙酮和去离子水洗去光刻胶及其上的催化层。此时,仅有孔的底部保留有催化层,如图1(d)。
4.将硅片放入直径为4厘米,长度为50厘米的石英管。在石英管中通入800~1000sccm的氩气和100~300sccm的氢气。同时,将硅片加热到500~700℃并保持10~20分钟。
5.在反应器中充入3~10sccm的乙炔气体,同时将氩气和氢气的流量调整为500~700sccm,进行碳纳米管簇的孔内生长,如图1(e)。
6.碳纳米管簇在孔内生长15~20分钟之后关闭乙炔气,将氩气调整到800~1000scm,将氢气调整到100~300sccm。同时,停止加热,待芯片冷却到室温后从石英管中取出。
7.在带有碳纳米管孔的硅片上溅射一层由600~900纳米厚的硅及10~20微米厚的光刻胶组成的支撑层,如图1(f)。
8.使用紫外线照射光刻胶。待光刻胶硬化后使用研磨法和化学机械平坦化法打磨出平整的碳纳米管簇表面和硅表面,如图1(g)。研磨过程中,设备转速为15~30转每分钟,研磨压力为10~25KPa。机械平坦化过程中,设备转速为25~50转每分钟,打磨压力为10~20KPa。
9.使用光刻和电子束蒸镀法在打磨平整的碳纳米管簇上制备钛/金焊盘,其中钛的厚度为15~25纳米,金的厚度为60~90纳米,如图1(h)。
10.在硅片的背面,使用腐蚀工艺去除硅,直到暴露出碳纳米管簇的底部,然后在腐蚀后的硅背部表面溅射一层钛/金镀层,其中钛的厚度为25~40纳米,金的厚度为300~500纳米。至此,便完成了由碳纳米管簇填充的硅通孔的制备,如图1(i)(j)。
本发明的特点是:使用碳纳米管代替铜填充硅通孔,可以缩小硅上通孔的尺寸,进而缩小封装尺寸,满足高密度封装的需要。
附图说明
图1碳纳米管簇填充硅通孔制备方法流程图
图2在硅孔中生长的碳纳米管簇的扫描电子显微镜照片
图3打磨前后的碳纳米管簇的扫描电子显微镜照片:(a)打磨前,(b)打磨后。
具体实施方式
下面结合实施例对本发明进行详细描述。
实施例1
本实施例中,采用上述步骤制备碳纳米管簇填充的硅通孔,具体步骤如下:
1.首先,使用光刻工艺和深反应离子腐蚀法在厚度为7.62厘米的硅片上制造出孔径为20微米,孔深为131微米的孔阵列,光刻工艺中覆盖在硅表面的光刻胶暂不去除。
2.使用电子束蒸镀法在硅片上沉积一层由10纳米厚的三氧化二铝和1纳米厚的铁组成的催化层。
3.使用异丙酮和去离子水洗去光刻胶及光刻胶上的催化层,此时,仅有孔的底部保留有催化层。
4.将硅片放入直径为4厘米,长度为50厘米的石英管。在石英管中通入900sccm的氩气和100sccm的氢气。同时,将硅片加热到700℃并保持15分钟。
5.15分钟后,在反应器中充入6sccm的乙炔气体,同时将氩气和氢气的流量调整为500sccm,进行碳纳米管簇的孔内生长,如图2。
6.碳纳米管簇在孔内生长15分钟之后关闭乙炔气,将氩气调整到900scm,将氢气调整到100sccm。同时,停止加热,待芯片冷却到室温后从石英管中取出。
7.在带有碳纳米管孔的硅片上溅射一层由800纳米厚的硅及15微米厚的光刻胶组成的支撑层。
8.使用紫外线照射光刻胶。待光刻胶硬化后使用研磨法和化学机械平坦化法打磨出平整的碳纳米管簇表面和硅表面,如图3。研磨转速为25转每分钟,施加的压力为15KPa。打磨转速为30转每分钟,施加的压力为15KPa。
9.使用光刻和电子束蒸镀法在打磨平整的碳纳米管簇上制备钛/金焊盘,其中钛的厚度为20纳米,金的厚度为80纳米。
10.在硅片的背面,使用腐蚀工艺去除硅,直到暴露出碳纳米管簇的底部,然后在腐蚀后的硅背部表面溅射一层钛/金镀层,其中钛的厚度为30纳米,金的厚度为400纳米。至此,便完成了由碳纳米管簇填充的硅通孔的制备。本实施例中,硅通孔的孔径可达20微米。

Claims (1)

1.一种用碳纳米管簇填充硅通孔的方法,其特征在于该方法具有以下的工艺过程和步骤:
(1)使用光刻工艺和深反应离子腐蚀法在硅片上制造出所需形状和排列的孔,孔径为20~50微米,孔深为100~150微米,光刻工艺中覆盖在硅表面的光刻胶暂不去除;
(2)使用电子束蒸镀法在被光刻胶覆盖并有孔的硅片上沉积一层由6~12纳米厚的三氧化二铝和1~3纳米厚的铁组成的催化层;
(3)使用异丙酮和去离子水洗去光刻胶及其上的催化层,此时,仅有孔的底部保留有催化层;
(4)将硅片放入直径为4厘米,长度为50厘米的石英管;在石英管中通入800~1000sccm的氩气和100~300sccm的氢气,同时,将硅片加热到500~700℃并保持10~20分钟;
(5)在反应器中充入3~10sccm的乙炔气体,同时将氩气和氢气的流量调整为500~700sccm,进行碳纳米管簇的孔内生长;
(6)碳纳米管簇在孔内生长15~20分钟之后关闭乙炔气,将氩气调整到800~1000scm,将氢气调整到100~300sccm,同时,停止加热,待芯片冷却到室温后从石英管中取出;
(7)在带有碳纳米管孔的硅片上溅射一层由600~900纳米厚的硅及10~20微米厚的光刻胶组成的支撑层;
(8)使用紫外线照射光刻胶,待光刻胶硬化后使用研磨法和化学机械平坦化法打磨出平整的碳纳米管簇表面和硅表面;研磨过程中,设备转速为15~30转每分钟,研磨压力为10~25KPa;机械平坦化过程中,设备转速为25~50转每分钟,打磨压力为10~20KPa;
(9)使用光刻和电子束蒸镀法在打磨平整的碳纳米管簇上制备钛/金焊盘,其中钛的厚度为15~25纳米,金的厚度为60~90纳米;
(10)在硅片的背面,使用腐蚀工艺去除硅,直到暴露出碳纳米管簇的底部,然后在腐蚀后的硅背部表面溅射一层钛/金镀层,其中钛的厚度为25~40纳米,金的厚度为300~500纳米,至此,便完成了由碳纳米管簇填充的硅通孔的制备。
CN 201010220449 2009-11-30 2010-06-25 用碳纳米管簇填充硅通孔的方法 Active CN101872730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010220449 CN101872730B (zh) 2009-11-30 2010-06-25 用碳纳米管簇填充硅通孔的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910199682 2009-11-30
CN200910199682.2 2009-11-30
CN 201010220449 CN101872730B (zh) 2009-11-30 2010-06-25 用碳纳米管簇填充硅通孔的方法

Publications (2)

Publication Number Publication Date
CN101872730A true CN101872730A (zh) 2010-10-27
CN101872730B CN101872730B (zh) 2012-06-27

Family

ID=42997512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010220449 Active CN101872730B (zh) 2009-11-30 2010-06-25 用碳纳米管簇填充硅通孔的方法

Country Status (1)

Country Link
CN (1) CN101872730B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169838A (zh) * 2011-03-15 2011-08-31 上海大学 碳纳米管微通道冷却器系统的制备方法
CN102569181A (zh) * 2011-12-15 2012-07-11 中国科学院微电子研究所 一种碳纳米管束垂直互连的制作方法
CN102683265A (zh) * 2011-03-15 2012-09-19 中国科学院微电子研究所 一种将碳纳米管束填充到硅转接板的硅穿孔中的方法
CN103227121A (zh) * 2013-04-16 2013-07-31 上海大学 通过碳纳米管凸点实现玻璃覆晶封装的方法
CN103377992A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 硅通孔结构及其制造方法
CN103681286A (zh) * 2012-08-30 2014-03-26 英飞凌科技股份有限公司 层排列的制造方法以及层排列
CN104979280A (zh) * 2015-05-19 2015-10-14 上海大学 用于硅通孔互连的碳纳米管簇转印方法
CN107833839A (zh) * 2017-10-12 2018-03-23 东南大学 一种基于纳米棒结构的按插式键合单元

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604303A (zh) * 2004-09-24 2005-04-06 华中科技大学 一种基于纳米碳管的互连方法
US20060141339A1 (en) * 2004-12-24 2006-06-29 Stmicroelectronics S.A. Wafer provided with transverse conductors and application to a fuel cell
JP2008041954A (ja) * 2006-08-07 2008-02-21 Fujitsu Ltd カーボン配線構造およびその製造方法
JP2009141087A (ja) * 2007-12-06 2009-06-25 Fujitsu Microelectronics Ltd 配線構造および半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604303A (zh) * 2004-09-24 2005-04-06 华中科技大学 一种基于纳米碳管的互连方法
US20060141339A1 (en) * 2004-12-24 2006-06-29 Stmicroelectronics S.A. Wafer provided with transverse conductors and application to a fuel cell
JP2008041954A (ja) * 2006-08-07 2008-02-21 Fujitsu Ltd カーボン配線構造およびその製造方法
JP2009141087A (ja) * 2007-12-06 2009-06-25 Fujitsu Microelectronics Ltd 配線構造および半導体装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169838B (zh) * 2011-03-15 2013-04-03 上海大学 碳纳米管微通道冷却器系统的制备方法
CN102169838A (zh) * 2011-03-15 2011-08-31 上海大学 碳纳米管微通道冷却器系统的制备方法
CN102683265A (zh) * 2011-03-15 2012-09-19 中国科学院微电子研究所 一种将碳纳米管束填充到硅转接板的硅穿孔中的方法
CN102569181B (zh) * 2011-12-15 2013-11-06 中国科学院微电子研究所 一种碳纳米管束垂直互连的制作方法
CN102569181A (zh) * 2011-12-15 2012-07-11 中国科学院微电子研究所 一种碳纳米管束垂直互连的制作方法
CN103377992A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 硅通孔结构及其制造方法
CN103377992B (zh) * 2012-04-23 2016-04-13 中芯国际集成电路制造(上海)有限公司 硅通孔结构及其制造方法
CN103681286A (zh) * 2012-08-30 2014-03-26 英飞凌科技股份有限公司 层排列的制造方法以及层排列
US9349794B2 (en) 2012-08-30 2016-05-24 Infineon Technologies Ag Layer arrangement
CN103227121A (zh) * 2013-04-16 2013-07-31 上海大学 通过碳纳米管凸点实现玻璃覆晶封装的方法
CN104979280A (zh) * 2015-05-19 2015-10-14 上海大学 用于硅通孔互连的碳纳米管簇转印方法
CN104979280B (zh) * 2015-05-19 2018-06-01 上海大学 用于硅通孔互连的碳纳米管簇转印方法
CN107833839A (zh) * 2017-10-12 2018-03-23 东南大学 一种基于纳米棒结构的按插式键合单元

Also Published As

Publication number Publication date
CN101872730B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN101872730B (zh) 用碳纳米管簇填充硅通孔的方法
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Liu et al. Controllable growth of graphene on liquid surfaces
JP6029818B2 (ja) グラフェン構造物及びその製造方法
TWI326271B (en) Methods and structures for promoting stable synthesis of carbon nanotubes
CN109742026B (zh) 直接生长法制备金刚石辅助散热碳化硅基底GaN-HEMTs的方法
TW201027672A (en) Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
JP5329800B2 (ja) 触媒ナノ粒子の制御および選択的な形成
TW201022142A (en) Graphene and hexagonal boron nitride planes and associated methods
CN105845447A (zh) 纳米柱状电极、纳米结构超级电容以及其制备方法
KR20120053294A (ko) 그래핀 패턴의 형성방법 및 그래핀 패턴을 갖는 전자소자의 제조방법
US20120202347A1 (en) Through silicon vias using carbon nanotubes
TW200419620A (en) Ultra low k plasma CVD nanotube/spin-on dielectrics with improved properties for advanced nanoelectronic device fabrication
CN103794552A (zh) 铜衬底上的碳纳米管生长
TW200536048A (en) Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowrie
Levchenko et al. Self-organized carbon connections between catalyst particles on a silicon surface exposed to atmospheric-pressure Ar+ CH4 microplasmas
WO2014038243A1 (ja) グラフェン-cnt構造及びその製造方法
CN102881651B (zh) 一种改善碳纳米管互连电特性的方法
TW201914378A (zh) 能量存儲中介層裝置和製造方法
CN108910868B (zh) 一种在绝缘衬底上制备石墨烯枝晶的方法
KR20070072849A (ko) 극초나노결정 다이아몬드와 탄소 나노튜브의 자기 조립혼성체 합성
Li et al. Liquid metal catalyzed chemical vapor deposition towards morphology engineering of 2D epitaxial heterostructures
TWI762150B (zh) 石墨烯奈米帶複合結構及其製備方法
CN109727858A (zh) 定向自组装模板转移方法
CN107658263A (zh) 一种基于碳纳米材料复合结构的三维硅通孔垂直互联方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant