CN101809190B - 由原子层沉积制造薄膜晶体管的方法 - Google Patents
由原子层沉积制造薄膜晶体管的方法 Download PDFInfo
- Publication number
- CN101809190B CN101809190B CN2008801089602A CN200880108960A CN101809190B CN 101809190 B CN101809190 B CN 101809190B CN 2008801089602 A CN2008801089602 A CN 2008801089602A CN 200880108960 A CN200880108960 A CN 200880108960A CN 101809190 B CN101809190 B CN 101809190B
- Authority
- CN
- China
- Prior art keywords
- deposition
- substrate
- layer
- thin film
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45548—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
- C23C16/45551—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45595—Atmospheric CVD gas inlets with no enclosed reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/423—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thin Film Transistor (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/861,491 US7851380B2 (en) | 2007-09-26 | 2007-09-26 | Process for atomic layer deposition |
| US11/861491 | 2007-09-26 | ||
| PCT/US2008/010853 WO2009042059A1 (en) | 2007-09-26 | 2008-09-18 | Process for making thin film transistors by atomic layer deposition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101809190A CN101809190A (zh) | 2010-08-18 |
| CN101809190B true CN101809190B (zh) | 2013-10-16 |
Family
ID=40223763
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008801089602A Expired - Fee Related CN101809190B (zh) | 2007-09-26 | 2008-09-18 | 由原子层沉积制造薄膜晶体管的方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US7851380B2 (enExample) |
| EP (1) | EP2193222A1 (enExample) |
| JP (1) | JP2010541237A (enExample) |
| CN (1) | CN101809190B (enExample) |
| TW (1) | TW200926308A (enExample) |
| WO (1) | WO2009042059A1 (enExample) |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7789961B2 (en) * | 2007-01-08 | 2010-09-07 | Eastman Kodak Company | Delivery device comprising gas diffuser for thin film deposition |
| US11136667B2 (en) * | 2007-01-08 | 2021-10-05 | Eastman Kodak Company | Deposition system and method using a delivery head separated from a substrate by gas pressure |
| US8211231B2 (en) * | 2007-09-26 | 2012-07-03 | Eastman Kodak Company | Delivery device for deposition |
| US7972898B2 (en) * | 2007-09-26 | 2011-07-05 | Eastman Kodak Company | Process for making doped zinc oxide |
| US20090081360A1 (en) * | 2007-09-26 | 2009-03-26 | Fedorovskaya Elena A | Oled display encapsulation with the optical property |
| US8398770B2 (en) * | 2007-09-26 | 2013-03-19 | Eastman Kodak Company | Deposition system for thin film formation |
| EP2159304A1 (en) * | 2008-08-27 | 2010-03-03 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Apparatus and method for atomic layer deposition |
| FR2944140B1 (fr) * | 2009-04-02 | 2011-09-16 | Commissariat Energie Atomique | Dispositif de detection d'image electronique |
| WO2010151430A1 (en) * | 2009-06-22 | 2010-12-29 | Arkema Inc. | Chemical vapor deposition using n,o polydentate ligand complexes of metals |
| GB0916700D0 (en) * | 2009-09-23 | 2009-11-04 | Nanoco Technologies Ltd | Semiconductor nanoparticle-based materials |
| KR101930682B1 (ko) * | 2009-10-29 | 2018-12-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
| US8691675B2 (en) * | 2009-11-25 | 2014-04-08 | International Business Machines Corporation | Vapor phase deposition processes for doping silicon |
| EP2360293A1 (en) | 2010-02-11 | 2011-08-24 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Method and apparatus for depositing atomic layers on a substrate |
| EP2362411A1 (en) | 2010-02-26 | 2011-08-31 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Apparatus and method for reactive ion etching |
| JP5569084B2 (ja) * | 2010-03-25 | 2014-08-13 | セイコーエプソン株式会社 | 画像表示装置および画像表示方法 |
| US8865259B2 (en) | 2010-04-26 | 2014-10-21 | Singulus Mocvd Gmbh I.Gr. | Method and system for inline chemical vapor deposition |
| WO2012029596A1 (en) | 2010-09-03 | 2012-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
| US20120073568A1 (en) * | 2010-09-23 | 2012-03-29 | Applied Nanstructured Solutions, Llc. | Methods for in situ deposition of coatings and articles produced using same |
| US8486192B2 (en) | 2010-09-30 | 2013-07-16 | Soitec | Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods |
| US8133806B1 (en) | 2010-09-30 | 2012-03-13 | S.O.I.Tec Silicon On Insulator Technologies | Systems and methods for forming semiconductor materials by atomic layer deposition |
| KR20140138323A (ko) * | 2010-10-21 | 2014-12-03 | 비코 에이엘디 인코포레이티드 | 원자층 증착을 이용한 장치상의 배리어 층 형성 |
| CN102021535A (zh) * | 2010-12-21 | 2011-04-20 | 上海纳米技术及应用国家工程研究中心有限公司 | 铝掺杂氧化锌透明导电薄膜的低温制备方法 |
| EP2481830A1 (en) * | 2011-01-31 | 2012-08-01 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Apparatus for atomic layer deposition. |
| KR101192221B1 (ko) * | 2011-03-25 | 2012-10-17 | 서울대학교산학협력단 | 산화아연 박막 트랜지스터 및 이의 제조방법 |
| JP5933895B2 (ja) * | 2011-11-10 | 2016-06-15 | 株式会社半導体エネルギー研究所 | 半導体装置および半導体装置の作製方法 |
| CN104081456B (zh) | 2011-11-23 | 2018-07-03 | 康宁股份有限公司 | 用于保护玻璃板的气相沉积方法 |
| CN103165454B (zh) * | 2011-12-12 | 2016-08-17 | 中芯国际集成电路制造(北京)有限公司 | 半导体器件及其制造方法 |
| US9054255B2 (en) * | 2012-03-23 | 2015-06-09 | Sunpower Corporation | Solar cell having an emitter region with wide bandgap semiconductor material |
| US8653516B1 (en) * | 2012-08-31 | 2014-02-18 | Eastman Kodak Company | High performance thin film transistor |
| CN102953048B (zh) * | 2012-11-13 | 2015-03-04 | 西安交通大学 | 一种纳米掺杂结构及其制备方法 |
| US20140206137A1 (en) * | 2013-01-23 | 2014-07-24 | David H. Levy | Deposition system for thin film formation |
| KR101933727B1 (ko) * | 2013-08-26 | 2018-12-31 | 연세대학교 산학협력단 | 원자층 증착법으로 산화물 박막의 일부를 할로겐 원소로 도핑할 수 있는 할로겐 도핑 소스, 상기 할로겐 도핑 소스의 제조 방법, 상기 할로겐 원소 소스를 이용하여 원자층 증착법으로 산화물 박막의 일부를 할로겐으로 도핑하는 방법, 및 상기 방법을 이용하여 형성된 할로겐 원소가 도핑된 산화물 박막 |
| TWI480406B (zh) * | 2013-11-28 | 2015-04-11 | Metal Ind Res & Dev Ct | 鍍膜設備及輸送模組 |
| JP6228444B2 (ja) * | 2013-12-06 | 2017-11-08 | 東京エレクトロン株式会社 | 有機el表示装置およびその製造方法 |
| KR102244070B1 (ko) * | 2014-01-07 | 2021-04-26 | 삼성디스플레이 주식회사 | 기상 증착 장치, 기상 증착 방법 및 유기 발광 표시 장치 제조 방법 |
| WO2015112470A1 (en) * | 2014-01-21 | 2015-07-30 | Applied Materials, Inc. | Thin film encapsulation processing system and process kit permitting low-pressure tool replacement |
| JP2016001722A (ja) * | 2014-04-08 | 2016-01-07 | 株式会社半導体エネルギー研究所 | 半導体装置及び該半導体装置を含む電子機器 |
| KR102420015B1 (ko) * | 2015-08-28 | 2022-07-12 | 삼성전자주식회사 | Cs-ald 장치의 샤워헤드 |
| CN108028297A (zh) | 2015-09-15 | 2018-05-11 | 加利福尼亚大学董事会 | 氧化锌在氮化镓上的多步沉积 |
| US10400332B2 (en) * | 2017-03-14 | 2019-09-03 | Eastman Kodak Company | Deposition system with interlocking deposition heads |
| US10501848B2 (en) * | 2017-03-14 | 2019-12-10 | Eastman Kodak Company | Deposition system with modular deposition heads |
| CN107604340B (zh) * | 2017-08-31 | 2023-09-01 | 安徽光智科技有限公司 | 化学气相沉积炉 |
| CN112447855A (zh) * | 2019-09-03 | 2021-03-05 | 北京大学 | 一种薄膜晶体管的制备方法 |
| CN115190820B (zh) | 2019-12-18 | 2024-12-20 | 无限纳米技术公司 | 用于薄膜沉积的设备和方法 |
| JP7098677B2 (ja) | 2020-03-25 | 2022-07-11 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法及びプログラム |
| US12180586B2 (en) * | 2021-08-13 | 2024-12-31 | NanoMaster, Inc. | Apparatus and methods for roll-to-roll (R2R) plasma enhanced/activated atomic layer deposition (PEALD/PAALD) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050084610A1 (en) * | 2002-08-13 | 2005-04-21 | Selitser Simon I. | Atmospheric pressure molecular layer CVD |
| US20060244107A1 (en) * | 2003-06-20 | 2006-11-02 | Toshinori Sugihara | Semiconductor device, manufacturing method, and electronic device |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FI57975C (fi) | 1979-02-28 | 1980-11-10 | Lohja Ab Oy | Foerfarande och anordning vid uppbyggande av tunna foereningshinnor |
| US4430149A (en) * | 1981-12-30 | 1984-02-07 | Rca Corporation | Chemical vapor deposition of epitaxial silicon |
| JPS5941470A (ja) * | 1982-08-31 | 1984-03-07 | Shimadzu Corp | 多室形薄膜作成装置 |
| US7563715B2 (en) * | 2005-12-05 | 2009-07-21 | Asm International N.V. | Method of producing thin films |
| US6821563B2 (en) | 2002-10-02 | 2004-11-23 | Applied Materials, Inc. | Gas distribution system for cyclical layer deposition |
| US20060003485A1 (en) * | 2004-06-30 | 2006-01-05 | Hoffman Randy L | Devices and methods of making the same |
| US7265003B2 (en) * | 2004-10-22 | 2007-09-04 | Hewlett-Packard Development Company, L.P. | Method of forming a transistor having a dual layer dielectric |
| JP4803578B2 (ja) * | 2005-12-08 | 2011-10-26 | 東京エレクトロン株式会社 | 成膜方法 |
| CN101589171A (zh) * | 2006-03-03 | 2009-11-25 | 普拉萨德·盖德吉尔 | 用于大面积多层原子层化学气相处理薄膜的装置和方法 |
| US11136667B2 (en) * | 2007-01-08 | 2021-10-05 | Eastman Kodak Company | Deposition system and method using a delivery head separated from a substrate by gas pressure |
| US20080296567A1 (en) * | 2007-06-04 | 2008-12-04 | Irving Lyn M | Method of making thin film transistors comprising zinc-oxide-based semiconductor materials |
-
2007
- 2007-09-26 US US11/861,491 patent/US7851380B2/en not_active Expired - Fee Related
-
2008
- 2008-09-18 EP EP08833592A patent/EP2193222A1/en not_active Withdrawn
- 2008-09-18 WO PCT/US2008/010853 patent/WO2009042059A1/en not_active Ceased
- 2008-09-18 JP JP2010526905A patent/JP2010541237A/ja active Pending
- 2008-09-18 CN CN2008801089602A patent/CN101809190B/zh not_active Expired - Fee Related
- 2008-09-25 TW TW097136924A patent/TW200926308A/zh unknown
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050084610A1 (en) * | 2002-08-13 | 2005-04-21 | Selitser Simon I. | Atmospheric pressure molecular layer CVD |
| US20060244107A1 (en) * | 2003-06-20 | 2006-11-02 | Toshinori Sugihara | Semiconductor device, manufacturing method, and electronic device |
Non-Patent Citations (1)
| Title |
|---|
| LIM S J ET AL.The application of atomic layer diposition for transparent thin film transistor.<<IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE>>.2006,634-635. * |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200926308A (en) | 2009-06-16 |
| JP2010541237A (ja) | 2010-12-24 |
| WO2009042059A1 (en) | 2009-04-02 |
| EP2193222A1 (en) | 2010-06-09 |
| CN101809190A (zh) | 2010-08-18 |
| US7851380B2 (en) | 2010-12-14 |
| US20090081842A1 (en) | 2009-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101809190B (zh) | 由原子层沉积制造薄膜晶体管的方法 | |
| CN102017104B (zh) | 用于制造掺杂的氧化锌的方法 | |
| US8207063B2 (en) | Process for atomic layer deposition | |
| CN101809192B (zh) | 用于沉积的输送装置 | |
| US10351954B2 (en) | Deposition system and method using a delivery head separated from a substrate by gas pressure | |
| JP5149272B2 (ja) | 原子層堆積法 | |
| US20080166880A1 (en) | Delivery device for deposition | |
| US20070228470A1 (en) | Apparatus for atomic layer deposition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131016 Termination date: 20200918 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |