CN101803055B - 使用全有机纳米晶网络的高效太阳能电池 - Google Patents

使用全有机纳米晶网络的高效太阳能电池 Download PDF

Info

Publication number
CN101803055B
CN101803055B CN2008800251642A CN200880025164A CN101803055B CN 101803055 B CN101803055 B CN 101803055B CN 2008800251642 A CN2008800251642 A CN 2008800251642A CN 200880025164 A CN200880025164 A CN 200880025164A CN 101803055 B CN101803055 B CN 101803055B
Authority
CN
China
Prior art keywords
layer
organic
semiconducting materials
organic semiconducting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800251642A
Other languages
English (en)
Other versions
CN101803055A (zh
Inventor
杨帆
史蒂芬·R·福里斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Princeton University
Original Assignee
University of Michigan
Princeton University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan, Princeton University filed Critical University of Michigan
Publication of CN101803055A publication Critical patent/CN101803055A/zh
Application granted granted Critical
Publication of CN101803055B publication Critical patent/CN101803055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供光电子器件和制造光敏光电子器件的方法,所述方法包括:在第一电极上淀积第一有机半导体材料以形成连续的第一层;在所述第一层上淀积第二有机半导体材料层以形成不连续的第二层,所述第一层的部分保持暴露;且在所述第二层上淀积所述第一有机半导体材料以形成不连续的第三层,至少所述第二层的部分保持暴露。将淀积所述第一和第二有机半导体材料交替多次,直至添加所述第二有机材料的最终层以形成连续层。在该最终层上淀积第二电极。所述第一电极和所述第二电极中的一个是透明的,并且所述第一有机半导体材料相对于所述第二有机半导体材料,是一种或多种施主型材料或一种或多种受主型材料,所述第二有机半导体材料为一种或多种其他材料类型的材料。

Description

使用全有机纳米晶网络的高效太阳能电池
美国政府权利
在美国政府支持下完成了该发明,由美国能源部国家再生能源实验室(U.S.Department of Energy,National Renewable EnergyLaboratory)授予的合同号为339-4012。在该发明中,政府具有确定的权力。
联合研究协议
所要求保护的发明由代表和/或联合一个或多个下列组织达成联合的大学-公司研究协议来完成:Princeton University(普林斯顿大学)、The University of Southern California(南加利福尼亚大学)和GlobalPhotonic Energy Corporation(全球光子能量公司)。在要求保护的发明完成的日期时和所述日期之前,所述协议有效,并且完成所述要求保护的发明是所述协议范围内从事的活动的结果。
相关申请
本申请是2006年11月20日提交的美国序号为11/561,448的部分继续申请,且是2006年7月11日提交的美国序号为11/483,641的部分继续申请,所述申请的公开内容在此以其全文并入。
技术领域
本发明一般涉及有机光敏光电子器件。更具体地,本发明涉及在其活性区域内具有全有机纳米晶网络的光敏光电子器件。
发明背景
光电子器件依靠材料的光学和电子性质,从而利用电子学产生或检测电磁辐射、或者从周围的电磁辐射产生电流。
光敏光电子器件将电磁辐射转变成电信号或电流。太阳能电池,也称作光电(“PV”)器件,是一种特定用于产生电能的光敏光电子器件。光电导体电池是一种与信号检测电路一起使用的光敏光电子器件,所述信号检测电路监测器件电阻,以检测因吸收光而发生的变化。光检测器可接收所施加的偏压,是一种与电流检测电路一起使用的光敏光电子器件,当将所述光检测器暴露在电磁辐射下时,所述电流检测电路可测量所产生的电流。
根据是否存在如下所定义的整流结,且还根据是否利用外加电压、也称作偏压或偏置电压来运行所述器件,可以对这三种光敏光电子器件进行区分。光电导体电池不具有整流结且通常利用偏压来运行。PV器件具有至少一个整流结且不利用偏压运行。光检测器,一种PV器件,具有至少一个整流结且通常利用但不总是利用偏压来运行。
如本文中所使用的,术语“整流”特别是指界面具有不对称传导的特性,即界面支持电荷优选在一个方向上传输。术语“半导体”是指当热或电磁激发诱导电荷载流子时,能够传导电流的材料。术语“光电导的”通常是指一种过程,在所述过程中,电磁辐射能被吸收并由此被转化成电荷载流子的激发能,使得所述载流子能够在材料中传导(即传输)电荷。术语“光电导材料”是指半导体材料,因它们吸收电磁辐射的性质而利用其来产生电荷载流子。如本文中所使用的,“顶部”是指最远离衬底,而“底部”是指最接近衬底。可以存在居间层(例如,如果第一层位于第二层“上”或“上方”),除非指明第一层“在物理上接触”或“直接位于”第二层上;然而,这不排除表面处理(例如,将第一层暴露在紫外线-臭氧或等离子体下)。
当将适当能量的电磁辐射入射到有机半导体材料上时,光子能够被吸收而产生激发的分子状态。在有机光电导材料中,通常认为所产生的分子状态为“激子”,即作为准粒子传输的束缚态的电子-空穴对。在成对再结合(“猝灭”)之前,激子具有明显的寿命,成对再结合是指原生电子和空穴相互再结合(而不是与来自其他对的空穴或电子再结合)。为了产生光电流,典型地在整流结处将形成激子的电子-空穴分开。
在光敏器件的情况中,将整流结称作光电异质结。有机光电异质结的类型包括在施主材料和受主材料界面处形成的施主-受主异质结、和在光电导材料和金属的界面处形成的肖特基(Schottky)-势垒异质结。
图1是显示施主-受主异质结实例的能级图。在有机材料的情形下,术语“施主”和“受主”是指两个接触但不相同的有机材料的最高占据分子轨道(“HOMO”)和最低未占据分子轨道(“LUMO”)能级的相对位置。如果与另一种材料接触的一种材料的LUMO能级较低,那么所述材料是受主。反之,其是施主。它是能量上有利的,在缺少外部偏压时,用于施主-受主结处的电子移入受主材料中。
如本文中所使用的,如果第一能级更接近真空能级10,则第一HOMO或LUMO能级“大于”或“高于”第二HOMO或LUMO能级。较高的HOMO能级对应于具有比真空能级小的绝对能量的电离势(“IP”)。同样地,较高的LUMO能级对应于具有比真空能级小的绝对能量的电子亲和势(“EA”)。在常规能级图中,真空能级在顶部,材料的LUMO能级比相同材料的HOMO能级高。
在施主152或受主154中吸收光子6产生激子8之后,所述激子8在整流界面处脱离。施主152传输空穴(空心圆)且受主154传输电子(黑色圆)。
有机半导体的显著性质是载流子迁移率。迁移率测量了电荷载流子响应电场而移动通过导电材料的难易。在有机光敏器件的情形下,因高电子迁移率而优先传导电子的材料可称作电子传输材料。因高空穴迁移率而优先传导空穴的材料可称作空穴传输材料。由于在器件中的迁移率和/或位置而优先传导电子的层,可以称作电子传输层(“ETL”)。因在器件中的迁移率和/或位置而优先传导空穴的层,可以称作空穴传输层(“HTL”)。优选地,但不是必须地,受主材料为电子传输材料且施主材料为空穴传输材料。
如何根据载流子迁移率和相对HOMO和LUMO能级来配对两种有机光电导材料充当光电异质结中的施主和受主,这在本领域内是熟知的,在此不再描述。
如本文中所使用的,术语“有机”包括聚合物材料和可用于制造有机光电子器件的小分子有机材料。“小分子”是指不是聚合物的任意有机材料,且“小分子”实际上可以很大。在某些情况下,小分子可以包括重复单元。例如,将长链烷基用作取代基不会使分子从“小分子”类别中除去。还可将小分子并入聚合物中,例如作为聚合物骨架上的侧基或作为骨架的一部分。小分子还可充当树枝状化合物的核心部分,所述树枝状化合物由一系列堆积在核心部分上的化学壳构成。树枝状化合物的核心部分可以为荧光或磷光性小分子发射体。树枝状化合物可以为“小分子”。通常,小分子具有确定的化学式且分子之间的分子量相同,而聚合物具有确定的化学式且分子之间的分子量可以发生变化。如本文中所使用的,“有机物”包括烃基和杂原子取代的烃基配体的金属络合物。
关于有机光敏器件领域的其他背景的解释和技术状态的说明,包括它们的一般结构、特性、材料和特征,将Forrest等人的美国专利6,657,378号、Forrest等人的美国专利6,580,027号和Bulovic等人的美国专利6,352,777号并入本文中以供参考。
发明概述
根据本发明实施方案制造光敏光电子器件的方法包括在第一电极上淀积第一有机半导体材料,从而形成连续的、平面的第一层。所述第一有机材料是施主型材料或受主型材料。如果需要,可通过添加相同类型的其他有机半导体材料来改变所述第一层的形貌。在形成第一层之后,在所述第一层上淀积第二有机半导体材料层以形成不连续的第二层,使得第一层的一部分暴露。所述第二有机半导体材料是与所述第一有机半导体材料不同类型的材料(施主或受主)。可以将所述第一有机半导体材料淀积在所述第二层上,以形成不连续的第三层,使得至少第二层的一部分保持暴露。根据需要,交替淀积第一和第二有机半导体材料淀积多次。淀积第二有机材料的最后层以形成连续层。在所述最后层上淀积第二电极,其中所述第一电极和第二电极中的至少一个是透明的。
附图简述
图1是显示施主-受主异质结的能级图。
图2显示了包含施主-受主异质结的有机光敏器件。
图3显示了形成平面异质结的施主-受主双层。
图4显示了包含位于施主层和受主层之间的混合异质结的混杂异质结。
图5显示了本体异质结。
图6显示了包含肖特基-势垒异质结的有机光敏器件。
图7显示了串联的级联光敏电池。
图8显示了并联的级联光敏电池。
图9a~9b显示了[C60(3nm)/CuPc(3nm)]6纳米晶网络生长进展的模拟,并绘制了均方根(rms)表面粗糙度和相对于平面施主/受主结的界面面积的图;以及在C60/CuPc结构的有机气相淀积期间记录的质量流速和压力变化,其中筒阀处于关闭位置是防止有机物从筒中向外扩散,而筒阀处于打开位置是使得载流子气体能够将有机物分子传送至筒外。
图10a~10c显示了在氧化铟锡物(ITO)衬底上生长的C60/CuPc纳米晶膜的结构特征。
图11a~11b显示了纳米晶[C60(3.1nm)/CuPc(3.1nm)]17膜的吸收,和由αNC=0.48αC60+0.23αCuPc进行的拟合,以及在CuPc的低能Q-带中的归一化吸收谱。
图12a~12b显示了CuPc(14.5±0.2nm)/[C60(3.2±0.2nm)/CuPc(3.20±0.2nm)]n/C60(50.0±0.5nm)/BCP(10nm)/Ag太阳能电池的性能,其中n为0~12,且有源层的总厚度为54.5~141nm。
图13a~13d描绘了影响图12a~12b的太阳能电池的室温下功率转换效率的参数。
图14a~14b描绘了根据本发明实施方案构造的太阳能电池的光谱响应度和光谱辐照度,作为波长的函数。
所述图不一定是按比例绘制的。
发明详述
由于引入了施主/受主(DA)异质结,有机光电(PV)电池的功率转换效率稳步升高。此外,报道了在缠结的或“本体-异质结”(BHJ)结构方面的改进,其中因吸收光子而产生的激子始终(理想状态下)在DA界面的激子扩散长度(~10nm)内。然而,这些BHJ无定形有机共混物的高串联电阻限制了有源层的厚度,使得光吸收降低,同时显示出低填充系数以及因此的低太阳能转化效率。一种解决无序有机膜中电荷载流子低迁移率的手段是使用在有机材料中产生秩序和结晶性的加工方法。在过去,实现结晶性的生长条件和方法,会同时产生过度的表面粗糙度、空隙和针孔,导致性能变差。
在该实施方案中,提供PV电池,其中有源层包含形成高电导率网络的纳米晶有机区域,以用于电荷抽取。这种电池保留了结晶有机物的许多优势,并结合了本体异质结的高表面积,没有前述方法的劣势。结构分析证实,所构成的施主分子铜酞菁(CuPc)和受主分子C60存在结晶相。这种新器件构造使得功率转换效率比起平面HJ太阳能电池对照提高了三倍。
为了降低有机BHJ中电池的串联电阻,可能必须产生界面形态和晶序,以降低电荷载流子传导的电阻、减少妨碍载流子抽取的瓶颈和岛。实际上,由垂直相分离引起的空间排序使得在有机/无机量子点混合电池中的电荷收集从无序电池的1.7%升至2.8%。有机太阳能电池可以具有由结晶施主突出和平面化受主层形成的有序、相互交叉的DA界面,其中所述DA界面通过有机气相淀积(OVPD)法生长。在此,控制有机膜的结晶和形态产生电阻更低、有序、相互交叉的界面,当将所述界面用于太阳能电池结构中时,与其他相同的平面HJ相比,效率显著提高。在本实施方案中,将DA结晶界面的概念扩大至本体延伸的、高度互连且缠结的相互穿插网络中。结晶的有机区,与可比较的无定形层或畴相比,降低了总串联电阻,使得更厚的DA区域有助于光吸收(ηA)从而明显增加了HJ界面面积、有助于激子扩散(ηED),并且所述区域的结晶性有效地向电池的相反电极传导电荷,有助于电荷收集(ηCC)。参见美国专利7,196,366号。
有机光敏器件包括至少一个感光区域,在所述感光区域中吸收光以产生激子,所述激子随后离解成电子和空穴。图2显示了有机光敏光电子器件100的实例,其中感光区域150包括施主-受主异质结。所述“感光区域”为光敏器件的一部分,吸收电磁辐射而产生可离解的激子,从而产生电流。器件100包括位于衬底110上的阳极120、阳极平滑层122、施主152、受主154、激子阻挡层(“EBL”)156、和阴极170。
在Forrest等人的美国专利6,451,415号中描述了EBL 156的实例,将其涉及EBL的公开内容通过参考并入本文中。在Peumans et al,“Efficient photon harvesting at high optical intensities in ultrathin organicdouble-heterostructure photovoltaic diodes,”Applied Physics Letters 76,2650-52(2000)中还可以发现EBL的其他背景说明。EBL通过防止激子从施主和/或受主材料中迁出而降低了猝灭。
本文中可交换使用的术语“电极”或“接触”是指提供介质以用于向外部电路传递光产生的电流或向器件提供偏压电流或电压的层。如图2中所示,阳极120和阴极170是例子。电极可以由金属或“金属替代物”构成。本文中所使用的术语“金属”包括由基本上纯的金属构成的材料以及金属合金两者,所述金属合金是由两种以上基本上纯的金属构成的材料。术语“金属替代物”是指在正规定义中不是金属、但其具有类似金属的性质诸如导电性的材料,例如掺杂的宽带隙半导体、简并半导体、导电性氧化物和导电聚合物。电极可包括单层或多层(“复合”电极),可以是透明的、半透明的或不透明的。电极和电极材料的实例包括在Bulovic等人的美国专利6,352,777号、和Parthasarathy等人的美国专利6,420,031号中所公开的那些实例,其各以这些相应特征的公开内容通过参考并入本文中。如本文中所使用的,如果层在相关波长中可传输环境电磁辐射的至少50%,则称其为“透明的”。
所述衬底110可以是提供期望的结构特性的任意合适衬底。所述衬底可以为柔性或刚性、平面或非平面的。所述衬底可以为透明的、半透明或不透明的。刚性塑料和玻璃是优选的刚性衬底材料的实例。柔性塑料和金属箔是优选的柔性衬底材料的实例。
阳极平滑层122可以位于阳极层120和施主层152之间。在Forrest等人的美国专利6,657,378号中描述了阳极平滑层,其涉及该特征的公开内容通过参考并入本文中。
在图2中,感光区域150包括施主材料152和受主材料154。用于所述感光区域中的有机材料可包括有机金属化合物,包括环金属化的有机金属化合物。如本文中使用的术语“有机金属”与本领域普通技术人员所通常理解的相同,且例如如同由Gary L.Miessler和DonaldA.Tarr,Prentice Hall(1999)编写的“Inorganic Chemistry(无机化学)”(第二版)13章中所给定的。
有机层可以使用真空淀积、旋涂、溶液处理、有机气相淀积、喷墨印刷、有机蒸气喷印和本领域中已知的其他方法来制造。
在图3~5中显示了各种类型的施主-受主异质结的实例。图3显示了形成平面异质结的施主-受主双层。图4显示了包含混合异质结(mixed heteroiunction)153的混杂异质结(hybrid heterojunction),所述异质结153包含施主和受主材料的混合物。图5显示了理想的“本体”异质结。在理想光电流情况下,本体异质结具有位于施主材料252和受主材料254之间的单个连续界面,尽管在实际器件中往往存在多个界面。作为材料具有多个畴的结果,混合异质结和本体异质结能够具有多个施主-受主界面。被相反类型材料包围的畴(例如,被受主材料包围的施主材料的畴)可以为电绝缘的,使得这些畴对光电流没有贡献。通过穿流通道(连续光电流通道)可以连接其他畴,使得这些其他畴对光电流有贡献。混合异质结和本体异质结之间的不同在于在施主和受主材料之间相分离的程度。在混合异质结中,相分离很少或无相分离(畴非常小,例如小于几个纳米),然而在本体异质结中,存在明显的相分离(例如形成尺寸为几个纳米~100nm的畴)。
例如通过使用真空淀积或气相淀积来共淀积施主和受主材料,可形成小分子混合异质结。例如通过受控生长、具有淀积后退火共淀积、或溶液处理,可形成小分子本体异质结。例如通过对施主和受主材料的聚合物共混物进行溶液处理,可形成聚合物混合或本体异质结。
如果感光区域包含混合层(153)或本体层(252、254)和施主层(152)和受主层(154)中的一个或两个,则称所述感光区域包含“混杂”异质结。图4中层的排列是一个实例。关于混杂异质结的其他说明,通过参考将公布的美国专利申请2005/0224113A1并入本文中,所述专利题为“High efficiency organic photovoltaic cells employing hybridizedmixed-planar heterojunctions”,由Jiangeng Xue等人完成,2005年10月13日公布。
通常,平面异质结具有良好的载流子传导,但激子分裂差;混合层具有良好的激子分裂但载流子的传导和收集差;本体异质结具有良好的激子分裂和良好的载流子传导,但在材料“尽端路(cul-de-sacs)”末端经历电荷的累积,降低了收集和总的功率效率。除非有其他说明,在本文中所公开的实施方案中,平面、混合、本体和混杂异质结可以互换地用作施主-受主异质结。
图6显示了有机光敏光电子器件300的实例,其中感光区域350是肖特基-势垒异质结的一部分。器件300包括透明接触320、含有机光电导材料358的感光区域350、和肖特基接触370。典型地,形成肖特基接触370作为金属层。如果所述光电导层358为ETL,则可以使用高功函数金属如金,而如果光电导层为HTL,则可使用低功函数金属如铝、镁或铟。在肖特基-势垒电池中,与肖特基势垒相关的内建电场将激子中的电子和空穴拉开。通常,这种场帮助的激子分裂不如在施主-受主界面处的离解有效。
可以将所说明的器件连接至元件190。如果所述器件为光电器件,元件190为消耗或储存功率的电阻负载。如果器件为光检测器,则元件190为电流检测电路,所述电流检测电路在光检测器暴露于光下时测量产生的电流,且其可向器件施加偏压(如同例如在Forrest等人于2005年5月26日公布的已公布美国专利申请2005-0110007A1中所述的)。如果将整流结从器件中消除(例如使用单一的光电导材料作为感光区域),则可以将得到的结构用作光电导体电池,在所述情况中,元件190为信号检测电路,用于监测由于吸收光而引起的跨器件电阻的改变。如果没有其他说明,可以将这些排列和变体中的每一种用作此处公开的每个附图和实施方案中的器件。
有机光敏光电子器件可还包括透明的电荷转移层、电极、或电荷复合区域。电荷转移层可以是有机的或无机的,且可以具有或不具有光电导活性。电荷转移层类似于电极,但是与器件外部不存在电连接,且仅将电荷载流子从光电子器件的一个分部传递到相邻的分部。电荷复合区域类似于电荷转移层,但是允许电子和空穴在光电子器件的相邻分部之间进行复合。电荷复合区域可包括半透明的金属或金属代用品的复合中心,所述复合中心包括纳米簇、纳米粒子和/或纳米棒,如同例如在下列中所述:Forrest等人的美国专利6,657,378号;Rand等人于2006年2月16日公布的题为“Organic Photosensitive Devices”的已公布美国专利申请2006-0032529A1;和Forrest等人于2006年2月9日公布的题为“Stacked Organic Photosensitive Devices”的已公布美国专利申请2006-0027802A1;将每一篇中关于其复合区域材料和结构的公开内容通过参考并入本文中。电荷复合区域可以包括或不包括透明的基体层,其中植入所述复合中心。电荷转移层、电极或电荷复合区域可以充当光电子器件分部的阴极和/或阳极。电极或电荷转移层可以充当肖特基接触。
图7和8显示了包括这种透明电荷转移层、电极和电荷复合区域的级联器件的实例。在图7的器件400中,利用居间传导区域460在电学上以串联方式堆叠感光区域150和150’。按照不具有外部电连接的情况所述,居间传导区域460可以是电荷复合区域或可以是电荷转移层。作为复合区域,区域460包括具有或不具有透明基体层的复合中心461。如果不存在基体层,则形成所述区域的材料的排列可以不是连续地越过所述区域460。图8中的器件500显示了在电学上以并联方式堆叠的感光区域150和150’,且顶部电池处于反向构造(即,阴极向下)。在图7和8的每个图中,感光区域150和150’与阻挡层156和156’可以根据应用,由同样的相应材料、或不同材料形成。同样地,感光区域150和150’可以是相同类型(即平面、混合、本体、混杂)的异质结,或可以是不同的类型。
在每个上述器件中,可以省略层,诸如平滑层和激子阻挡层。可以添加其他层,例如反射层或其他的感光区域。可以改变或颠倒层的顺序。为了提高效率,可以使用集中器或俘获构造,如同例如在Forrest等人的美国专利6,333,458号和Peumans等人的美国专利6,440,769号中所公开的,通过参考将其并入本文中。可以使用涂层将光能集中到器件的期望区域上,如同例如在Peumans等人的题为“Aperiodicdielectric multilayer stack”的已公布美国专利申请2005-0266218A1号、美国专利7,196,835号中所公开的,通过参考将其并入本文中。在级联器件中,可以在电池之间形成透明的绝缘层,同时借助于电极在电池之间提供电连接。此外,在所述级联器件中,一个以上的感光区域可以是肖特基-势垒异质结,以代替施主-受主异质结。可以使用明确列出的那些之外的排列。
工作的焦点是使用有机光电电池以经济的生产成本来获得合格的光电转化效率。在强电场下或在施主-受主异质结处,有机材料中的激子发生有效离解,其中所述给体-受体异质结中在接触性有机材料之间的电子亲和势和电离势的差别大得足以克服激子结合能。后者的机理已经用于形成功率转换效率ηp~1%的施主-受主异质结光电电池,并受限于激子扩散长度(LD~10-40nm)比光吸收长度(LA~100nm)短得多。用于太阳能电池的有机材料,厚度为100nm时,通常吸收超过90%的入射光。
在施主-受主异质结的激子扩散长度内产生的激子,在异质结处具有高的有效离解概率。相反,从施主-受主异质结超过激子扩散长度而产生的激子通常不太可能有效离解并对光电流做出贡献。
如上面对图5所述的,开发本体异质结,使得施主-受主异质结与激子的接近度最大化。本体异质结优选具有高度交错折叠或相互穿透(inter-percolated)的施主和受主材料网络,使得通过吸收入射辐射而产生的激子始终接近异质结,并因此有可能对光电流做出贡献。
早先,通过旋涂可溶性形式的施主和受主材料的混合物,然后通过高温退火对所述混合物进行相分离,来制造本体异质结。在旋涂和溶剂蒸发期间,施主和受主材料相发生分离,在两相之间产生具有大界面面积的错综的互相贯穿网络。通过改变旋转条件、溶剂和相关材料的浓度来控制得到的结构形态。尽管通过旋涂法形成的本体异质结表现出改进的功率转换效率,优于常规的双层设计,但是本体器件因界面层的无序结构而显示出高串联电阻。在旋涂期间的相分离和退火诱导的相分离两者都是热力学驱动的方法,特征在于,在施主和受主层之间因界面形成方法的熵而成为随机结构的交错连接。
通过将旋涂改成有机气相淀积(OVPD),提高了本体器件的性能,如同在Shtein等人的题为“Method of Fabricating An OptoelectronicDevice Having A Bulk Heterojunction”的美国专利申请公布2005/0227390A1和在Nature Materials,第4卷,37-41页(2005年)中Yang等人的“Controlled growth of a molecular bulk heterojunctionphotovoltaic cell”中所述的,通过参考将所述两个文献并入本文中。
OVPD本身不同于广泛使用的真空热蒸发(VTE),因为OVPD使用载流子气体将蒸汽传送入淀积室中。在空间上将蒸发和传送功能分开,产生在淀积过程中的精确控制,并能够控制有机表面形态,如具有平滑表面的平面或具有突出的层。与VTE相比,OVPD的另一个特征是分子表面扩散性大且在分子达到表面后无弹道轨迹。OVPD在填充先前存在的空隙和其他表面不均匀性时特别有效,而VTE因为入射分子的平均自由行程和弹道轨迹长而效率低。
在OVPD中所使用的典型淀积条件下,载流子气体在衬底周围的流动产生流体力学边界层,其中分子传输是扩散限制的。通过调节有机物类的浓度、流动流体力学和表面扩散率来控制淀积速率、淀积效率和膜形态。利用OVPD,使用小分子材料生长的有序的本体异质结已经显示了比先前旋涂本体异质结设计改进的串联电阻。
与旋涂设计相比,除了改进了载流子迁移率、串联电阻和总效率之外,OVPD生长的本体异质结的有序性质能够消除施主和受主材料的袋的产生,所述袋未通过穿流通道与电极电连接。
然而,OVPD生长的本体异质结的吸收效率在空间上受到限制。通常,通过选择具有不同吸收谱的施主材料和受主材料来最大化异质结的吸收特性。如果入射光子的波长接近第一材料而不是第二材料的吸收峰,且入射光子主要借助于第二材料通过本体异质结(例如,下传第二材料的“手指”的长度),则光子对光电流的贡献的可能性会降低。
保持有序的本体异质结的优势如激子分裂之前移动的距离短是有利的,同时通过增加激子发生离解处的施主-受主界面面积以及总的层厚度,将进一步增大光子到激子的转化率。
纳米晶网络依靠施主和受主分子的超薄、交替层的生长,使得任意指定的层不会完全覆盖位于其下方的层。不完全覆盖起因于在使用OVPD时缺少表面润湿与控制膜的形态和晶体织构的组合(如下所述)。
模拟了纳米晶施主/受主(或“DA”)网络的生长,结果示于图9a中(如下所述)。所述模拟假设在透明导电衬底如氧化铟(ITO)上预先淀积的铜酞菁(CuPc)的连续和平面施主层上开始网络的生长。要指出,平面层可具有特定量的粗糙度。或者,在产生CuPc施主层之后,可以向该层添加其他的施主材料以改变其形貌。尽管在该实施方案中,首先产生施主层,但是也可以首先产生受主层。在施主材料之后,添加非常薄的受主层C60,其因为不完全的表面润湿而形成结晶岛,使得下面的部分CuPc层暴露。淀积第二个薄的结晶CuPc层,利用与第一个连续CuPc层直接接触的第二个CuPc层的部分对所述C60部分覆盖。在OVPD中,扩散流推动CuPc分子进入临近C60晶粒之间的谷中,从而使总的膜表面能最小化。通过连续地交替淀积C60和CuPc,形成C60的3D互相贯穿纳米晶网络。生长模拟显示,界面面积随着施主/受主双层交替数的增加而单调增加。如图9a中所示,最终的界面面积是平面界面的六倍。所有纳米晶膜的均方根(rms)面积粗糙度在2.0~2.5nm之间变化,且达到约2.2nm的最大值。最终步骤是在网络顶部上生长连续的C60层,使得膜表面平面化以防止短路。如上所述,如果第一层为受主层,那么这最终层就当做施主层。
通过透射电子显微镜(TEM)、x射线衍射(XRD)和原子力显微镜(AFM)来验证OVPD生长的多个层的结晶膜织构(通过图9b中所示的方法进行生长,且在下面进行描述),如图10中所示。在图10a中显示了[C60(6.1nm)/CuPc(6.1nm)]10的横截面TEM图像。(这里,[A(x nm)/D(ynm)]n是指受主和施主层的相应厚度x、y,且n为DA对的数目。)尽管本文中描述了受主/施主层的“对”数,但是可以改变层使得存在额外的施主或受主层。C60和CuPc相与结晶双层膜中观察到的类似。C60相具有明确有序、紧密堆积的分子平面,而单斜晶的CuPc晶格显示有序度降低,因为图像不是沿单一的晶体平面的投影拍摄的。电子和x射线衍射两者均证实存在C60和CuPc的晶畴。晶畴的大小为5nm~10nm,类似于在C60的均匀膜中发现的那些,但是比通过热蒸发得到的ZnPc晶体的小。获得了[C60(3.1nm)/CuPc(3.1nm)]17的类似TEM图像,其中晶粒的形状类似但是尺寸稍小,这正是所预期的。高角环形暗视野图像证实存在CuPc的聚集体,尺寸与在图10a中观察到的畴尺寸相当。
平面图(图10b,插入图)中同一[C60(6.1nm)/CuPc(6.1nm)]10膜的选定区域的电子衍射图像显示了与α-CuPc的有序畴和面心立方体(fcc)C60相对应的衍射斑。晶粒的尺寸和分布与在截面图中看到的那些相近。边界明确的衍射斑表明,在探测束的区域内具有高度的晶序和取向。另外,在图10b中所示的[C60(3.5nm)/CuPc(3.5nm)]5和[C60(1.9nm)/CuPc(1.9nm)]10的XRD图案,证实在两个样品中存在α-CuPc。在扫描范围内未识别到C60的衍射峰,这是由于其晶格常数大(
Figure G2008800251642D00151
)的缘故。这些结构研究表明,通过使用OVPD交替生长施主材料和受主材料,得到了结晶相,这与通过共蒸发生长的无定形CuPc:C60混合膜相反(底部扫描,图10b),其中限制了结晶相的分离。如图10c中所示,通过AFM观察的同一[C60(6.1nm)/CuPc(6.1nm)]10膜的表面形态显示,晶体织构的均方根(rms)粗糙度为12.7nm,反映了在ITO衬底上晶粒生长造成的粗糙化效果(参见图9a),所述ITO衬底的rms粗糙度<3nm。
将纳米晶膜的吸收谱拟合成净CuPc和C60吸收谱(分别为αCuPc和αC60)的线性加和。图11a显示了在熔融石英衬底上生长的[C60(3.1nm)/CuPc(3.1nm)]17的吸收系数,并用αNC=0.48αC60+0.23αCuPc进行拟合。使用类似的表达式对具有不同施主/受主循环厚度的膜进行拟合。纯的CuPc膜具有中心位于波长为λ=620和695nm的两个峰,分别与二聚体和单体的吸收相对应。对于无定形CuPc:C60混合物,由于分子间的距离增大而提高了在λ=695nm处的吸收。通过比较,在λ=695nm处的纳米晶层的峰明显小于混合膜的,表明存在高密度的CuPc晶粒(图11b)。在这些拟合中得到的C60和CuPc吸收的不对称性可能是这两种分子成分具有不同晶体粒度的结果。
这些晶体结构是稳定的,而不是亚稳态结构,如同在CuPc和3,4,9,10-苝四羧基二苯并咪唑(PTCBI)的退火混合物中所观察到的。此外,与通过在110~150℃下退火而制备的相分离的聚合物电池相比,在这些电池中的小分子量膜具有高玻璃化转变温度(>400℃)。另外,因此,在这种器件的普通操作条件和所需要的操作寿命下,预期不会发生这些电池的相分离。
制造了一系列CuPc(14.5±0.2nm)/[C60(3.2±0.2nm)/CuPc(3.2±0.2nm)]n/C60(50.0±0.5nm)/BCP(10nm)/Ag(BCP浴铜灵(bathocuproine))双异质结PV电池,其中n为0~12。此处,使用BCP作为激子阻挡层。C60(3.2nm)/CuPc(3.2nm)多层的标称厚度为6.4~76.8nm,对于所有样品保持C60:CuPc=1。因此,当n=12时,总的有机有缘膜厚度为t=141nm,这超过了常规的、双层小分子量电池的典型厚度t=100nm。而这进一步因为其对厚度的指数依赖性(即电池的响应度符合(1-exp[-αt]))而增大了光吸收,其中α为有机材料的吸收系数。此外,顶部C60层比用于最适双层器件中的厚,这是使得粗糙膜的表面平面化所需要的(参见图9c)。
所有电池的暗电流密度-电压(J-V)特性在±1V处具有>105的整流比,如图12a中所示,同时在1V处的正向电流密度下降了10倍,从n=0到n=12。使用理想二极管方程拟合正向J-V曲线,得到了比串联电阻RSA,RSA为图12b中交替的施主/受主对的数目(以及因此的总有源层厚度)的函数。双层(n=0)的电池具有RSA=0.25Ωcm2,当n=12时增大到1.7Ωcm2。电池厚度仅倍增而RSA增大了大约7倍,这表明,纳米晶区域对于电荷传导并不是完全没有瓶颈。然而,较少周期的多层显示RSA仅增大了2~3倍,这表明,最深处的堆叠才有明显的无序性增加。
在100±4mW/cm2AM 1.5G太阳辐射下测量了与图12中相同电池的光响应(在光谱校正之后,参见下面),示于图13a中。将短路电流(JSC)、开路电流(VOC)和填充系数(FF)绘制于图13b中。随着n从2增加到6,JSC明显增大了近3倍,从双层电池的10.3±0.3mA/cm2到31.3±0.3mA/cm2,然后随着n进一步增大而饱和,这是由于具有大且缠结的结晶网络的最厚电池具有高串联电阻。在同一图中,VOC显示了相同的趋势,从双层电池(n=0)的0.42±0.01V开始,然后增大到n>6时的饱和值0.50±0.01V。最后,FF从n=0时的0.56±0.01降至n=6时的0.48,并在n=12时降至0.36±0.01,再次反映了在最深堆积处电阻的增加,如图12b中所示。
在图13c中显示了作为波长的函数的外量子效率(EQE)。中心在λ=450和470nm之间的EQE峰,是由C60吸收产生的,而在λ=620和695nm处的峰是由CuPc吸收产生的(参见图11a)。随着的C60/CuPc对的数目从n=0增大到n=6,EQE快速增加,即λ=620nm处的峰从25%增大到61%,且在λ=450nm处的峰从10%增大到36%,两者均表明随着n而增大了>2.5倍。在更大的n处,由于电阻增加而使得载流子收集效率降低,导致EQE降低,可能表明由纳米晶体网络形成的穿流导电通道被瓶颈或岛打断。与C60吸收对应的宽峰随着n的增大向较短波长处移动,这是光场随着厚度而变化的结果。在黑暗中测得的EQE谱与在100mW/cm2白光泛光(flooded)照明下测量的那些结果相同,表明在高光生载流子浓度下电荷载流子的复合最少。反之,在通过退火得到的有机BHJ太阳能电池中和在具有有序性较低的导电通道的聚合物-无机物混合电池中,光响应度随着光强度而下降。
有组织的相互交错的施主/受主界面的生长导致CuPc/PTCBI太阳能电池与其平面类似物相比,效率增大了2.7倍,但是其构造表明当使用CuPc/C60系统时,没有改进。这种改进的缺乏归因于在C60中的长(大约40nm)激子扩散长度,超过了相互交错特征的宽度。CuPc/PTCBI电池的特征性扩散长度为<10nm,或为所述特征尺寸的一半,因此产生了所观察到的效率提高。反之,在纳米晶电池中CuPc和C60的光响应两者均增大超过2.5倍,这表明效率的提高主要是由在延伸的、穿插网络中的高载流子迁移率造成的。
在图13d中,将功率转换效率ηp绘制成n的函数。此处,在双层器件(n=0)中ηp=2.3±0.3%增大了3倍,在n=6时达到最大值6.9±0.4%,这与纳米晶区域的总厚度38nm相对应,这几乎是混合CuPc:C60太阳能电池活性区域的最佳厚度的两倍。在n=12时,效率衰减到4.7±0.4%。未优化的CuPc/C60双层对照电池的功率效率与其他类所报道的一致,尽管其不如平面电池所报道的最佳结果高,所述平面电池使用通过真空热蒸发而生长的相同材料系统。使用标准波谱失配因子,将未包装器件的光电流和功率效率校正到1sun AM 1.5G太阳能辐射,所述光电流和功率效率是在空气中参考国家可再生能源实验室(National Renewable Energy Laboratory,NREL)校准的Si电池测得的。EQE和AM 1.5G谱的重叠积分得到的光电流比测量的小,可能是由于未密封器件的退化造成的,如同前面所观察的。
上述实施方案介绍了整合了全有机纳米晶网络的太阳能电池构造,其具有有助于激子分裂的大施主/受主HJ界面面积和用于光吸收的更大厚度。与相同厚度的无定形层相比,晶序降低了这些器件中串联电阻的增加。因此,随着厚度的增大,更厚的结晶层引入更小的串联电阻增加,且在与平面HJ对照的一对一比较中,可导致效率增大三倍。太阳能电池的有源区域的厚度>100nm,消除了在较薄电池中通常观察到的短路,同时还增加了有源区域的厚度,使得光吸收成指数增加。尽管这些电池通过OVPD生长,但是还可通过真空热蒸发或油基分子束淀积来得到这种施主/受主网络。此外,改变纳米晶的粒度、改变施主/受主的比例、并入超过两种分子成分以获得太阳能谱的更宽覆盖,并在级联结构中使用多个电池,可导致甚至更高的效率。参见2004年8月5日提交的美国专利申请10/911560,其内容通过参考以其全文并入。上述实施方案表明,全有机纳米结构形态的控制,导致更高的相互连接的纳米晶网络,明显提高了激子分裂和电荷收集两者,对于新一代太阳能转换器件具有潜在用途。
利用模拟,在预淀积、平坦的CuPc层上生长[C60(3nm)/CuPc(3nm)]6结构,假设80×80nm2的晶格具有周期性边界条件。当模拟第一个不连续层时,C60晶体在密度为2.2晶体/100nm2的下方平坦CuPc上随机成核。半球形C60晶体遵循标准分布,平均半径为4nm,标准偏差为2nm,与观察到的晶体粒度相配(参见图10)。在所述第一个不连续C60层上淀积第二个不连续CuPc层,其中特定晶格位置(x,y)的成核概率P与其高度hxy:P exp(ho-hxy成反比。此处的ho为下面膜的最薄点的高度。这模拟了在OVPD中的平面化效果,使总的膜表面能最小化。使用相同的程序模拟了其他C60/CuPc层,直至达到所期望的总层数。所述模拟大致以气相淀积程序为基础,同时模拟参数即晶体尺寸和密度取自通过TEM和XRD观察到的那些。将淀积晶体的形状模拟为半球形,假设材料试图最小化表面能。模拟的3D网络产生了与假定试验结构相类似的结构,尽管纳米晶体的更精确模拟要涉及动力学考虑,如淀积条件和结晶速率。
在使用之前,通过梯度升华对有机原料CuPc、C60和BCP进行提纯。在300nm厚的ITO涂布的玻璃衬底(Nippon Sheet Glass Ca)上淀积膜,在放入基础压力<0.09Torr的OVPD室之前用有机溶剂进行预清洁并暴露在紫外线/臭氧下。OVPD使用纯化的连续N2流通过有机原料筒,利用质量流动控制器和节流阀进行调节。对于所有生长,将衬底温度Tsub保持为恒定的15±0.5℃。用于生长所述第一个CuPc连续层的条件为:原料温度TCuPc=446±1℃,N2流速==150sccm(每分钟的标准立方厘米);反应器压力P=-0.587±0.001Torr;且生长时间tg=2.5分钟。用于最后的C60平面层的条件为:TC60=471±2℃、N2流速=100sccm、P 0.421±0.001Torr且tg=7.9分钟。用于不连续的CuPc和C60纳米晶生长的原料温度分别为:TCuPc=420±1℃、TC60=463±2℃。通过快速转换载流子气流通过两个分子原料筒的开和关,来限制通过OVPD生长的各个层的厚度(图9b,插图)。在淀积期间,使用20sccm的恒定N2流通过CuPc或C60的分子原料筒,同时在C60和CuPc的转换之间使用相同的N2流9秒,以在淀积之前最小化施主和受主分子在室内的材料混合。所述恒定流动使得在生长期间压力稳定为0.166±0.007Torr(参见图9b)。在每个C60/CuPc周期中,以0.14±0.01nm/s的速率淀积C60并以0.25±0.01nm/s的速率淀积CuPc,使用先前的生长循环进行校正,其中使用椭圆光度法测量制得的膜的厚度。在筒喷嘴的出口端使用圆锥形塞子以防止在原料流关闭时有机物扩散入室内。在CuPc/C60生长之后,将样品通过N2套箱转移至真空室,在此使用热蒸发在小于4×10-7Torr的压力下、通过具有1mm直径圆形开口阵列的荫罩来淀积10nm厚的BCP层和100nm厚的Ag阴极。
关于横截面的TEM,在有机膜顶部上淀积100个循环厚的Au层,以在减薄过程期间保护所述有机物。将两个这种件面对面胶合在一起。然后,用离子减薄仪对样品进行研磨、抛光并减薄至小于100nm。使用200kV JEOL JEM2010F STEM/TEM以用于高分辨率的电子显微镜和高角环形暗视野成像。使用选定区域的电子衍射(SEAD)以用于从衬底剥离的平面图式有机膜。对所述SEAD衍射针对Au样品进行校准,且计算的晶格常数符合文献值,对α-CuPc的误差<5%且对C60的误差<2.5%。使用Perkin-Elmer Lambda 800UV/vis分光计来测量在熔融石英衬底上生长的样品的吸收谱。
在环境条件下的空气中,在未密封的条件下测量了太阳能电池的性能。为了测量EQE,将Xe灯发出的单色光束在400Hz处进行斩波并聚焦到1mm直径器件上的点上。使用NREL标准校准的Si光检测器来测量光强度,并参考斩波器频率使用锁相放大器来测量光电流谱。使用装有AMLSG滤波器(Newport)的Oriel 150-W太阳能模拟器来测量器件的J-V特性和功率转换效率,并参考1sun(100mW/cm2)AM 1.5G辐射进行校正,所述校正遵循标准光谱谱失配校正程序。关于各组的条件,从3~4个检测器获得数据,以保证结果的可重复性。
当测量太阳能电池的I-V特性时,将样品压靠在具有1.23mm直径孔的金属板上,以限制仅照射1mm直径器件的有源区域。根据参比AM 1.5G照射ERef(λ)、Si参比电池(器件ID:PVM42)的NREL校准的光谱响应度SR(λ)、太阳模拟器的输出谱Es(λ)和器件的EQE谱ST(λ),利用太阳能电池的光谱失配因子计算太阳能电池的光电流,所述失配因子校正至标准100mW/cm2AM 1.5G照度下。使用下式能够计算在波长范围{λ1,λ2}上的光谱失配校正因子(M):
M = ∫ λ 1 1 λ 2 E Ref ( λ ) S R ( λ ) dλ ∫ λ 1 λ 2 E S ( λ ) S T ( λ ) dλ ∫ λ 1 1 λ 2 E Ref ( λ ) S T ( λ ) dλ ∫ λ 1 λ 2 E S ( λ ) S R ( λ ) dλ
关于这些CuPc/C60太阳能电池和太阳模拟器,λ1=300nm且λ2=900nm,使得{λ1,λ2}覆盖参比和有机电池两者的光响应范围。上述计算得到M=0.88±0.02,与类似电池的结果一致。然后,在模拟光下测量Si参比的光电流,同时调整灯的强度使得有效辐照度(Eeff)等于标准的1sun(100mW/cm2)强度。那么:
E eff = I R , S M CN
所述调整得到Eeff 100±4mW/cm2。此处,IR,S是利用太阳能模拟器测量的参比电池的光电流,CN=0.113A/W是参比电池的校准数。然后,使用先前计算的光谱失配因子M将有机太阳能电池的光电流校正到真实的AM 1.5G光谱。由此,有机电池的校正光电流(IT,R)为:
I T , R = I R , R I T , S I R , S M
其中IR,R是在标准AM 1.5G照射下测量的参比电池的光电流,IT,S是利用实验室太阳能模拟器测试的有机电池的光电流。光谱响应度和光谱辐照度作为波长的函数示于图14a~14b中。
本文中显示和/或描述了本发明的具体实例。然而,应理解,在不脱离本发明的主旨和范围的情况下,本发明的修改和变化包括在上述教导中,且在所附的权利要求书的范围内。

Claims (12)

1.制造光敏光电子器件的方法,包括:
在第一电极上淀积第一有机半导体材料以形成连续的第一层;
在所述第一层上淀积第二有机半导体材料以形成不连续的第二层,所述第一层的部分保持暴露;
在所述第二层上直接淀积所述第一有机半导体材料以形成不连续的第三层,至少所述第二层的部分保持暴露;
交替淀积所述第一和第二有机半导体材料;
淀积所述第二有机半导体材料以形成连续的第四层;和
在所述第四层上淀积第二电极,
其中所述第一电极和所述第二电极中的至少一个是透明的,以及
所述第一有机半导体材料相对于所述第二有机半导体材料,是一种或多种施主型材料或一种或多种受主型材料,所述第二有机半导体材料是一种或多种其他材料类型的材料,其中所述第一和第二有机半导体材料中的至少一种由纳米晶体形成。
2.如权利要求1所述的方法,其中所述第一有机半导体材料材料为铜酞菁且所述第二有机半导体材料材料为C60
3.如权利要求2所述的方法,其中所述第一和第二有机半导体材料各自通过有机气相淀积来淀积。
4.如权利要求3所述的方法,还包括:
在所述第四层和所述第二电极之间淀积激子阻挡层。
5.如权利要求1所述的方法,其中所述第一、第二、第三和第四层是第一有机感光区域的部分,所述方法还包括:
在所述第一感光区域和所述第二电极之间形成第二感光区域。
6.如权利要求1所述的方法,还包括:
在将所述第二有机半导体材料淀积到所述第一层上之前,在所述第一层上淀积额外的第一有机半导体材料。
7.光敏光电子器件,包含:
第一电极和第二电极,所述第一电极和所述第二电极中的至少一个是透明的;和
布置在所述第一电极和所述第二电极之间的第一有机感光层,所述有机感光层包含:
含第一有机半导体材料的第一层,所述第一层是连续的;
含第二有机半导体材料的第二层,所述第二层是不连续的且与所述第一层直接接触,所述第一层的部分与所述第二层中的间隙重合;
交替第一和第二层以形成第三层;和
含所述第二有机半导体材料的第四层,所述第四层是连续的,且
所述第一有机半导体材料相对于所述第二有机半导体材料,是一种或多种施主型材料或一种或多种受主型材料,所述第二有机半导体材料是一种或多种其他材料类型的材料,所述第一和第二有机半导体材料中的至少一种由纳米晶体形成。
8.如权利要求7所述的器件,其中所述第一有机半导体材料为铜酞菁且所述第二有机半导体材料为C60
9.如权利要求8所述的器件,其中所述第一和第二有机半导体材料各自通过有机气相淀积来淀积。
10.如权利要求9所述的器件,还包含:
在所述第四层和所述第二电极之间淀积的激子阻挡层。
11.如权利要求7所述的器件,还包含:
在所述第一有机感光层和所述第二电极之间的第二有机感光层。
12.如权利要求7所述的器件,其中所述第一层还包含在将所述第二有机半导体材料淀积到所述第一层上之前,在所述连续层上淀积的额外的第一有机半导体材料。
CN2008800251642A 2007-07-19 2008-07-16 使用全有机纳米晶网络的高效太阳能电池 Expired - Fee Related CN101803055B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/880,210 US11031567B2 (en) 2006-07-11 2007-07-19 Efficient solar cells using all-organic nanocrystalline networks
US11/880,210 2007-07-19
PCT/US2008/070208 WO2009012324A1 (en) 2007-07-19 2008-07-16 Efficient solar cells using all-organic nanocrystalline networks

Publications (2)

Publication Number Publication Date
CN101803055A CN101803055A (zh) 2010-08-11
CN101803055B true CN101803055B (zh) 2013-07-10

Family

ID=39874016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800251642A Expired - Fee Related CN101803055B (zh) 2007-07-19 2008-07-16 使用全有机纳米晶网络的高效太阳能电池

Country Status (10)

Country Link
US (1) US11031567B2 (zh)
EP (1) EP2171776A1 (zh)
JP (1) JP5485883B2 (zh)
KR (1) KR101536017B1 (zh)
CN (1) CN101803055B (zh)
AU (1) AU2008276054B2 (zh)
CA (1) CA2692763A1 (zh)
HK (1) HK1144983A1 (zh)
TW (1) TWI521727B (zh)
WO (1) WO2009012324A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065798B1 (ko) * 2009-03-26 2011-09-19 한양대학교 산학협력단 태양 전지 및 그 제조 방법
JP5742204B2 (ja) * 2010-03-26 2015-07-01 三菱化学株式会社 光電変換素子、太陽電池及び太陽電池モジュール
US8933436B2 (en) * 2010-10-13 2015-01-13 The Regents Of The University Of Michigan Ordered organic-organic multilayer growth
JP2012156255A (ja) * 2011-01-25 2012-08-16 Tokyo Institute Of Technology 光電変換素子およびその作製方法
TWI553887B (zh) * 2011-02-21 2016-10-11 美國密西根州立大學 嵌入電子傳導激子阻隔層的有機光伏打電池
CN102694123B (zh) * 2011-03-22 2017-12-26 中国科学院长春应用化学研究所 有机半导体微纳米晶阵列、制法及其在光伏电池中的应用
JP5395842B2 (ja) * 2011-04-12 2014-01-22 大学共同利用機関法人自然科学研究機構 真空蒸着成膜方法、真空蒸着成膜システム、結晶性真空蒸着膜
TWI467782B (zh) * 2011-06-21 2015-01-01 Asiatree Technology Co Ltd 薄膜太陽能電池
JP6003071B2 (ja) * 2012-02-03 2016-10-05 コニカミノルタ株式会社 タンデム型有機光電変換素子
US9508945B2 (en) * 2012-06-27 2016-11-29 Regents Of The University Of Minnesota Spectrally tunable broadband organic photodetectors
JP6490009B2 (ja) * 2012-11-22 2019-03-27 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン 有機光起電装置のためのハイブリッド平面混合ヘテロ接合
FR3044827B1 (fr) * 2015-12-04 2018-03-16 Centre National De La Recherche Scientifique - Cnrs - Cellule photovoltaique
JP2017175714A (ja) * 2016-03-22 2017-09-28 公益財団法人神奈川科学技術アカデミー 電流電圧測定システム及び電流電圧測定方法
EP3618115A1 (en) * 2018-08-27 2020-03-04 Rijksuniversiteit Groningen Imaging device based on colloidal quantum dots
DE102021130501A1 (de) 2021-11-22 2023-05-25 Heliatek Gmbh Schichtsystem mit mindestens einer photoaktiven Schicht mit mindestens einer Zwischenschicht für ein organisches elektronisches Bauelement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277738A (zh) * 1998-08-19 2000-12-20 普林斯顿大学理事会 有机光敏光电器件
TW525406B (en) * 2000-02-09 2003-03-21 Cambridge Display Tech Ltd Method of producing an organiclight-emissive device
CN1826186A (zh) * 2003-06-25 2006-08-30 普林斯顿大学理事会 改良的太阳能电池

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM483494A0 (en) 1994-03-31 1994-04-28 Pacific Solar Pty Limited Multiple layer thin film solar cells
US6420031B1 (en) 1997-11-03 2002-07-16 The Trustees Of Princeton University Highly transparent non-metallic cathodes
US6451415B1 (en) 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US6352777B1 (en) * 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6333458B1 (en) 1999-11-26 2001-12-25 The Trustees Of Princeton University Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator
US6440769B2 (en) 1999-11-26 2002-08-27 The Trustees Of Princeton University Photovoltaic device with optical concentrator and method of making the same
US6657378B2 (en) 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
US6580027B2 (en) 2001-06-11 2003-06-17 Trustees Of Princeton University Solar cells using fullerenes
CA2480518C (en) * 2002-03-29 2016-07-19 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
JP2004214015A (ja) 2002-12-27 2004-07-29 Tohoku Pioneer Corp 蒸着マスク、蒸着方法、有機elパネルの製造方法および有機el表示パネル
JP4241094B2 (ja) 2003-02-28 2009-03-18 富士ゼロックス株式会社 フラーレンデバイスの製造方法、およびフラーレンデバイス
KR100796122B1 (ko) * 2003-09-09 2008-01-21 삼성전자주식회사 화합물 반도체 나노결정의 표면 처리를 통한 양자효율 향상
JP3794407B2 (ja) * 2003-11-17 2006-07-05 セイコーエプソン株式会社 マスク及びマスクの製造方法、表示装置の製造方法、有機el表示装置の製造方法、有機el装置、及び電子機器
US6972431B2 (en) 2003-11-26 2005-12-06 Trustees Of Princeton University Multilayer organic photodetectors with improved performance
US7419846B2 (en) 2004-04-13 2008-09-02 The Trustees Of Princeton University Method of fabricating an optoelectronic device having a bulk heterojunction
US8586967B2 (en) 2004-04-13 2013-11-19 The Trustees Of Princeton University High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
KR101416989B1 (ko) 2004-04-13 2014-07-08 더 트러스티즈 오브 프린스턴 유니버시티 벌크 이형접합부를 갖는 광전자 장치의 제조 방법
US7196835B2 (en) 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack
US7326955B2 (en) 2004-08-05 2008-02-05 The Trustees Of Princeton University Stacked organic photosensitive devices
US7375370B2 (en) 2004-08-05 2008-05-20 The Trustees Of Princeton University Stacked organic photosensitive devices
US7196366B2 (en) 2004-08-05 2007-03-27 The Trustees Of Princeton University Stacked organic photosensitive devices
US8592680B2 (en) 2004-08-11 2013-11-26 The Trustees Of Princeton University Organic photosensitive devices
US7947897B2 (en) 2005-11-02 2011-05-24 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US7897429B2 (en) 2006-11-20 2011-03-01 The Trustees Of Princeton University Organic hybrid planar-nanocrystalline bulk heterojunctions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277738A (zh) * 1998-08-19 2000-12-20 普林斯顿大学理事会 有机光敏光电器件
TW525406B (en) * 2000-02-09 2003-03-21 Cambridge Display Tech Ltd Method of producing an organiclight-emissive device
CN1826186A (zh) * 2003-06-25 2006-08-30 普林斯顿大学理事会 改良的太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jiangeng Xue,et al..A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell.《Advanced Materials》.2005,(第1期),第70页. *

Also Published As

Publication number Publication date
CA2692763A1 (en) 2009-01-22
JP2010533981A (ja) 2010-10-28
KR20100057618A (ko) 2010-05-31
US20100025663A1 (en) 2010-02-04
KR101536017B1 (ko) 2015-07-10
HK1144983A1 (en) 2011-03-18
WO2009012324A1 (en) 2009-01-22
JP5485883B2 (ja) 2014-05-07
AU2008276054A1 (en) 2009-01-22
EP2171776A1 (en) 2010-04-07
TW200913299A (en) 2009-03-16
US11031567B2 (en) 2021-06-08
TWI521727B (zh) 2016-02-11
CN101803055A (zh) 2010-08-11
AU2008276054B2 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
CN101803055B (zh) 使用全有机纳米晶网络的高效太阳能电池
CN101351904B (zh) 使用超薄敏感层的有机光伏单元
JP5555402B2 (ja) ナノスケールでモルフォロジー制御された粗い電極上に成長した有機感光性デバイス
CN103650187B (zh) 包含电子传导激子阻挡层的有机光伏电池
JP5947799B2 (ja) 光起電デバイスにおける感光層のエピタキシャル成長制御用材料
JP5583408B2 (ja) 有機ハイブリッド平面ナノ結晶バルクヘテロ接合
CN101627486B (zh) 使用超薄敏感层的有机光伏单元
KR101086129B1 (ko) 개선된 태양 전지
US8993881B2 (en) Architectures and criteria for the design of high efficiency organic photovoltaic cells
CN102939673B (zh) 通过热和溶剂蒸汽退火法制备的增强的体异质结器件
US9666816B2 (en) Growth of ordered crystalline organic films
Guo Material and Process Engineering of Printed Semitransparent Organic Solar Cells and Advanced Multi-junction Architectures
Sista Novel device architecture for high performance organic solar cells
Wang Low cost organic photovoltaic cells for broad spectrum light harvesting
Alzubi Planar Organic Photovoltaic Devices
Lassiter Tandem Organic Photovoltaics
JP2016519417A (ja) 有機光起電装置の堆積後処理中における秩序の修正のための反転準エピタキシーの使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1144983

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1144983

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130710

Termination date: 20170716

CF01 Termination of patent right due to non-payment of annual fee