CN101740393A - 半导体器件的制作方法及半导体器件 - Google Patents

半导体器件的制作方法及半导体器件 Download PDF

Info

Publication number
CN101740393A
CN101740393A CN200810203539A CN200810203539A CN101740393A CN 101740393 A CN101740393 A CN 101740393A CN 200810203539 A CN200810203539 A CN 200810203539A CN 200810203539 A CN200810203539 A CN 200810203539A CN 101740393 A CN101740393 A CN 101740393A
Authority
CN
China
Prior art keywords
semiconductor substrate
semiconductor device
drain region
ion
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810203539A
Other languages
English (en)
Other versions
CN101740393B (zh
Inventor
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN2008102035391A priority Critical patent/CN101740393B/zh
Publication of CN101740393A publication Critical patent/CN101740393A/zh
Application granted granted Critical
Publication of CN101740393B publication Critical patent/CN101740393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种半导体器件的制作方法及半导体器件,其中,所述制作方法包括:提供半导体衬底;对半导体衬底进行蚀刻以形成阻挡区块;在阻挡区块二侧形成阻挡壁;在半导体衬底上形成衬底覆层,阻挡壁与衬底覆层表面具有落差;在衬底覆层和半导体衬底上形成栅氧化层和栅极;在半导体衬底内进行低掺杂离子注入;快速热退火,在半导体衬底内形成低掺杂源/漏区;在栅氧化层和栅极的相对二侧形成隔离层;在半导体衬底内形成重掺杂源/漏区。本发明技术方案主要是在半导体衬底内形成有阻挡壁,可有效阻隔源/漏区之间的相互渗透,显著改善半导体器件的短沟道效应,避免源/漏区之间发生穿通(punch-through)效应,提升半导体器件的电学性能。同时为因超浅结工艺中结电容的降低和工艺窗口的扩大提供了更大的工艺调节空间。

Description

半导体器件的制作方法及半导体器件
技术领域
本发明涉及半导体制造技术领域,特别涉及半导体器件的制作方法及半导体器件。
背景技术
随着超大规模集成电路(Ultra Large Scale Integration,ULSI)的快速发展,集成电路制造工艺变得越来越复杂和精细。为了提高集成度,降低制造成本,半导体器件的关键尺寸不断变小,芯片单位面积内的半导体器件数量不断增加,在半导体器件关键尺寸减小的同时,半导体器件图形也不断地细微化。
对于MOS晶体管,当MOS晶体管的沟道长度L缩短到可与源和漏耗尽层宽度之和(Ws+Wd)相比拟时,器件将发生偏离长沟道的行为,即产生沟道长度L趋近于源和漏耗尽层宽度之和(Ws+Wd)的情形,这种因沟道长度缩短而发生的对器件特性的影响,即为短沟道效应(Short Channel Effects,SCE),短沟道效应会使MOS晶体管的性能变坏且工作复杂化。
为了抑制短沟道效应,MOS晶体管的沟道长度须大于某一特定值Lmin,该特定值Lmin=A[xjdox(Ws+Wd)2]1/3,其中Lmin是为获得沟道亚阈值特性的最短沟道长度,xj是源/漏区的结深,Ws和Wd分别是源/漏区的耗尽层宽度,dox是栅氧化层厚度。如上式易知,为了制作超短沟道MOS晶体管,可通过降低栅氧化层厚度、源/漏区的耗尽层宽度或结深来实现。
其中,栅氧化层厚度将达到极限。例如,对于栅氧化层厚度小于40埃的情形,隧穿电流可以穿过栅氧化层从栅极直接到衬底;对于栅氧化层厚度小于30埃的情形,隧穿电流将会移走MOS电容的反行层中的载流子。
另外,由于源/漏区的耗尽层宽度反比于衬底(或阱)的浓度的平方,虽然增加衬底(或阱)的浓度可以降低耗尽层宽度,但同时却增加了结电容、体效应和阈值电压等,所以源/漏区的耗尽层宽度不可能变得很薄。
所以,一般是通过降低源/漏区的结深来抑制短沟道效应。源/漏区的结深决定于离子注入或扩散工艺。由于离子注入的低能量限制和短沟道效应,所以形成很浅的结深(例如500埃)非常困难。一般来说,衬底的预非晶格化会大大降低离子注入沟道效应,但由于一些通过退火不能消除的缺陷会增加漏电流,虽然离子注入穿过一层非晶体或氧化层可以抑制短沟道效应,但这种方法还是不可能非常有效地消除短沟道效应。
发明内容
本发明解决的问题是:在半导体器件的制作工艺中,如何改善短沟道效应中结电容和结漏电,避免源/漏区之间发生穿通效应以及电学性能恶化的问题。
为解决上述问题,本发明提供一种半导体器件的制作方法,包括:提供半导体衬底;对所述半导体衬底进行蚀刻以形成阻挡区块;在所述阻挡区块的相对二侧形成阻挡壁;在半导体衬底上形成能覆盖阻挡区块和阻挡壁的衬底覆层,所述衬底覆层与半导体衬底结合为一体,所述阻挡壁与衬底覆层表面具有落差;在所述衬底覆层和半导体衬底上形成栅氧化层和栅极;在半导体衬底内进行低掺杂离子注入;快速热退火,在半导体衬底内形成低掺杂源/漏区;在栅氧化层和栅极的相对二侧形成隔离层;在半导体衬底内形成重掺杂源/漏区。
可选地,在对所述半导体衬底进行蚀刻之前还包括在待形成阻挡区块的半导体衬底上形成掩膜层。
可选地,在半导体衬底内进行低掺杂离子注入之前还包括在栅氧化层和栅极的相对二侧形成偏移隔离层,所述偏移隔离层在所述隔离层的内侧。
可选地,所述阻挡壁为氧化硅、氮化硅、氮氧化硅中的一种或者它们的任一组合。
可选地,所述阻挡壁的厚度为5nm--30nm。
可选地,所述落差的高度要大于所述低掺杂源/漏区的深度。
可选地,所述形成重掺杂源/漏区包括至少一道离子注入步骤。
可选地,在半导体衬底内进行低掺杂离子注入之前或者之后还包括袋状区离子注入步骤,所述袋状区离子注入的离子与低掺杂离子注入的离子导电类型相反。
可选地,所述快速热退火的温度范围为900℃至1070℃,退火时间为5秒至60秒。
本发明另提供一种半导体器件,包括:半导体衬底;位于半导体衬底上的栅氧化层和栅极、以及位于栅氧化层和栅极相对二侧的隔离层;位于半导体衬底内的低掺杂源/漏区和重掺杂源/漏区;以及位于半导体衬底内的源/漏区之间的阻挡壁,所述阻挡壁与半导体衬底表面之间具有落差。
可选地,在所述栅氧化层和栅极的相对二侧还包括偏移隔离层,所述偏移隔离层在所述隔离层的内侧。
可选地,所述阻挡壁为氧化硅、氮化硅、氮氧化硅中的一种或者它们的任一组合。
可选地,所述阻挡壁的厚度为5nm--30nm。
可选地,所述落差的高度要大于所述低掺杂源/漏区的深度。
可选地,在半导体衬底内还包括袋状区,所述袋状区位于低掺杂源/漏区的外围。
本发明技术方案主要是在半导体衬底内形成有阻挡壁,相对现有技术,可有效阻隔源/漏区之间的相互渗透,显著改善半导体器件的短沟道效应,避免源/漏区之间发生穿通(punch-through)效应,提升半导体器件的电学性能。
附图说明
图1为本发明半导体器件的制作方法的流程示意图;
图2至图10为按照图1所示的流程形成半导体器件的示意图。
具体实施方式
发明人发现,由于现有的MOS晶体管为克服短沟道效应而采用超浅结技术制作源/漏区,但由于源/漏区的注入离子会产生扩散和渗透,会引起源/漏区的结电容和结漏电并导致源/漏区之间发生穿通效应,影响MOS晶体管的品质。
因此,在制造半导体器件时,为防止上述缺陷的产生。本发明先将提供的半导体衬底进行蚀刻,形成阻挡区块;在阻挡区块的相对二侧形成阻挡壁;形成能覆盖阻挡区块和阻挡壁且与半导体衬底结合为一体的衬底覆层,所述阻挡壁与衬底覆层表面具有落差;在所述衬底覆层和半导体衬底上形成栅氧化层和栅极;在半导体衬底内进行低掺杂离子注入;快速热退火,在半导体衬底内形成低掺杂源/漏区;在栅氧化层和栅极的相对二侧形成隔离层;在半导体衬底内形成重掺杂源/漏区,从而在确保半导体器件的电学性能不损耗的情形下,能有效阻隔源/漏区之间的相互渗透,避免源/漏区之间发生穿通效应,使得在半导体器件尺寸越来越小的情形下制作更浅的源/漏区结深成为可能。
下面结合附图对本发明的内容进行详细说明。
如图1所示,所述半导体器件的制作方法包括如下步骤:
S100,提供半导体衬底;
S101,对半导体衬底进行蚀刻以形成阻挡区块;
S102,在所述阻挡区块的相对二侧形成阻挡壁;
S103,在半导体衬底上形成能覆盖阻挡区块和阻挡壁的衬底覆层,所述衬底覆层与半导体衬底结合为一体;
S104,在衬底覆层上形成栅氧化层和栅极;
S105,在栅氧化层和栅极的相对二侧形成偏移隔离层;
S106,在半导体衬底内进行低掺杂离子注入和袋状区离子注入;
S107,快速热退火,在半导体衬底内形成低掺杂源/漏区和袋状区;
S108,在栅氧化层和栅极的相对二侧形成隔离层;
S109,在半导体衬底内形成重掺杂源/漏区。
首先执行步骤S100,提供半导体衬底200。其中,所述半导体衬底200为形成有半导体器件的硅、形成有半导体器件的绝缘体上硅(SOI)、或者为形成有半导体器件的II-VI或者III~V族化合物半导体。
所述半导体衬底200中还形成有各种阱(well)结构与衬底表面的栅极沟道层。一般来说,形成阱(well)结构的离子掺杂导电类型与栅极沟道层离子掺杂导电类型相同,但是浓度较栅极沟道层低,离子注入的深度泛围较广,同时需达到大于隔离结构(未予以图示),例如浅沟槽,的深度。为了简化,此处仅以一空白半导体衬底200图示,在此不应过分限制本发明的保护范围。
接着执行步骤S101,对半导体衬底200进行蚀刻以形成阻挡区块201,形成如图2所示的结构。在本实施例中,在对所述半导体衬底200进行蚀刻之前还包括在待形成阻挡区块201的半导体衬底200上形成掩膜层(未予以图示),所述掩膜层位置是处于后续所定义的源/漏区之间,其宽度与后续所欲形成的栅极一致。所述掩膜层可以是光刻胶层,也可以是由衬垫层和硬掩膜层构成。这样,对半导体衬底200进行蚀刻后,所述掩膜层下未被蚀刻的那部分半导体衬底即作为阻挡区块201。对半导体衬底200进行蚀刻的方法可以包括干法蚀刻或湿法蚀刻,因蚀刻方法已为本领域技术人员所熟知,在此不再赘述。
接着执行步骤S102,在阻挡区块201的相对二侧形成阻挡壁202a、202b,形成如图3所示的结构。阻挡壁202a、202b可以是氧化硅、氮化硅、氮氧化硅中一种或者它们组合构成,优选为氮化硅,其厚度可以为5nm--30nm。
由步骤S101和S102可知,蚀刻形成阻挡区块201的目的是在于为后续阻挡壁202a、202b创造形成基础,使得阻挡壁202a、202b能在阻挡区块201的二侧形成。
接着执行步骤S103,在半导体衬底200上形成能覆盖阻挡区块201和阻挡壁202a、202b的衬底覆层203,形成如图4所示的结构。在本实施例中,衬底覆层203的材料可以是单晶硅,其形成是通过例如低压化学气相淀积(LPCVD)或高密度等离子体化学气相淀积(HDPCVD)来实现的。通过上述淀积工艺形成的衬底覆层203可以与半导体衬底200结合为一体并作为新的衬底,在如下描述中,为便于说明,将阻挡区块201、衬底覆层203和半导体衬底200统成为半导体衬底,并以200进行标示。
需特别注意的是,如图4所示,阻挡壁202a、202b与衬底覆层203表面具有落差h。在实际应用中,在一个实施例中,所述落差h既可以是在步骤S102中形成,即在阻挡区块201的相对二侧形成阻挡壁202a、202b是与阻挡区块201的顶端具有落差h,而在步骤S103中形成的衬底覆层203是与阻挡区块201相齐平。在另外的实施例中,在步骤S102中形成的阻挡壁202a、202b与阻挡区块201的顶端的间距可以小于落差h,在步骤S103中形成的衬底覆层203覆盖阻挡区块201,并使得阻挡壁202a、202b与衬底覆层203表面的间距为落差h。在此不应过多限制本发明的保护范围。
接着执行步骤S104,在衬底覆层203与半导体衬底200结合的衬底上形成栅氧化层204和栅极205,栅氧化层204和栅极205构成栅极结构,形成如图5所示的结构。栅氧化层204可以是二氧化硅、氧化铪、氧化铝、高k介电材料以及氮氧化硅等,比较优选的是二氧化硅。栅氧化层的形成工艺可以是化学气相沉积工艺。栅极205可以是多晶硅形成工艺可以采用本领域技术人员熟知的任何现有技术,比较优选的为化学气相沉积法,例如低压等离子体化学气相沉积或者等离子体增强化学气相沉积工艺。
接着执行步骤S105,在栅氧化层204和栅极205的相对二侧形成偏移隔离层206a、206b,形成如图6所示的结构。在现有技术中,所述偏移隔离层206a、206b的材质可以是氧化硅、氮化硅、氮氧化硅中一种或者它们组合构成,优选为氧化硅,可以通过氧化工艺而形成。实际上,所述偏移隔离层除了可以形成在栅氧化层204和栅极205的侧端外,也可以在栅极205上形成,从而能够保护栅极205。
接着执行步骤S106,在半导体衬底内进行低掺杂离子注入和袋状区离子注入,形成未激活的低掺杂源/漏区207a和未激活的袋状区208a,形成如图7所示的结构。
在现有技术中,以N型MOS晶体管为例进行说明,低掺杂离子注入是以栅氧化层204和栅极205为掩膜,在半导体衬底200内进行低掺杂离子注入,在半导体衬底200内形成未激活的低掺杂源/漏区207a。由于该区域为N型MOS晶体管区域,故该低掺杂离子注入的掺杂离子可以是磷离子或者砷离子等。
当低掺杂离子注入的离子为磷离子时,离子注入的能量范围为1KeV至20KeV,离子注入剂量为1E14至1E15/cm2。进一步地,注入的磷离子的能量可以是3KeV、6KeV、10KeV、14KeV、18KeV等,注入的磷离子的剂量可以是2E14/cm2、4E14/cm2、6E14/cm2、8E14/cm2以及9E14/cm2等。
当低掺杂离子注入的离子为砷离子时,离子注入能量范围为2KeV至35KeV,离子注入剂量为1E14至1E15/cm2。进一步地,注入的砷离子的能量可以是4KeV、10KeV、16KeV、22KeV、26KeV以及32KeV,注入的砷离子的剂量可以是2E14/cm2、4E14/cm2、5E14/cm2、6E14/cm2、8E14/cm2以及9E14/cm2等。
在现有技术中,以N型MOS晶体管为例进行说明,袋状区离子注入是以栅氧化层204和栅极205为掩膜,在半导体衬底200内形成未激活的袋状区208a,所述袋状区离子注入的深度略大于低掺杂离子注入的深度,所述袋状区离子注入的离子与低掺杂离子注入的离子导电类型相反,故该袋状区离子注入的掺杂离子可以是硼离子或者铟离子等。
当袋状区离子注入的离子为硼离子,注入的能量范围为3至20KeV,离子注入剂量为1E13至9E13/cm2,离子注入的角度为0°至45°。进一步地,注入的硼离子的能量可以是4KeV、6KeV、10KeV、14KeV、18KeV,注入的硼离子的剂量可以是2E13/cm2、4E13/cm2、5E13/cm2、6E13/cm2、8E13/cm2等。
当袋状区离子注入的离子为铟离子,注入的能量范围为100至150KeV,离子注入剂量为1E13至9E13/cm2,离子注入的角度为0°至45°。进一步地,注入的铟离子的能量可以是110KeV、120KeV、130KeV、140KeV,注入的硼离子的剂量可以是2E13/cm2、4E13/cm2、6E13/cm2、8E13/cm2等。
袋状区离子注入的角度为0°至45°,在选定的离子注入角度下,进行旋转注入,可减小阴影效应和形成对称杂质分布,其离子注入能量、剂量、角度与低掺杂源/漏离子注入的能量、剂量、角度相对应匹配,其注入能量确保将栅极下低掺杂源/漏结包裹住,从而有效抑制住由漏致势垒降低(DIBL)所导致的短沟道效应。
当MOS晶体管为P型时,该低掺杂离子注入的掺杂离子可以是硼离子或者铟离子等。
当低掺杂离子注入的离子为硼离子时,离子注入的能量范围为0.5至10KeV,离子注入剂量为1E14至1E15/cm2。进一步地,注入的硼离子的能量可以是1KeV、3KeV、5KeV、7KeV、9KeV等,注入的硼离子的剂量可以是2E14/cm2、4E14/cm2、6E14/cm2以及8E14/cm2等。
当注入的例子为铟离子时,离子注入能量范围为10至70KeV,离子注入剂量为1E14至1E15/cm2。进一步地,注入的铟离子的能量可以是20KeV、40KeV、50KeV、60KeV等,注入的铟离子的剂量可以是2E14/cm2、4E14/cm2、6E14/cm2以及8E14/cm2等。
同样,当MOS晶体管为P型时,该袋状区离子注入的掺杂离子可以是磷离子或者砷离子等。
当袋状区离子注入的离子为磷离子,注入的能量范围为5KeV至35KeV,离子注入剂量为1E13至1E14/cm2,离子注入的角度为0°至45°。进一步地,注入的磷离子的能量可以是10KeV、15KeV、20KeV、25KeV等,注入的磷离子的剂量可以是2E13/cm2、4E13/cm2、6E13/cm2以及8E13/cm2等。
当袋状区离子注入的离子为砷离子,注入的能量范围为10KeV至50KeV,离子注入剂量为1E13至1E14/cm2,离子注入的角度为0°至45°。进一步地,注入的砷离子的能量可以是200KeV、30KeV、40KeV等,注入的砷离子的剂量可以是3E13/cm2、5E13/cm2、以及8E13/cm2等。
接着执行步骤S107,快速热退火,在半导体衬底200内形成低掺杂源/漏区207和袋状区208,形成如图8所示的结构。
本发明所述快速热退火的工艺为:在氮气或氩气等惰性气体环境中,退火温度为900℃至1070℃,退火时间为5秒至60秒。通过快速热退火,在激活杂质和消除离子注入产生缺陷的同时,可以利用瞬态增强扩散效应(TED)效应和自身热扩散,使结变更为缓变,能达到降低漏端沟道表面电场、抑制热载流子注入(HCI)效应的目的。当然,在其他实施例中,也可以采用其他的退火方式,应能达到类似的效果。
在上述形成半导体器件的实施例中,快速热退火步骤是在低掺杂离子注入和袋状区离子注入步骤之后进行,但并不以此为限,在其他实施例中,快速热退火步骤也可以分二次进行,即在低掺杂离子注入步骤之后进行第一次快速热退火步骤以及在袋状区离子注入步骤之后进行第二次快速热退火步骤,在此不应过多限制本发明的保护范围。
值得注意的是,阻挡壁202a、202b与衬底覆层203表面的落差h的高度要大于低掺杂源/漏区207的深度,这样就不会影响到低掺杂源/漏区207对热电子或热载流子注入效应的抑制效果。
接着执行步骤S108,在栅氧化层204和栅极205的相对二侧形成隔离层209a、209b,形成如图9所示的结构。隔离层209a、209b可以是氧化硅、氮化硅、氮氧化硅中一种或者它们组合构成。作为本实施例的一个优化实施方式,所述隔离层209a、209b为氧化硅、氮化硅共同组成,具体工艺为:在半导体衬底200上以及偏移隔离层206a、206b上形成第一氧化硅层、第一氮化硅层以及第二氧化硅层,然后采用蚀刻方法形成侧墙。
接着执行步骤S109,在半导体衬底内形成重掺杂源/漏区210,形成如图10所示的结构。因形成重掺杂源/漏区的工艺已为本领域技术人员所熟知,在此不再赘述。
基于上述半导体工艺,形成本发明的半导体器件,如图10所示,包括:半导体衬底200;位于半导体衬底200上的栅氧化层204和栅极205、以及位于栅氧化层204和栅极205相对二侧的偏移隔离层206a、206b和隔离层209a、209b;位于半导体衬底200内的低掺杂源/漏区207、袋状区208和重掺杂源/漏区210;还包括:位于半导体衬底200内的源/漏区207之间的阻挡壁202a、202b,所述阻挡壁202a、202b与半导体衬底200表面之间具有落差h。
本发明技术方案主要是在半导体衬底内的源/漏区之间形成有阻挡结构,在确保半导体器件的电学性能不损耗的情形下,能有效阻隔源/漏区之间的相互渗透,避免源/漏区之间发生穿通效应,提升半导体器件的电学性能。
另外,本发明技术方案中形成的阻挡结构,可有效减小短沟道效应中结电容和结漏电,为因超浅结工艺中结电容的降低和工艺窗口的扩大提供了更大的工艺调节空间,使得在半导体器件尺寸越来越小的情形下制作更浅的源/漏区结深成为可能。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (15)

1.一种半导体器件的制作方法,其特征在于,包括:
提供半导体衬底;
对所述半导体衬底进行蚀刻以形成阻挡区块;
在所述阻挡区块的相对二侧形成阻挡壁;
在半导体衬底上形成能覆盖阻挡区块和阻挡壁的衬底覆层,所述衬底覆层与半导体衬底结合为一体,所述阻挡壁与衬底覆层表面具有落差;
在所述衬底覆层和半导体衬底上形成栅氧化层和栅极;
在半导体衬底内进行低掺杂离子注入;
快速热退火,在半导体衬底内形成低掺杂源/漏区;
在栅氧化层和栅极的相对二侧形成隔离层;
在半导体衬底内形成重掺杂源/漏区。
2.根据权利要求1所述半导体器件的制作方法,其特征在于,在对所述半导体衬底进行蚀刻之前还包括在待形成阻挡区块的半导体衬底上形成掩膜层。
3.根据权利要求1所述半导体器件的制作方法,其特征在于,在半导体衬底内进行低掺杂离子注入之前还包括在栅氧化层和栅极的相对二侧形成偏移隔离层,所述偏移隔离层在所述隔离层的内侧。
4.根据权利要求1所述半导体器件的制作方法,其特征在于,所述阻挡壁为氧化硅、氮化硅、氮氧化硅中的一种或者它们的任一组合。
5.根据权利要求4所述半导体器件的制作方法,其特征在于,所述阻挡壁的厚度为5nm--30nm。
6.根据权利要求1所述半导体器件的制作方法,其特征在于,所述落差的高度要大于所述低掺杂源/漏区的深度。
7.根据权利要求1所述半导体器件的制作方法,其特征在于,所述形成重掺杂源/漏区包括至少一道离子注入步骤。
8.根据权利要求1所述半导体器件的制作方法,其特征在于,在半导体衬底内进行低掺杂离子注入之前或者之后还包括袋状区离子注入步骤,所述袋状区离子注入的离子与低掺杂离子注入的离子导电类型相反。
9.根据权利要求1所述半导体器件的制作方法,其特征在于,所述快速热退火的温度范围为900℃至1070℃,退火时间为5秒至60秒。
10.一种半导体器件,包括:
半导体衬底;
位于半导体衬底上的栅氧化层和栅极、以及位于栅氧化层和栅极相对二侧的隔离层;
位于半导体衬底内的低掺杂源/漏区和重掺杂源/漏区;
其特征在于,还包括:位于半导体衬底内的源/漏区之间的阻挡壁,所述阻挡壁与半导体衬底表面之间具有落差。
11.根据权利要求10所述半导体器件,其特征在于,在所述栅氧化层和栅极的相对二侧还包括偏移隔离层,所述偏移隔离层在所述隔离层的内侧。
12.根据权利要求10所述半导体器件,其特征在于,所述阻挡壁为氧化硅、氮化硅、氮氧化硅中的一种或者它们的任一组合。
13.根据权利要求12所述半导体器件,其特征在于,所述阻挡壁的厚度为5nm--30nm。
14.根据权利要求10所述半导体器件,其特征在于,所述落差的高度要大于所述低掺杂源/漏区的深度。
15.根据权利要求10所述半导体器件,其特征在于,在半导体衬底内还包括袋状区,所述袋状区位于低掺杂源/漏区的外围。
CN2008102035391A 2008-11-27 2008-11-27 半导体器件的制作方法及半导体器件 Expired - Fee Related CN101740393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102035391A CN101740393B (zh) 2008-11-27 2008-11-27 半导体器件的制作方法及半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102035391A CN101740393B (zh) 2008-11-27 2008-11-27 半导体器件的制作方法及半导体器件

Publications (2)

Publication Number Publication Date
CN101740393A true CN101740393A (zh) 2010-06-16
CN101740393B CN101740393B (zh) 2012-05-16

Family

ID=42463661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102035391A Expired - Fee Related CN101740393B (zh) 2008-11-27 2008-11-27 半导体器件的制作方法及半导体器件

Country Status (1)

Country Link
CN (1) CN101740393B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479707A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479710A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479706A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102543736A (zh) * 2010-12-15 2012-07-04 中芯国际集成电路制造(上海)有限公司 半导体器件结构及其制作方法
CN102623337A (zh) * 2011-01-30 2012-08-01 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102693915A (zh) * 2011-03-22 2012-09-26 中芯国际集成电路制造(上海)有限公司 一种mos晶体管的制造方法
CN102779849A (zh) * 2011-05-09 2012-11-14 中芯国际集成电路制造(上海)有限公司 半导体器件和用于制造半导体器件的方法
CN102903635A (zh) * 2011-07-25 2013-01-30 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN102903636A (zh) * 2011-07-25 2013-01-30 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN103426761A (zh) * 2012-05-18 2013-12-04 中芯国际集成电路制造(上海)有限公司 一种mosfet器件以及制备方法
CN103456786A (zh) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 Mos晶体管结构及其制造方法
CN103531468A (zh) * 2012-07-02 2014-01-22 中芯国际集成电路制造(上海)有限公司 一种mos晶体管及其制作方法
CN103904017A (zh) * 2012-12-24 2014-07-02 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN110838445A (zh) * 2018-08-15 2020-02-25 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN111048591A (zh) * 2019-11-18 2020-04-21 宁波大学 一种具有并联操作功能的tfet器件
CN113178419A (zh) * 2021-06-30 2021-07-27 广州粤芯半导体技术有限公司 降低cmos器件漏电的方法
CN113178420A (zh) * 2021-06-30 2021-07-27 广州粤芯半导体技术有限公司 一种降低cmos器件漏电的方法
CN115863396A (zh) * 2023-01-29 2023-03-28 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272527B1 (ko) * 1998-02-04 2000-12-01 김영환 반도체 소자 및 그 제조방법

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479707B (zh) * 2010-11-24 2014-01-08 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479710A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479706A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479706B (zh) * 2010-11-24 2014-04-02 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102479707A (zh) * 2010-11-24 2012-05-30 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102543736A (zh) * 2010-12-15 2012-07-04 中芯国际集成电路制造(上海)有限公司 半导体器件结构及其制作方法
CN102543736B (zh) * 2010-12-15 2014-10-01 中芯国际集成电路制造(上海)有限公司 半导体器件结构及其制作方法
CN102623337A (zh) * 2011-01-30 2012-08-01 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102623337B (zh) * 2011-01-30 2014-12-03 中芯国际集成电路制造(北京)有限公司 晶体管及其制作方法
CN102693915B (zh) * 2011-03-22 2015-02-18 中芯国际集成电路制造(上海)有限公司 一种mos晶体管的制造方法
CN102693915A (zh) * 2011-03-22 2012-09-26 中芯国际集成电路制造(上海)有限公司 一种mos晶体管的制造方法
CN102779849B (zh) * 2011-05-09 2015-01-21 中芯国际集成电路制造(上海)有限公司 半导体器件和用于制造半导体器件的方法
US8841187B2 (en) 2011-05-09 2014-09-23 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor device and method for fabricating semiconductor device
US9391188B2 (en) 2011-05-09 2016-07-12 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor device and method for fabricating semiconductor device
CN102779849A (zh) * 2011-05-09 2012-11-14 中芯国际集成电路制造(上海)有限公司 半导体器件和用于制造半导体器件的方法
CN102903636A (zh) * 2011-07-25 2013-01-30 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN102903635B (zh) * 2011-07-25 2015-05-06 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN102903636B (zh) * 2011-07-25 2015-05-06 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN102903635A (zh) * 2011-07-25 2013-01-30 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制造方法
CN103426761A (zh) * 2012-05-18 2013-12-04 中芯国际集成电路制造(上海)有限公司 一种mosfet器件以及制备方法
CN103456786A (zh) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 Mos晶体管结构及其制造方法
CN103456786B (zh) * 2012-06-05 2015-11-25 中芯国际集成电路制造(上海)有限公司 Mos晶体管结构及其制造方法
CN103531468B (zh) * 2012-07-02 2018-05-08 中芯国际集成电路制造(上海)有限公司 一种mos晶体管及其制作方法
CN103531468A (zh) * 2012-07-02 2014-01-22 中芯国际集成电路制造(上海)有限公司 一种mos晶体管及其制作方法
CN103904017B (zh) * 2012-12-24 2017-11-10 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN103904017A (zh) * 2012-12-24 2014-07-02 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN110838445A (zh) * 2018-08-15 2020-02-25 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN110838445B (zh) * 2018-08-15 2023-04-18 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN111048591A (zh) * 2019-11-18 2020-04-21 宁波大学 一种具有并联操作功能的tfet器件
CN111048591B (zh) * 2019-11-18 2022-07-19 宁波大学 一种具有并联操作功能的tfet器件
CN113178419A (zh) * 2021-06-30 2021-07-27 广州粤芯半导体技术有限公司 降低cmos器件漏电的方法
CN113178420A (zh) * 2021-06-30 2021-07-27 广州粤芯半导体技术有限公司 一种降低cmos器件漏电的方法
CN115863396A (zh) * 2023-01-29 2023-03-28 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法

Also Published As

Publication number Publication date
CN101740393B (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
CN101740393B (zh) 半导体器件的制作方法及半导体器件
CN101752254B (zh) 形成离子注入区的方法、mos晶体管及其制造方法
CN105448916A (zh) 晶体管及其形成方法
US20080121992A1 (en) Semiconductor device including diffusion barrier region and method of fabricating the same
JP2006060208A (ja) 高性能なサブ0.1マイクロメートルトランジスタ用のソース/ドレイン構造
US8933512B2 (en) MOSFET and method for manufacturing the same
CN102074476B (zh) Nmos晶体管的形成方法
KR100378688B1 (ko) 반도체소자의 제조방법
CN102569077B (zh) 用于制作半导体器件的源/漏区的方法
CN102737965A (zh) 一种Halo结构的形成方法
CN102446767B (zh) Nmos晶体管的制造方法
KR100881017B1 (ko) 반도체 소자의 제조 방법
KR100897821B1 (ko) 반도체 소자 제조 방법
CN101752253B (zh) Mos晶体管的制造方法
CN101271838B (zh) 轻掺杂区形成方法及形成轻掺杂区时应用的掩膜
CN101840861A (zh) 半导体器件的制造方法
US20030216016A1 (en) Method for fabricating semiconductor device with triple well structure
CN101459081A (zh) Mos晶体管的形成方法
KR100799020B1 (ko) 반도체 메모리 소자의 제조방법
CN101295675B (zh) 半导体器件的制作方法
CN101989549B (zh) Nmos晶体管的制造方法
KR100596829B1 (ko) 반도체 소자의 트랜지스터 형성방법
CN101826464A (zh) Mos晶体管的形成方法及其阈值电压调节方法
KR100588787B1 (ko) 반도체 소자 제조방법
US20100065916A1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120516

Termination date: 20181127