CN102693915A - 一种mos晶体管的制造方法 - Google Patents

一种mos晶体管的制造方法 Download PDF

Info

Publication number
CN102693915A
CN102693915A CN2011100687176A CN201110068717A CN102693915A CN 102693915 A CN102693915 A CN 102693915A CN 2011100687176 A CN2011100687176 A CN 2011100687176A CN 201110068717 A CN201110068717 A CN 201110068717A CN 102693915 A CN102693915 A CN 102693915A
Authority
CN
China
Prior art keywords
mos transistor
manufacturing approach
groove
semiconductor substrate
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100687176A
Other languages
English (en)
Other versions
CN102693915B (zh
Inventor
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201110068717.6A priority Critical patent/CN102693915B/zh
Publication of CN102693915A publication Critical patent/CN102693915A/zh
Application granted granted Critical
Publication of CN102693915B publication Critical patent/CN102693915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种MOS晶体管的制造方法,一方面,通过锗掺杂硅外延层来增大电荷迁移率,抑制热载流子效应;另一方面,通过顶部略低的内侧墙,来抑制轻掺杂源/漏区(LDD)离子注入后的径向扩散,控制轻掺杂源/漏(LDD)延伸区的深度,以使超浅结更浅,获得了更长的有效沟道,有效抑制HCI效应,显著改善SCE及RSCE效应,降低器件尺寸减小所带来的击穿效应以及由其引起的结漏电,使得在超浅结工艺中制造更浅的源/漏区结深成为可能。

Description

一种MOS晶体管的制造方法
技术领域
本发明涉及半导体制造领域,尤其涉及一种MOS晶体管的制造方法。 
背景技术
随着MOSFET器件尺寸不断缩小,特别是进入到65纳米及以下节点,MOSFET器件由于极短沟道而凸显了各种不利的物理效应,特别是短沟道效应(SCE),使得器件性能和可靠性退化,限制了特征尺寸的进一步缩小。目前,通常使用超浅结结构(结深低于100nm的掺杂结,USJ),来改善器件的短沟道效应。 
现有技术中,通常采用第一离子、第二离子依次进行低能量轻掺杂源/漏区(LDD)离子注入形成轻掺杂源/漏延伸区(如图1中的101),达到超浅结的目的。其中,第二离子LDD注入通常是为了消除第一离子LDD注入时引起的短沟道效应,但是第二离子LDD注入易产生瞬时增强扩散效应(TED),造成短沟道器件特性退化和结漏电增大,再加上注入的第一离子、第二离子在退火工艺中产生的热载流子注入效应(HCI),使得形成的超浅结的深度无法有效降低,进而很难实现器件的SCE(短沟道效应)的控制和更低的结漏电性能。 
发明内容
本发明的目的在于提供一种MOS晶体管的制造方法,能有效降低超浅结器件的结漏电,并有效控制短沟道效应。 
为解决上述问题,本发明提出一种MOS晶体管的制造方法,该方法包括如下步骤: 
提供半导体衬底,并在所述半导体衬底上形成图案化的掩膜层; 
以所述图案化的掩膜层为掩膜,刻蚀所述半导体衬底以形成沟槽; 
移除所述图案化的掩膜层,并在所述沟槽侧壁形成内侧墙,所述内侧墙的高度小于所述沟槽的深度; 
在所述沟槽中形成锗掺杂硅外延层。 
进一步的,所述图案化的掩膜层厚度为0.015μm~10μm。 
进一步的,所述沟槽的深度为0.06μm~0.6μm。 
进一步的,所述内侧墙的高度为30nm~100nm。 
进一步的,所述内侧墙底部的厚度为3nm~100nm。 
进一步的,所述内侧墙是通过沉积或热生长绝缘介质形成的。 
进一步的,所述绝缘介质为氮化硅,氧化硅或氮氧化硅的一种或多种。 
进一步的,所述锗掺杂硅外延层为均匀锗掺杂硅外延层或非均匀锗掺杂硅外延层。
进一步的,在所述沟槽中形成锗掺杂硅外延层之后,还包括: 
在半导体衬底内形成N/P型阱区和隔离所述N/P型阱区的浅槽隔离结构; 
在所述沟槽上形成栅极结构,所述栅极结构包括栅介质层和覆盖所述栅介质层的栅极; 
以所述栅极结构为掩膜,在所述半导体衬底表层中进行轻掺杂源/漏区离子注入,形成轻掺杂源/漏延伸区; 
在所述栅极结构两侧形成栅极侧墙; 
以所述栅极结构及栅极侧墙为掩膜,进行重掺杂源/漏极离子注入,并形成源/漏极。 
进一步的,所述轻掺杂源/漏区离子注入采用垂直方式或倾斜方式。 
进一步的,所述图案化的掩膜层的图案与形成栅极结构时所用掩模层的图案一致。
进一步的,所述内侧墙顶部至所述半导体衬底顶部的高度与所述轻掺杂源/漏延伸区的特征深度一致。 
与现有技术相比,本发明,一方面,通过锗掺杂硅外延层来增大电荷迁移率,抑制热载流子效应;另一方面,通过顶部略低的内侧墙,来抑制轻掺杂源/漏区(LDD)离子注入后的径向扩散,控制轻掺杂源/漏(LDD)延伸区的深度,以使超浅结更浅。本发明的方法能有效降低MOS晶体管超浅结的结漏电,在减小SCE,TED,HCI效应的同时,又保持了MOS晶体管良好的器件特性。 
附图说明
图1是现有技术的一种MOS晶体管结构示意图; 
图2是本发明实施例的工艺流程图; 
图3A至3E本发明实施例的剖面结构示意图。 
具体实施方式
以下结合附图和具体实施例对本发明提出的MOS晶体管的制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式,仅用于方便、明晰地辅助说明本发明实施例的目的。 
如图2所示,本发明提供一种MOS晶体管的制造方法,由S201至S204所示步骤完成,下面结合图2所示的MOS晶体管的制造工艺流程图和图3A~3E所示的MOS晶体管的制造工艺剖面结构示意图对上述MOS晶体管的制造方法作详细的描述。 
S201,提供半导体衬底,并在所述半导体衬底上形成图案化的掩膜层。 
参考图3A,提供半导体衬底300,在半导体衬底300上形成图案化的掩膜层301,所述图案化的掩膜层301的厚度为0.015μm~10μm,其图案与后续工艺中制造栅极(如图3E的308b所示)时所用的掩模图案一致。 
S202,以所述图案化的掩膜层为掩膜,刻蚀所述半导体衬底以形成沟槽。 
参考图3B,以所述图案化的掩膜层301为掩膜,对所述半导体衬底300进行刻蚀,形成沟槽302。本实施例中,所述沟槽302的底部至所述半导体衬底300顶部的高度D为0.06μm~0.6μm。 
S203,移除所述图案化的掩膜层,并在所述沟槽侧壁形成内侧墙。 
参考图3C,移除所述图案化的掩膜层301,并在所述沟槽302侧壁形成内侧墙303。本实施例中,内侧墙303的底部厚度W为3nm~100nm,内侧墙303的顶部至所述半导体衬底300的顶部的高度H为30nm~100nm,通过沉积或热生长绝缘介质形成,所述绝缘介质为氮化硅,氧化硅或氮氧化硅的一种或多种。 
S204,在所述沟槽中形成锗掺杂硅外延层。 
参考图3D,在所述沟槽302中形成锗掺杂硅外延层304,所述锗掺杂硅外延层304为均匀锗掺杂硅外延层或非均匀锗掺杂硅外延层。本实施例中,所述锗掺杂硅外延层304优选为非均匀锗掺杂硅外延层,最大程度上增大电子或空穴迁移率,抑制热载流子效应,提高器件性能。首先,在所述沟槽302中以及半导体衬底300表面采用Si1-xGex生长非均匀锗掺杂硅外延层,可以通过改变x的值来改变锗的掺杂浓度,进而形成非均匀掺杂;接着,对生长的所述非均匀锗掺杂硅外延层材料进行化学机械平坦化(CMP),直至暴露出所述半导体衬底300的顶部,从而在沟槽302中形成了锗掺杂硅外延层304。 
参考图3E,进一步的,在所述沟槽302中形成锗掺杂硅外延层之后,还包括: 
(a)在所述半导体衬底300内形成N/P型阱区305和用以所述隔离N/P型阱区305的浅槽隔离结构306。 
(b)在所述沟槽上形成栅极结构307,所述栅极结构307包括栅介质308a和覆盖所述栅介质层307a的栅极307b。 
本实施例中,在沟槽302上采用化学气相沉积工艺及刻蚀工艺形成栅介质层304和栅极305,所述栅极305形成于栅介质层304上方,栅介质层304和栅极305构成栅极结构。栅介质层304可以为氧化硅或氮氧化硅,在65nm技术节点以下,优选高介电常数(高K)材料,如氧化铝,氧化锆,氧化铪等。栅极305一般为多晶硅;形成栅极结构307时所用栅极掩模层的图案与图3A,3B中的所述图案化的掩膜层301的图案一致。 
(c)以所述栅极结构307为掩膜,在所述半导体衬底300表层中进行轻掺杂源/漏区离子注入,形成轻掺杂源/漏延伸区308。 
本实施例中,以栅极结构307为掩膜,在所述半导体衬底300中采用垂直方式或倾斜方式进行轻掺杂源/漏区离子注入,在氮气或氩气等惰性气体环境下快速退火,激活注入离子和消除注入缺陷,形成轻掺杂源/漏延伸区308,通过顶部略低的内侧墙303,使得所述内侧墙303顶部至所述半导体衬底300顶部的高度与所述轻掺杂源/漏延伸区308的特征深度一致,抑制了轻掺杂源/漏(LDD)区离子注入后的径向扩散,控制了轻掺杂源/漏(LDD)延伸区308的深度,以使超浅结更浅,获得了更长的有效沟道,从而在保持器件的电学特性的同时, 有效抑制HCI效应,显著改善SCE及RSCE效应,降低器件尺寸减小所带来的击穿效应以及由其引起的结漏电。 
(e)在所述栅极结构307两侧形成栅极侧墙309。栅极侧墙309采用的材料可以为氧化硅、氮化硅、氮氧化硅中的一种或多种。 
(f)以所述栅极结构307及栅极侧墙309为掩膜,进行重掺杂源/漏极离子注入,并形成源/漏极。 
本实施例中,以栅介质层307a,栅极307b及栅极侧墙309为掩膜,在栅介质层307a,栅极307b两侧的半导体衬底300中进行离子注入,并对半导体衬底300进行快速退火处理,使注入离子扩散均匀,形成源/漏区310,进一步形成源漏极,完成MOS晶体管的制作。 
综上所述,本发明,一方面,通过锗掺杂硅外延层来增大电荷迁移率,抑制热载流子效应;另一方面,通过顶部略低的内侧墙,来抑制轻掺杂源/漏区(LDD)离子注入后的径向扩散,控制轻掺杂源/漏(LDD)延伸区的深度,以使超浅结更浅,获得了更长的有效沟道,有效抑制HCI效应,显著改善SCE及RSCE效应,降低器件尺寸减小所带来的击穿效应以及由其引起的结漏电,使得在超浅结工艺中制造更浅的源/漏区结深成为可能,可用于形成32nm及以下技术节点的超浅结MOS晶体管。 
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。 

Claims (12)

1.一种MOS晶体管的制造方法,其特征在于,包括:
提供半导体衬底,并在所述半导体衬底上形成图案化的掩膜层;
以所述图案化的掩膜层为掩膜,刻蚀所述半导体衬底以形成沟槽;
移除所述图案化的掩膜层,并在所述沟槽侧壁形成内侧墙,所述内侧墙的高度小于所述沟槽的深度;
在所述沟槽中形成锗掺杂硅外延层。
2.如权利要求1所述的MOS晶体管的制造方法,其特征在于,所述图案化的掩膜层厚度为0.015μm~10μm。
3.如权利要求1所述的MOS晶体管的制造方法,其特征在于,所述沟槽的深度为0.06μm~0.6μm。
4.如权利要求3所述的MOS晶体管的制造方法,其特征在于,所述内侧墙的高度为30nm~100nm。
5.如权利要求1或4所述的MOS晶体管的制造方法,其特征在于,所述内侧墙底部的厚度为3nm~100nm。
6.如权利要求1所述的MOS晶体管的制造方法,其特征在于,所述内侧墙是通过沉积或热生长绝缘介质形成的。
7.如权利要求6所述的MOS晶体管的制造方法,其特征在于,所述绝缘介质为氮化硅,氧化硅或氮氧化硅的一种或多种。
8.如权利要求1所述的MOS晶体管的制造方法,其特征在于,所述锗掺杂硅外延层为均匀锗掺杂硅外延层或非均匀锗掺杂硅外延层。
9.如权利要求1所述的MOS晶体管的制造方法,其特征在于,在所述沟槽中形成锗掺杂硅外延层之后,还包括:
在半导体衬底内形成N/P型阱区和隔离所述N/P型阱区的浅槽隔离结构;
在所述沟槽上形成栅极结构,所述栅极结构包括栅介质层和覆盖所述栅介质层的栅极;
以所述栅极结构为掩膜,在所述半导体衬底表层中进行轻掺杂源/漏区离子注入,形成轻掺杂源/漏延伸区;
在所述栅极结构两侧形成栅极侧墙;
以所述栅极结构及栅极侧墙为掩膜,进行重掺杂源/漏极离子注入,并形成源/漏极。
10.如权利要求9所述的MOS晶体管的制造方法,其特征在于,所述轻掺杂源/漏区离子注入采用垂直方式或倾斜方式。
11.如权利要求9所述的MOS晶体管的制造方法,其特征在于,所述图案化的掩膜层的图案与形成栅极结构时所用掩模层的图案一致。
12.如权利要求9至11中任意一项所述的MOS晶体管的制造方法,其特征在于,所述内侧墙顶部至所述半导体衬底顶部的高度与所述轻掺杂源/漏延伸区的特征深度一致。
CN201110068717.6A 2011-03-22 2011-03-22 一种mos晶体管的制造方法 Active CN102693915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110068717.6A CN102693915B (zh) 2011-03-22 2011-03-22 一种mos晶体管的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110068717.6A CN102693915B (zh) 2011-03-22 2011-03-22 一种mos晶体管的制造方法

Publications (2)

Publication Number Publication Date
CN102693915A true CN102693915A (zh) 2012-09-26
CN102693915B CN102693915B (zh) 2015-02-18

Family

ID=46859279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110068717.6A Active CN102693915B (zh) 2011-03-22 2011-03-22 一种mos晶体管的制造方法

Country Status (1)

Country Link
CN (1) CN102693915B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867412A (zh) * 2019-11-19 2020-03-06 上海华力微电子有限公司 Mos器件的制造方法
WO2022037180A1 (zh) * 2020-08-21 2022-02-24 长鑫存储技术有限公司 半导体器件及其制备方法
CN114812878A (zh) * 2022-04-07 2022-07-29 中北大学 一种高灵敏度压阻敏感单元及其制造方法
US12087857B2 (en) 2020-08-21 2024-09-10 Changxin Memory Technologies, Inc. Semiconductor device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153157A1 (en) * 2001-10-18 2003-08-14 Foad Majeed A. Low energy ion implantation into SiGe
CN1753188A (zh) * 2004-09-20 2006-03-29 国际商业机器公司 半导体结构及其形成方法
KR100886708B1 (ko) * 2007-07-03 2009-03-04 주식회사 하이닉스반도체 Soi 소자 및 그의 제조방법
US7572712B2 (en) * 2006-11-21 2009-08-11 Chartered Semiconductor Manufacturing, Ltd. Method to form selective strained Si using lateral epitaxy
CN101740393A (zh) * 2008-11-27 2010-06-16 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法及半导体器件
CN101807605A (zh) * 2010-02-05 2010-08-18 上海宏力半导体制造有限公司 一种半导体器件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153157A1 (en) * 2001-10-18 2003-08-14 Foad Majeed A. Low energy ion implantation into SiGe
CN1753188A (zh) * 2004-09-20 2006-03-29 国际商业机器公司 半导体结构及其形成方法
US7572712B2 (en) * 2006-11-21 2009-08-11 Chartered Semiconductor Manufacturing, Ltd. Method to form selective strained Si using lateral epitaxy
KR100886708B1 (ko) * 2007-07-03 2009-03-04 주식회사 하이닉스반도체 Soi 소자 및 그의 제조방법
CN101740393A (zh) * 2008-11-27 2010-06-16 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法及半导体器件
CN101807605A (zh) * 2010-02-05 2010-08-18 上海宏力半导体制造有限公司 一种半导体器件及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867412A (zh) * 2019-11-19 2020-03-06 上海华力微电子有限公司 Mos器件的制造方法
WO2022037180A1 (zh) * 2020-08-21 2022-02-24 长鑫存储技术有限公司 半导体器件及其制备方法
US12087857B2 (en) 2020-08-21 2024-09-10 Changxin Memory Technologies, Inc. Semiconductor device and method for manufacturing the same
CN114812878A (zh) * 2022-04-07 2022-07-29 中北大学 一种高灵敏度压阻敏感单元及其制造方法

Also Published As

Publication number Publication date
CN102693915B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
US11195931B2 (en) Gate structure, semiconductor device and the method of forming semiconductor device
US8658507B2 (en) MOSFET structure and method of fabricating the same using replacement channel layer
JP5869753B2 (ja) 埋め込み拡張領域を有するsoiトランジスタ、及びその形成方法
US10347740B2 (en) Fin structures and multi-Vt scheme based on tapered fin and method to form
US20140015045A1 (en) Apparatus and Method for Power MOS Transistor
US20140027783A1 (en) Semiconductor device and method of manufacturing the same
CN104022037A (zh) 鳍式场效应晶体管及其形成方法
US11616128B2 (en) Transistor structure with reduced leakage current and adjustable on/off current
US20080142888A1 (en) Isolation spacer for thin soi devices
EP3288071A1 (en) Semiconductor structure and fabricating method thereof
CN110047754A (zh) 半导体器件及其制造方法
CN102751193A (zh) 金氧半导体半导体装置及其制造方法
CN110047908A (zh) 半导体器件及其制造方法
US9391188B2 (en) Semiconductor device and method for fabricating semiconductor device
CN106816467A (zh) 半导体装置及其制造方法
US9324831B2 (en) Forming transistors without spacers and resulting devices
CN102693915B (zh) 一种mos晶体管的制造方法
US20140342517A1 (en) Method for fabricating trench type power semiconductor device
CN103295899A (zh) FinFET器件制造方法
WO2012135986A1 (zh) 一种制作晶体管和半导体器件的方法
CN102903636B (zh) Mos晶体管的制造方法
CN102903635B (zh) Mos晶体管的制造方法
US10170315B2 (en) Semiconductor device having local buried oxide
KR100597459B1 (ko) 반도체 소자의 게이트 전극형성방법
CN102569087A (zh) Mos晶体管及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant