CN101687645B - 碳纳米片的制造方法 - Google Patents

碳纳米片的制造方法 Download PDF

Info

Publication number
CN101687645B
CN101687645B CN2007800530129A CN200780053012A CN101687645B CN 101687645 B CN101687645 B CN 101687645B CN 2007800530129 A CN2007800530129 A CN 2007800530129A CN 200780053012 A CN200780053012 A CN 200780053012A CN 101687645 B CN101687645 B CN 101687645B
Authority
CN
China
Prior art keywords
solid
carbon
carbon nanosheet
liquid separation
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800530129A
Other languages
English (en)
Other versions
CN101687645A (zh
Inventor
米国民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOSETU Corp
Original Assignee
KYOSETU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOSETU Corp filed Critical KYOSETU Corp
Publication of CN101687645A publication Critical patent/CN101687645A/zh
Application granted granted Critical
Publication of CN101687645B publication Critical patent/CN101687645B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/565Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明的目的是提供能够工业上大量生产碳纳米片的碳纳米片制造方法,其包括:将碳纳米片的原料浸泡在强氧化剂中进行电化学氧化反应的化学氧化处理工序;清洗时投射超声波的水洗-超声波处理工序;进行固液分离的固液分离处理工序;将碳固体干燥加热的干燥加热处理工序;用水或碱清洗经加热的碳固体并在该清洗时投射超声波的水洗-超声波处理工序;将经清洗和超声波处理的碳固体固液分离的固液分离处理工序;向经固液分离的碳固体加水、添加发泡剂来筛选碳纳米片的浮选处理工序;对经筛选的碳纳米片进行水洗后将液体和碳纳米片固液分离的水洗-固液分离处理工序和干燥处理工序。

Description

碳纳米片的制造方法
技术领域
本发明涉及以薄片状的石墨(graphite)粉末等为原料的碳纳米片(carbon nanosheet)的制造方法。 
背景技术
近年来试图制出在纳米级上(即原子、分子水平上)精密调整的材料及元件的尝试日渐盛行。现阶段,纳米材料中最受瞩目的、且取得研究进展的是碳系纳米材料。说到碳,众所周知,根据其晶体结构,这种材料可变成石墨,也可变成金刚石,并且,近年来又发现了其纳米结构体,例如碳纳米管(中空的针状分子)、富勒烯(足球状分子)。另外,高纯度的同轴碳纳米管薄层也已为人们所知(例如参见专利文献1)。 
专利文献1:日本特开2006-335604号公报 
发明内容
越来越清楚,在众多的元素中,碳是一种变幻自如的材料,其具有明显的多样性。碳纳米片就是其中之一。碳纳米片的特征是其形状。由于碳纳米片是提取晶体结构最小基本单位所得物质,其厚度是1纳米到几十纳米左右,只有几个原子那么大,而横向尺寸通常却为微米以上,具有极高的2维各向异性。其纳米级构造以及极高的2维各向异性,使碳纳米片具有反应性高、比表面积大、量子限制效应和高导电性等特性。然而,现在尚没有该碳纳米片的制造方法的报告例。 
本发明的目的是提供碳纳米片的制造方法,并提供简单的、可工业生产的方法。 
为了实现上述目的,本发明的方法包括下述工序: 
化学氧化处理工序,将由薄片状的碳固体构成的粉状碳纳米片原料浸泡在强氧化剂中,进行电化学氧化反应;
第一水洗-超声波处理工序,将在所述化学氧化处理工序中氧化的碳纳米片原料用水或碱清洗,并在该清洗时投射超声波; 
第一固液分离处理工序,通过离心分离机-过滤机将经所述第一水洗-超声波处理的碳纳米片的原料固液分离成液体和碳固体; 
干燥-加热处理工序,对经所述第一固液分离处理后的碳固体进行干燥并加热; 
第二水洗-超声波处理工序,将经所述干燥-加热处理的碳固体用水或碱清洗,并在该清洗时投射超声波; 
第二固液分离处理工序,通过离心分离机-过滤机将经所述第二水洗-超声波处理的碳固体固液分离成液体和碳固体; 
浮选处理工序,向经所述第二固液分离处理的碳固体加水,添加发泡剂,筛选碳纳米片; 
水洗-固液分离处理工序,对经筛选的碳纳米片进行水洗后,将液体和碳纳米片固液分离;以及 
干燥处理工序,对经所述水洗-固液分离处理的碳纳米片进行干燥。 
另外,本发明的特征在于,所述碳纳米片的原料是炭黑、乙炔黑、石墨或石墨氧化物中的任意一种。 
另外,本发明在所述化学氧化处理工序中添加了氧化剂。 
另外,本发明的特征是使用浓硫酸与浓草酸的混合酸、过氧化氢、臭氧、过氧化钠、过氧化钾、高锰酸钠、过硫酸这样的无机过氧化物;过氧草酸、过氧醋酸、过氧化苯甲酰、全氟过氧醋酸等有机过氧化物的中任意一种作为所述氧化剂。 
另外,本发明的特征在于,使用浓硫酸与浓草酸的混合酸作为所述氧化剂。 
另外,本发明的特征在于,使用过氧化氢作为所述氧化剂。 
另外,本发明的特征在于,在所述浮选处理工序中添加了捕收剂。 
另外,本发明在所述浮选处理工序中通过导入空气来使碳纳米片吸附在无数的泡上,使碳纳米片与泡一起上浮。 
能够在工业上大量生产大小为200~2000纳米、厚度为10~50纳米的 碳纳米片。 
附图说明
图1是表示本发明涉及的碳纳米片制造工序的流程图。 
图2是表示嵌入(intercalation)量与浓硫酸/浓草酸的混合比例的关系的曲线图。 
图3是表示嵌入量与石墨的氧化时间的关系的曲线图。 
图4是通过本发明的制造方法制造的碳纳米片的电子显微镜照片。 
具体实施方式
下面参照附图对本发明的实施方式进行详细说明。 
纳米片是通过嵌入,将无机层状化合物的主层一层层剥离而得到的物质,其厚度为1~几十纳米(1纳米=10-9米)、横向方向的尺寸为几百纳米,具有很高的形状各向异性,因此具有大块物质所没有的各种特征。 
作为本发明的碳纳米片,是例如炭黑、乙炔黑、石墨或石墨氧化物等的纳米片,这些纳米片可以通过使层状的碳(例如炭黑、乙炔黑、石墨或其氧化物例如石墨氧化物等)溶胀和剥离来得到。这些层状体在层间嵌入无机、有机化合物时均能表现出溶胀性,而从剥离性的角度出发,优选石墨氧化物。 
要想使该层状的石墨氧化物充分剥离,只要用碱对氧化物层间的质子进行处理,进行离子交换即可。作为这样的碱,可以使用碱金属的氢氧化物和氨、有机铵的氢氧化物等,但只要是能进行层间质子的离子交换的碱,则没有特别限制。另外,也可以使用聚氧乙烯、十二烷基硫酸盐等表面活性剂来进行。 
接着,对本发明所涉及的碳纳米片的制造方法的实施方式进行说明。 
图1是说明碳纳米片的制造工序的流程图。本发明所涉及的碳纳米片的原料使用的是人造或天然的薄片状石墨(graphite)粉末。作为原料,可以使用例如炭黑、乙炔黑、石墨氧化物。本实施方式中,对使用石墨的情况进行说明。 
[化学氧化处理] 
将所述原料浸泡在强氧化剂中,使其发生电化学氧化反应。在该化学氧化处理中,为了更迅速地进行电化学氧化反应,优选添加氧化剂作为氧化的促进剂。作为这样的氧化剂,例如可以使用浓硫酸与浓草酸的混合酸、过氧化氢、臭氧、过氧化钠、过氧化钾、高锰酸钠、过硫酸这样的无机过氧化物;过氧草酸、过氧醋酸、过氧化苯甲酰、全氟过氧醋酸等有机过氧化物。但基于容易获得、容易处理的观点,优选浓硫酸与浓草酸的混合酸或过氧化氢。石墨和混合氧化物的添加比例方面,优选混合氧化物为石墨质量的1~10倍。更优选4~6倍。 
图2示出了嵌入量与混合酸(浓硫酸/浓草酸)的混合比例的关系。所谓嵌入是指使无机层状晶体的层与层之间嵌入异种分子或离子的反应,通过嵌入得到的物质是无机层片之间分子有序排列的复合物。 
石墨的氧化时间范围优选为10~150分钟。更优选为30~60分钟。图3示出了嵌入量与石墨的氧化时间的关系。 
[水洗、超声波处理] 
经氧化的石墨进一步用水或碱性溶液进行清洗。进行清洗时,施加强力的超声波处理。该超声波能量的强度优选为500W/cm2以上。处理时间可为1小时~12小时,优选为2~3小时。 
[固液分离处理] 
接着,使用离心分离机和过滤机对经氧化的石墨的固体和水分进行固液分离。该工序需要一次或有时需要几次。 
[干燥-加热处理] 
利用离心分离机得到的固体进一步用干燥机进行干燥。该干燥在50~120℃的温度下进行,并优选低于80℃的温度。进一步将经干燥的固体在电炉中加热。该加热在500~1200℃的温度下进行,优选800℃。优选加热时间短,例如加热1分钟。通过上述的嵌入处理,生成了被称作纳米复合物的层状石墨氧化物。 
[水洗-超声波处理] 
 要想使上述的层状石墨氧化物溶胀、剥离来得到碳纳米片,需要将层状石墨氧化物分散在水中进行清洗。进行清洗时,优选利用强力的超声波投射处理。超声波的能量优选500W/cm2。另外,该超声波处理时间为1小时~12小时,优选2~3小时。 
[固液分离处理] 
进行超声波处理后,在离心分离机/过滤机中添加碱或表面活性剂后振荡混合经水洗的层状石墨氧化物。碱或表面活性剂的添加量因石墨氧化物的性质而异,但该混合物的pH范围为1~7,优选为3~4。在离心分离机/过滤机中,层状石墨氧化物被固液分离。 
[浮选处理] 
用浮选机,进一步从经固液分离的固体筛选碳纳米片。该浮选处理工序中的残渣(余渣)返送到化学氧化处理工序,反复进行化学氧化处理工序和浮选处理工序。在该工序中,向固体加水,以筛选碳纳米片。该水的添加量要使碳固体物的浓度为5~20%,更优选使碳固体物的浓度为10%。 
另外,作为本工序中用于筛选的捕收剂,优选煤油(灯油)、柴油、重油等具有烃基的油类捕收剂(捕获油)或焦油。相对于水溶液质量,捕收剂的添加量设定为50~200g/t(克/吨),优选100g/t。另外,本工序添加的发泡剂优选以MIBC(甲基异丁基甲醇)为代表的芳香族醇类非离子浮选剂、不饱和烃类松油等,相对于碳固体物,添加量设定为50~300g/t,优选100g/t。 
另外,此时,即使仅添加发泡剂而不使用油类捕收剂,也能对碳纳米片进行筛选。而且,通过用浮选机一边对碳纳米片进行搅拌,一边向浆料中导入空气,可以将碳纳米片吸附到无数泡上,与泡一起上浮,由此能够选出碳纳米片。相对于1m3浆料,导入的空气量为0.05~0.2m3,优选0.1m3。 
[水洗-固液分离处理] 
筛选出的碳纳米片进行水洗,并用离心分离机/过滤机进行固液分离。 
[干燥处理] 
将经固液分离的碳纳米片在230℃下干燥。 
通过上述工序,能够大量制造大小为200~2000纳米、厚度为10~50纳米的碳纳米片。 
产业上的可利用性 
本发明能够大量制造大小为200~2000纳米、厚度为10~50纳米的碳纳米片,所以其产品碳纳米片能够广泛用于碱性电池、锂电池、双电层电容、导电涂料等领域。 

Claims (7)

1.一种碳纳米片的制造方法,其特征在于,所述制造方法包括下述工序:
化学氧化处理工序,将由薄片状的碳固体构成的粉状碳纳米片原料浸泡在强氧化剂中,进行电化学氧化反应;
第一水洗-超声波处理工序,将在所述化学氧化处理工序中氧化的碳纳米片原料用水或碱清洗,并在该清洗时投射超声波;
第一固液分离处理工序,通过离心分离机-过滤机将经所述第一水洗-超声波处理的碳纳米片的原料固液分离成液体和碳固体;
干燥-加热处理工序,对经所述第一固液分离处理后的碳固体进行干燥并加热;
第二水洗-超声波处理工序,将经所述干燥-加热处理的碳固体用水或碱清洗,并在该清洗时投射超声波;
第二固液分离处理工序,通过离心分离机-过滤机将经所述第二水洗-超声波处理的碳固体固液分离成液体和碳固体;
浮选处理工序,向经所述第二固液分离处理的碳固体加水,并添加发泡剂,筛选碳纳米片;
水洗-固液分离处理工序,对经筛选的碳纳米片进行水洗后,将液体和碳纳米片固液分离;以及
干燥处理工序,对经所述水洗-固液分离处理的碳纳米片进行干燥。
2.如权利要求1所述的碳纳米片的制造方法,其特征在于,所述碳纳米片原料是炭黑、乙炔黑、石墨或石墨氧化物中的任意一种。
3.如权利要求1所述的碳纳米片的制造方法,其特征在于,使用浓硫酸与浓草酸的混合酸、过氧化氢、臭氧、过氧化钠、过氧化钾、高锰酸钠、过硫酸、过氧草酸、过氧醋酸、过氧化苯甲酰、全氟过氧醋酸中的任意一种作为所述强氧化剂。
4.如权利要求1所述的碳纳米片的制造方法,其特征在于,使用浓硫酸与浓草酸的混合酸作为所述强氧化剂。
5.如权利要求1所述的碳纳米片的制造方法,其特征在于,使用过氧化氢作为所述强氧化剂。
6.如权利要求1所述的碳纳米片的制造方法,其特征在于,在所述浮选处理工序中添加了捕收剂。
7.如权利要求1所述的碳纳米片的制造方法,其特征在于,在所述浮选处理工序中,通过导入空气使碳纳米片吸附在无数的泡上,使碳纳米片与泡一起上浮。
CN2007800530129A 2007-06-14 2007-06-14 碳纳米片的制造方法 Expired - Fee Related CN101687645B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/000634 WO2008152680A1 (ja) 2007-06-14 2007-06-14 カーボンナノシートの製造方法

Publications (2)

Publication Number Publication Date
CN101687645A CN101687645A (zh) 2010-03-31
CN101687645B true CN101687645B (zh) 2012-12-12

Family

ID=40129298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800530129A Expired - Fee Related CN101687645B (zh) 2007-06-14 2007-06-14 碳纳米片的制造方法

Country Status (4)

Country Link
JP (1) JP5033183B2 (zh)
CN (1) CN101687645B (zh)
HK (1) HK1142869A1 (zh)
WO (1) WO2008152680A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691174B2 (en) * 2009-01-26 2014-04-08 Dow Global Technologies Llc Nitrate salt-based process for manufacture of graphite oxide
JP2011195432A (ja) * 2010-02-26 2011-10-06 Sekisui Chem Co Ltd 薄片化黒鉛の製造方法及び薄片化黒鉛
CN103253662B (zh) * 2013-06-01 2015-04-15 上海轻丰新材料科技有限公司 一种大规模、可操控、低成本的石墨烯制备方法
CN103288078B (zh) * 2013-07-05 2016-01-20 何钊 氧化石墨烯的制备方法
JP6538415B2 (ja) * 2015-04-28 2019-07-03 株式会社ダイセル 炭素材料の酸化方法並びに酸化グラフェン及び組成物
CN104891474B (zh) * 2015-05-26 2017-04-12 南昌大学 一种超薄碳纳米片的制备方法
CN106044756B (zh) * 2016-05-31 2019-05-24 湖北航天化学技术研究所 一种氧化石墨烯功能化改性的方法
SE543430C2 (en) * 2019-06-28 2021-02-16 Grafren Ab Method for redistributing a flake material into at least two flake size fractions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149518A (en) * 1989-06-30 1992-09-22 Ucar Carbon Technology Corporation Ultra-thin pure flexible graphite calendered sheet and method of manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562807A (en) * 1978-11-06 1980-05-12 Agency Of Ind Science & Technol Production of expanded graphite
EP0406008B1 (en) * 1989-06-30 1994-09-21 Ucar Carbon Technology Corporation Graphite sheet material
DE10003927A1 (de) * 2000-01-29 2001-08-02 Sgl Technik Gmbh Verfahren zum Herstellen von expandierbaren Graphiteinlagerungsverbindungen unter Verwendung von Phosphorsäuren
JP4798411B2 (ja) * 2000-08-09 2011-10-19 三菱瓦斯化学株式会社 炭素からなる骨格を持つ薄膜状粒子の合成方法
JP2003176116A (ja) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ大型の薄膜状粒子
JP4678152B2 (ja) * 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 炭素からなる骨格を持つ薄膜状粒子の分散液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149518A (en) * 1989-06-30 1992-09-22 Ucar Carbon Technology Corporation Ultra-thin pure flexible graphite calendered sheet and method of manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭55-62807A 1980.05.12

Also Published As

Publication number Publication date
JPWO2008152680A1 (ja) 2010-08-26
WO2008152680A1 (ja) 2008-12-18
CN101687645A (zh) 2010-03-31
HK1142869A1 (en) 2010-12-17
JP5033183B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
CN101687645B (zh) 碳纳米片的制造方法
Yaqoob et al. Self-assembled oil palm biomass-derived modified graphene oxide anode: an efficient medium for energy transportation and bioremediating Cd (II) via microbial fuel cells
KR20180094874A (ko) 그래핀 보강 중합체 매트릭스 복합체의 무 화학물질 제조
CN107055532A (zh) 一种负载石墨烯的活性炭复合材料及其制备方法
Zhang et al. Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton
Xu et al. Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel
Kharissova et al. Solubilization and dispersion of carbon nanotubes
CN107265434A (zh) 一种竹制纳米纤维素/还原氧化石墨烯复合碳气凝胶的制备方法及其应用
WO2020112752A1 (en) Conducting polymer composite containing ultra-low loading of graphene
CN110961122B (zh) 一种用于电催化析氢的MoS2修饰三维多孔碳基复合材料的制备方法
Sahoo et al. Vanadium pentaoxide-doped waste plastic-derived graphene nanocomposite for supercapacitors: a comparative electrochemical study of low and high metal oxide doping
CN103553030A (zh) 一种少层石墨烯的制备方法
Fu et al. One-step vapor diffusion synthesis of uniform CdS quantum dots/reduced graphene oxide composites as efficient visible-light photocatalysts
Zhu et al. Synthesis of 3D hierarchically porous carbon@ Bi-BiOCl nanocomposites via in situ generated NaCl crystals as templates for highly sensitive detection of Pb2+ and Cd2+
CN109003826A (zh) N和s双掺杂石墨烯-石墨烯纳米带气凝胶的制备方法
Ding et al. Efficient exfoliation of layered materials by waste liquor
Liu et al. Self-provided microbial electricity enhanced wastewater treatment using carbon felt anode coated with amino-functionalized Fe3O4
Ma et al. Promotion removal of aniline with electro-Fenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode
Amari et al. Biomolecules behavior on a surface of boron doped/un-doped graphene nanosheets
EP2583942A1 (en) Process for formation of foliated fine graphite particles
Tran et al. Electrochemical Synthesis of Graphene from Waste Discharged Battery Electrodes and Its Applications to Preparation of Graphene/Fe3O4/Chitosan‐Nanosorbent for Organic Dyes Removal
CN108640108A (zh) 一种石墨烯制备方法
Rozhkova Role of fullerene-like structures in the reactivity of shungite carbon as used in new materials with advanced properties
KR101282741B1 (ko) 초음파―전기화학적 방법을 이용한 나노박편의 연속적 대량 생산방법
Kankla et al. Site‐Selective Bipolar Electrodeposition of Gold Clusters on Graphene Oxide Microsheets at a 3D Air| Liquid Interface

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1142869

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1142869

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20170614