CN101675533A - 包括具有传导点的层的光电模块 - Google Patents

包括具有传导点的层的光电模块 Download PDF

Info

Publication number
CN101675533A
CN101675533A CN200880013526A CN200880013526A CN101675533A CN 101675533 A CN101675533 A CN 101675533A CN 200880013526 A CN200880013526 A CN 200880013526A CN 200880013526 A CN200880013526 A CN 200880013526A CN 101675533 A CN101675533 A CN 101675533A
Authority
CN
China
Prior art keywords
battery
module
layer
voltage
conducting spots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880013526A
Other languages
English (en)
Other versions
CN101675533B (zh
Inventor
G·C·杜贝尔达姆
E·P·斯波泰尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helianthos BV
Original Assignee
Helianthos BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helianthos BV filed Critical Helianthos BV
Publication of CN101675533A publication Critical patent/CN101675533A/zh
Application granted granted Critical
Publication of CN101675533B publication Critical patent/CN101675533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种光电(PV)模块,其包括多个电池,每个电池包括基底、透明导体层、光电层、以及背电极层,其中所述光电层包括至少一个p-i-n或n-i-p硅层,其特征在于,所述硅层包括10至1000个再结晶硅的传导点/cm2,每个传导点独立地具有10至2500μm2的表面。所述PV模块通过其中所述p-i-n或n-i-p硅层被局部加热的方法获得,从而所述硅在这些点变换,在其之后这些点处的硅可以以变换后的状态而被固化。

Description

包括具有传导点的层的光电模块
技术领域
本发明涉及包括多个电池的光电(PV)模块,每个电池包含基底、透明导体层、光电层、以及背电极层,其中所述光电层包括至少一个p-i-n或n-i-p硅层,本发明还涉及一种制造所述光电模块的方法。
背景技术
当由多个串联连接的电池构成的PV模块被部分遮蔽时,被照射的电池可能在被遮蔽的电池上产生强的负(反向)电压。当被遮蔽的电池具有高的并联电阻时尤其如此。因为在被遮蔽的电池中没有电流产生,模块电流几乎为零,从而被遮蔽的电池暴露于被照射电池的开路电压。在大的系统中,这样的电压可能非常高,以致击穿电压容易通过。在被遮蔽的电池中,可发生强的局部热量产生(热点),这可能导致被遮蔽电池的局部损坏。在最坏的情况下,这些热点可能导致火灾。
最常用的用于防止热点的补救方法是如美国5,223,044和WO2005/101511中所述的应用旁通二极管,其在一个方向以较低的电压开始导电,在另一个方向隔离。然而,应用旁通二极管是昂贵的。尤其是在具有较低击穿电压(通常小于8V)的薄膜PV模块的情况下,每个旁通二极管可保护的电池数目较小,即,对于a-Si薄膜约为小于10个。
在薄膜PV模块的情况下,可以以用于串联连接的非常复杂的工艺的成本制造单片旁通二极管。
另一种方法是如在美国2003/0159728中所述的应用所谓的PV分流器。根据该方法,并联连接数个由串联连接的电池构成的模块。当一个模块被部分遮蔽时,通过被完全照射的模块的电压来降低被遮蔽电池上的反向电压。然而,组合的串联和并联连接降低了系统电压并增加了系统电流,并且限制了系统设计的自由度。
在EP1079441中,描述了一种用于调节被部分遮蔽的PV模块的IV特征的方法。根据该方法,电池暴露于增加的偏置AC电压,直到电流开始增加。经过处理,电池示出非线性传导,其允许被遮蔽电池以较低电压传导被照射电池的短路电流。然而,该方法依赖于PV电池中的可以引入非线性传导的偶然点(accidental spot)的存在。而且,需要与全部电池直接接触。
美国5,810,945描述了一种制造电子微构图器件的方法,尤其是一种太阳能电池,其中至少一个电极被提供图形。在该文献中未解决遮蔽问题。
Toet等(D.Toet等,Thin solid films 296(1977)49-52)描述了一种用于在玻璃基底上生长多晶硅薄膜的二步骤技术。遮蔽问题未得到解决。
Wohlgemuth等(J.Wohlgemuth和W.Herrmann,Hot spot test forcrystalline silicon modules,Photovoltaic Specialists Conference,2005,Piscataway,NJ,USA 3-7 January 2005,IEEE,US,January 3,2005,第1062-1063页)描述了用于进行热点测试的方法。其中未讨论如何避免热点的形成。
发明内容
因此,本发明的一个目的是提供一种没有任何上述缺点的防止热点的补偿方法,并且以容易且便宜的方式实施。已经发现通过在精确限定的位置引入相同的严格限定的非线性传导点来调节薄膜PV电池的IV特征,可以实现该目的。为此,本发明涉及包括多个电池的光电(PV)模块,每个电池包含基底、透明导体层、光电层、以及背电极层,其中所述光电层包括至少一个p-i-n或n-i-p硅层,其特征在于,所述硅层包括10至1000个再结晶硅的传导点/cm2,每个传导点独立地具有10至2500μm2的表面。
该方法基于大部分PV电池包括在两侧具有电极层的有源半导体层。至少一个所述电极层是透明的,从而光可以到达所述有源层。
根据本发明,PV电池的有源层被局部加热,从而该层至少部分地变换为另一相。变换后的材料失去了PV特征,但是可以通过仔细地配置热量来保持半导体特性。从而,变换后的点在低电压下具有较低电导率和高电压下具有较高电导率的两个电极层之间用作非线性传导路径。更具体地,在1V电压下,这些点的电导率低于0.2mA/cm2,而在8V电压下,电导率大于10mA/cm2
在本说明书中,变换后的材料有时候表示为再结晶硅,并且形成过程有时候表示为再结晶之前的熔化。然而,该表述决不应被认为是限制本发明的特性。显然,本发明的特征在于存在传导点,并且其通过热处理而形成。本发明的特征不在于硅的结晶形式或者是否发生熔化或再结晶。
为了使局部热量的产生最小化,必须形成许多这样的非线性传导点,以使每个点的电流较小。
通过非线性传导点的电流可以用奇数级数展开式描述:
Figure G2008800135266D00031
其中J传导点(V)是在电压V下通过传导点的每单位表面的电流[A/cm2];V是两个电极之间的电压[V];以及1/Rn是级数展开式的第n阶系数。Rn的量纲是[Vn·cm2/A]。
直接在电压V=0附近的部分大部分由R1决定,下一部分还由R3决定,依此类推。对于PV电池的JV曲线的主要部分的描述,系数R1和R3已经足够。因为在低电压下线性传导开始导致损失,R1必须尽可能高。R3必须被选择为使得在低于击穿电压的电压下传导最大可能的电流。
在不引入非线性传导点的情况下,当模块被短路时,在具有28个电池的模块中,被遮蔽电池上的反向电压可能高达-19V(R1=10000,R3=1000000)。在具有更多的电池的情况下,被遮蔽电池上的反向电压增大。该大电压远远超过击穿电压。利用非线性传导点(R1=2500,R3=10000),被遮蔽电池上的电压被限定至低于击穿电压的-5V。R1显示出与R3的引入有关的降低。在正常条件(无遮蔽)下的JV曲线几乎不受非线性传导点的影响。在电池数目增多的情况下,当模块被短路时,被遮蔽电池上的反向电压保持为约-5V。
当在模块的所有电池上施加非线性传导点以使p-i-n或n-i-p硅层包括10-1000个再结晶硅的传导点/cm2时,每个传导点独立地具有10-2500μm2的表面,则无论串联连接的电池的数目是多少,遮蔽都不导致损坏。因为引入了大量规则分布的传导点,被遮蔽电池中的耗散能也在PV电池上规则分布。避免了单个点的过度加热。正常条件下的模块性能几乎不受非线性传导点的影响。
在优选实施例中,PV模块的硅层包括20-500个传导点/cm2,更优选30-300个传导点/cm2,进一步更优选80-120个传导点/cm2。在另一个优选实施例中,在PV模块所具有的硅层中,传导点具有30-300μm2、优选50-150μm2、更优选60-120μm2的表面。
因为这些点在正常工作条件下不会形成电流,优选传导点的全部表面积相对小。更具体地,传导点的表面积与太阳能电池的电流产生部分的表面积的比率优选低于0.01∶1,更优选低于0.001∶1。作为优选最小值,该比率可以为0.00001∶1。
本发明的另一个目的是提供形成上述PV模块的方法。可以数种方式获得非线性传导点。一种方式是通过在与长电极直接接触的电池上施加增加的AC电压而获得非线性点。然而,这样会使点随机分布,并且点的特性依赖于PV电池的有源层的偶然局部条件。
严格限定的点通过在限定的位置对PV电池的有源层施加限定量的能量而获得。根据优选方法,p-i-n或n-i-p硅层被局部地加热至10-1000个点/cm2,每个点独立地具有10-2500μm2的表面,从而所述硅在这些点处至少部分地变换至另一相。例如,这可以通过脉冲激光的聚焦束实现,其中所述激光的波长为这样的,以使其在PV电池的有源层中被吸收。在非晶Si PV电池的情况下,可以使用倍频Q开关Nd-YAG、Nd-YFL或Nd-YVO4激光器(λ=532nm)。这样激光的脉冲持续时间较短,典型地低于50ns(纳秒),更典型地为约15ns,从而直接照射的点吸收所有能量而没有由热传导引起的损耗。脉冲能量在窄范围内是恒定的,并且根据下式,在焦点中的束腰的直径可以较小:
d = 1.22 · λ · F D - - - ( 2 )
其中d是束腰的直径;
λ是激光的波长;
F是聚焦透镜的焦距;以及
D是平行激光束在进入透镜之前的直径
在D=5mm,F=100mm和λ=532nm的情况下,得出d=13μm。在束腰处,激光束具有高斯强度分布,从而通过激光形成的非线性点的尺寸更小。
本发明还通过下面的对本发明具体实施例的非限制性的描述而进行示例。
附图说明
图1给出相对于八电池模块的电压的单个电池的电压的图示。
图2给出八电池模块的JV曲线,示出相对于模块电压的模块的电流。
具体实施方式
利用脉冲ND-YVO4激光器来处理小尺寸模块(8个1×7.5cm2的电池)和较大模块(28个1×30cm2的电池)。对于每个电池,形成单行非线性传导点(2点之间的距离为50μm)。
激光处理引入电池的非线性传导,其特征在于公式(1)的Rn的值。下面描述用于确定Rn的方法。可以用公知的二极管公式(参考S.R.Wenham等,Applied Photovoltaics,ISBN 0 86758 909 4,p.33)描述单个电池的JV曲线,通过用于光诱导电流和非线性并联电阻的项展开该公式:
J = J 0 · ( e qV nkT - 1 ) - J L + V R 1 + V 3 R 3 + . . . ( 3 )
其中J是电流密度[A/m2]
J0是暗电流密度[A/m2]
JL是光诱导电流密度[A/m2]
q是单位电荷
k是玻尔兹曼常数
n是二极管品质因数
T是温度[K]
V是每个电池的电压
完全照射的模块的JV曲线对于正常电池的Rn的变化值只是略微敏感。当所述电池中的一个被遮蔽,JV曲线较大地变化。被遮蔽电池的光诱导电流(几乎)为0。被照射电池在被遮蔽电池上施加随外部电压源变化的反向电压。被遮蔽电池用作用于模块的被照射电池的一种负载电阻。当电池没有被较大地分流,被照射电池的理论JV曲线对Rn不敏感。相反地,被遮蔽电池的JV曲线以及从而具有一个被遮蔽电池的模块的JV曲线强烈地依赖于Rn
首先,测量被完全照射的模块的JV曲线。从该曲线确定包括Rn的平均电池参数。然后,在遮蔽一个电池的同时记录模块的JV曲线。通过曲线拟合过程获得被遮蔽电池的Rn的值。被遮蔽电池的光诱导电流JL,被遮蔽电 =0,并且仅仅被遮蔽电池的Rn必须适于获得适当的拟合。在表1中列出从拟合过程获得的被遮蔽电池的R1和R3的平均值以及R1和R3的值。
表1:从曲线拟合过程获得的R1和R3的值
  R1,平均   R3,平均  R1,电池4   R3,电池4
  激光处理前   20000   2000000   6000   66000
  激光处理后   3500   20000   2500   13500
R1平均值的减少是实际的,R3的平均值的减少任意地或多或少,这是因为被完全照射的模块的所计算的曲线几乎不受到该值的影响。以可接受的精度确定被遮蔽电池的R1和R3的减少。只要R5的值被选择为足够大,R5对于拟合JV曲线的相关部分不是非常重要。
各个电池的R1和R3的值可以用于表征激光处理工艺的质量。用于正常工作的电池的值的范围可以针对两个参数进行限定:R1>1000,特别地,R1>2000;1000<R3<50000,特别地,10000<R3<50000(这些值可以改变)。
表2示出八电池模块的J-V曲线。第一列给出模块电压。第二和第三列分别给出相对于模块电压(没有遮蔽)的在一个电池上的模块电流和电压。第四和第五列给出相对于模块电压(一个电池被遮蔽)的被遮蔽的标准电池上的模块电流和电压。第六和第七列给出相对于模块电压(一个电池被遮蔽)的具有传导点的被遮蔽电池上的模块电流和电压。
图1给出相对于八电池模块的电压的单个电池的电压的图示(在表2中给出数值数据)。
图2给出八电池模块的JV曲线,示出相对于模块电压的模块的电流(在表2中给出数值数据)。
显然,具有传导点的被遮蔽电池上的反向电压受到限制,而被遮蔽的标准电池上的电压随模块电压几乎线性增加。
表2
Figure G2008800135266D00081

Claims (6)

1.一种光电(PV)模块,包括多个电池,每个电池包括基底、透明导体层、光电层、以及背电极层,其中所述光电层包括至少一个p-i-n或n-i-p硅层,其特征在于,所述硅层包括10至1000个再结晶硅的传导点/cm2,每个传导点独立地具有10至2500μm2的表面。
2.根据权利要求1的PV模块,其中所述硅层包括20至500个传导点/cm2,优选30至300个传导点/cm2,更优选80至120个传导点/cm2
3.根据权利要求1或2的PV模块,其中所述传导点的表面为30至300μm2,优选50至150μm2,更优选60至120μm2
4.一种制造根据权利要求1-3中任一项的PV模块的方法,其中所述p-i-n或n-i-p硅层被局部加热至10至1000个传导点/cm2,每个点独立地具有10至2500μm2的表面,从而所述p-i-n或n-i-p硅在这些点处变换而形成传导点。
5.根据权利要求4的方法,其中通过脉冲激光进行所述加热。
6.根据权利要求5的方法,其中通过波长λ在520至550nm之间且脉冲持续时间小于50ns的倍频Nd-YAG、Nd-YLF或Nd-VO4激光器进行所述加热。
CN2008800135266A 2007-04-26 2008-04-23 包括具有传导点的层的光电模块 Active CN101675533B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07107029.6 2007-04-26
EP07107029 2007-04-26
PCT/EP2008/054896 WO2008132104A2 (en) 2007-04-26 2008-04-23 Photovoltaic module comprising layer with conducting spots

Publications (2)

Publication Number Publication Date
CN101675533A true CN101675533A (zh) 2010-03-17
CN101675533B CN101675533B (zh) 2011-08-24

Family

ID=38787713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800135266A Active CN101675533B (zh) 2007-04-26 2008-04-23 包括具有传导点的层的光电模块

Country Status (11)

Country Link
US (1) US20100089432A1 (zh)
EP (1) EP2137771B1 (zh)
JP (1) JP4509219B1 (zh)
KR (1) KR101526616B1 (zh)
CN (1) CN101675533B (zh)
ES (1) ES2620092T3 (zh)
MX (1) MX2009011501A (zh)
RU (1) RU2009143680A (zh)
TW (1) TW200908356A (zh)
WO (1) WO2008132104A2 (zh)
ZA (1) ZA200907184B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094272A (ja) * 2007-10-09 2009-04-30 Mitsubishi Heavy Ind Ltd 光電変換モジュールおよび光電変換モジュールの製造方法
US20100279458A1 (en) * 2009-04-29 2010-11-04 Du Pont Apollo Ltd. Process for making partially transparent photovoltaic modules
US9912290B2 (en) * 2012-06-18 2018-03-06 Sunpower Corporation High current burn-in of solar cells
NL2012557B1 (en) * 2014-04-02 2016-02-15 Stichting Energieonderzoek Centrum Nederland Photovoltaic module.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268037A (en) * 1992-05-21 1993-12-07 United Solar Systems Corporation Monolithic, parallel connected photovoltaic array and method for its manufacture
DE4315959C2 (de) * 1993-05-12 1997-09-11 Max Planck Gesellschaft Verfahren zur Herstellung einer strukturierten Schicht eines Halbleitermaterials sowie einer Dotierungsstruktur in einem Halbleitermaterial unter Einwirkung von Laserstrahlung
US5468988A (en) * 1994-03-04 1995-11-21 United Solar Systems Corporation Large area, through-hole, parallel-connected photovoltaic device
JPH11112010A (ja) * 1997-10-08 1999-04-23 Sharp Corp 太陽電池およびその製造方法
US6011215A (en) * 1997-12-18 2000-01-04 United Solar Systems Corporation Point contact photovoltaic module and method for its manufacture
US6468828B1 (en) * 1998-07-14 2002-10-22 Sky Solar L.L.C. Method of manufacturing lightweight, high efficiency photovoltaic module
DE19921545A1 (de) * 1999-05-11 2000-11-23 Angew Solarenergie Ase Gmbh Solarzelle sowie Verfahren zur Herstellung einer solchen
JP2000323738A (ja) * 1999-05-14 2000-11-24 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールの逆バイアス処理装置
US6391528B1 (en) * 2000-04-03 2002-05-21 3M Innovative Properties Company Methods of making wire grid optical elements by preferential deposition of material on a substrate
ATE337568T1 (de) * 2000-04-03 2006-09-15 3M Innovative Properties Co Selektive abscheidung eines materials auf ein substrat gemaess eines interferenzmusters
JP4410401B2 (ja) * 2000-08-30 2010-02-03 株式会社カネカ 薄膜太陽電池モジュール
JP4563085B2 (ja) * 2004-06-15 2010-10-13 三菱重工業株式会社 薄膜太陽電池
US7301215B2 (en) * 2005-08-22 2007-11-27 Canon Kabushiki Kaisha Photovoltaic device

Also Published As

Publication number Publication date
WO2008132104A3 (en) 2009-06-18
MX2009011501A (es) 2009-11-10
EP2137771B1 (en) 2017-01-04
KR20100015717A (ko) 2010-02-12
US20100089432A1 (en) 2010-04-15
EP2137771A2 (en) 2009-12-30
WO2008132104A2 (en) 2008-11-06
ZA200907184B (en) 2010-07-28
TW200908356A (en) 2009-02-16
KR101526616B1 (ko) 2015-06-05
CN101675533B (zh) 2011-08-24
ES2620092T3 (es) 2017-06-27
JP2010525593A (ja) 2010-07-22
JP4509219B1 (ja) 2010-07-21
RU2009143680A (ru) 2011-06-10

Similar Documents

Publication Publication Date Title
Katz et al. Photovoltaic characterization of concentrator solar cells by localized irradiation
CN101675533B (zh) 包括具有传导点的层的光电模块
Cristobal et al. Next Generation of Photovoltaics: New Concepts
EP2150990A2 (en) Solar cell
Pon Vengatesh et al. Investigation of the effects of homogeneous and heterogeneous solar irradiations on multicrystal PV module under various configurations
Haloui et al. The copper indium selenium (CuInSe2) thin Films solar cells for hybrid photovoltaic thermal collectors (PVT)
Sweet et al. Design and characterization of hybrid III–V concentrator photovoltaic–thermoelectric receivers under primary and secondary optical elements
Saffar et al. Thermal effects investigation on electrical properties of silicon solar cells treated by laser irradiation
Markauskas et al. Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations
JP4352124B2 (ja) 化合物半導体系薄膜太陽電池の性能劣化回復方法
Peña et al. A new method for current–voltage curve prediction in photovoltaic modules
Sweet et al. Experimental characterization and multi-physics simulation of a triple-junction cell in a novel hybrid III: V concentrator photovoltaic–thermoelectric receiver design with secondary optical element
Wang et al. In-process measuring of the electrical shunt resistance of laser-scribed thin-film stacks by nested circular scribes
CN114123969A (zh) 多结叠层光伏电池子电池电流及匹配度的检测方法
Sullivan Understanding the viability of impurity-band photovoltaics: A case study of S-doped Si
Lee et al. Performance Enhancement of Hybrid Energy Devices Using Cooling Patches
Gečys Ultrashort pulsed laser processing of thin-films for solar cells
Mahmood et al. Susceptibility to polarization type potential induced degradation in commercial bifacial p‐PERC PV modules
Aljoaba Active optimal control strategies for increasing the efficiency of photovoltaic cells
Hartenstein et al. High-voltage monocrystalline Si photovoltaic minimodules based on poly-Si/SiOx passivating contacts for high-power laser power conversion
Huang et al. Effect of multiple pulsed laser irradiation on resistance of silicon cells
Roy et al. Performance Enhancement of Photovoltaic-Thermoelectric Generator Hybrid Model Using Fresnel Lens
Vaish et al. Equivalent models of solar photovoltaic cells and discuss the effects of resistance on maximum output power curve
Islam New Developments in Solar Energy Conversion: From Fundamental Two-Dimensional Materials to Advanced Concentrating Photovoltaic Modules
Hota et al. Erratum and Addendum:“A Standalone PV System with a Hybrid P&O MPPT Optimization Technique”

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant