CN101593752B - 与cmos加工技术兼容的双极器件 - Google Patents

与cmos加工技术兼容的双极器件 Download PDF

Info

Publication number
CN101593752B
CN101593752B CN2009101263107A CN200910126310A CN101593752B CN 101593752 B CN101593752 B CN 101593752B CN 2009101263107 A CN2009101263107 A CN 2009101263107A CN 200910126310 A CN200910126310 A CN 200910126310A CN 101593752 B CN101593752 B CN 101593752B
Authority
CN
China
Prior art keywords
bipolar device
emitter
base
gate pattern
extrinsic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101263107A
Other languages
English (en)
Other versions
CN101593752A (zh
Inventor
庄建祥
薛福隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSMC China Co Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101593752A publication Critical patent/CN101593752A/zh
Application granted granted Critical
Publication of CN101593752B publication Critical patent/CN101593752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • H01L29/1008Base region of bipolar transistors of lateral transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

一种双极器件包括:设置在半导体衬底上的第一极性的发射极;设置在半导体衬底上的第一极性的集电极;网状配置中的用于限定发射极和集电极的栅图案;在栅图案下的第二极性的内部基极;和设置在栅图案上并与内部基极耦合的、用于与内部基极一起形成双极器件的基极的外部基极。

Description

与CMOS加工技术兼容的双极器件
技术领域
本申请一般涉及双极器件,并且特别涉及与CMOS加工工艺兼容的、并形成为网状结构以增强其性能的双极器件。
背景技术
虽然CMOS器件具有低功耗和高输入阻抗的优点,但是它们经常需要一些专门设计的I/O器件和电路用于隔离其与高压信号。这些I/O器件和电路在半导体加工期间通常需要额外的掩膜。一种用于简化半导体加工的方法是采用双极器件作为I/O器件。双极器件能够承受高电压,易于制造,并且完全与传统的CMOS加工技术兼容。此外,在设计模拟电路中双极器件具有比CMOS器件多的优点。例如,与对于相同电流的MOS器件相比,双极器件能够提供高电流增益,低噪音,更高的驱动能力,以及低器件错配。希望在某些电路中采用双极器件和CMOS器件以对于电路系统获得更好和平稳的性能。
图1举例说明了与CMOS加工技术兼容的传统的PNP双极晶体管10。局部氧化硅(LOCOS)隔离11在半导体器件1的N阱15上限定了三个有源区12,13和14。掺杂有P型杂质的有源区12和13分别形成发射极16和集电极17。在发射极16和集电极17之间的LOCOS隔离11在其下的N阱15中限定了内部基极18。外部基极19经由N阱15的主体电连接到内部基极18。外部基极19掺杂有N型杂质以改善其导电性。当发射极16,集电极17和外部基极19被适当偏置时,载流子将在发射极16和集电极17之间流动以产生电流的放大。能够在美国专利申请公开NO.US2006/0197185中得到这种双极晶体管。
PNP双极晶体管10的性能主要依靠内部基极18的宽度和它至外部基极19的距离。传统上,它的大约为1-5的电流增益β太小以致不能满足许多电路设计。再次,如果浅沟槽隔离(STI)替换所使用的LOCOS隔离,在STI上载流子几乎不可能在集电极和发射极之间移动。这更退化了双极晶体管的性能。
图2举例说明了用于解决上述问题的传统的双极器件20的布图。双极器件20构造在N阱22上,N阱22形成在半导体衬底(图中未示出)中。隔离区24,例如LOCOS隔离或浅沟槽隔离形成在N阱22上以限定有源区26。导电栅28横跨有源区26形成。P+掺杂区30a和30b形成在隔离区24内的N阱22上,并邻近导电栅28。具有比N阱22的剂量高的N+掺杂区32a和32b形成为与在导电栅28下的N阱22在其两个纵端部分地交叠。外部基极接触34a和34b分别设置在N+掺杂区32a和32b上,并与在导电栅28下的N阱22形成双极晶体管20的基极。
工作时,P+掺杂区30a和30b中的一个起发射极的作用,另一个起集电极的作用。双极晶体管20的基极由内部基极,在导电栅28下的部分N阱22,和包括N+掺杂区32a和32的外部基极构成。与图1示出的现有技术相比,因为N+掺杂区32a和32b设置在导电栅28的两个纵端,所以缩短了内部基极和外部基极之间的距离,并且减小了它们之间的电阻。结果是,与图1中示出的通过传统双极器件获得的大约1至5倍增益相比,双极器件20能够获得高电流增益。
图3举例说明了在美国专利申请公开NO.US2007/0105301中公开的双极器件阵列40的传统布图结构图。双极器件阵列40设置在N阱44上,N阱44形成在半导体衬底(图中未示出)中。导电栅42a和42b的行和列设置在N阱44上。导电栅42a和42b与MOS晶体管的栅一起形成在半导体衬底上。导电栅42a包括与标号42b表示的另一组平行线交叉的一组平行线。P+掺杂区46形成在N阱44上的导电栅42a和42b之间的范围中,除了通过虚线确定的N+掺杂区48。因为在离子注入工艺期间形成P+掺杂区46时导电栅42a和42b挡开了P+离子,所以在导电栅42a和42b下的N阱44具有N型极性,在P+掺杂区46的形成期间不受影响。接触49形成在P+掺杂区46和N+掺杂区48上。
每两个相邻P+掺杂区46分别起集电极和发射极的作用。在导电栅42a和42b下的N阱44起内部基极的作用,而N+掺杂区48起外部基极的作用。每个发射极和它的周围的集电极和基极一起起PNP双极晶体管的作用,并且这种双极器件的行和列构成双极器件阵列40。双极器件阵列40具有减小基极阻抗和增大器件布图设计密度的优点。
由于上述内容,为了获得更大的电流增益和器件布图设计密度,仍然有用于改善传统双级器件的构造和布图设计的空间。
发明内容
本发明的目的针对双极器件。在本发明的一个实施例中,双极器件包括:设置在半导体衬底上的第一极性的发射极;设置在半导体衬底上的第一极性的集电极;网状配置中的限定发射极和集电极的栅图案;在栅图案下的第二极性的内部基极;和设置在栅图案上并与内部基极耦合的、用于与内部基极一起形成双极器件的基极的外部基极。
在本发明的另一个实施例中,公开了一种双极器件阵列,其包括:设置在半导体衬底上的第一极性的发射极;设置在半导体衬底上的第一极性的集电极;网状配置中的限定发射极和集电极的栅图案;在栅图案下的第二极性的内部基极;设置在栅图案上并与内部基极耦合的、用于与内部基极一起形成双极器件的基极的外部基极,和设置在发射极上的发射极接触,其中发射极接触与集电极之间的距离小于发射极接触和外部基极之间的距离。
然而,从结合附图的详细实施例的以下说明中可以更好的理解本发明的结构和操作方法以及它的额外的目的和优点。
附图说明
图1举例说明了传统的双极器件的截面图。
图2举例说明了传统的双极器件的布图构造图。
图3举例说明了传统的双极器件阵列的布图构造图。
图4A举例说明了根据本发明的一个实施例的双极器件阵列的布图构造图。
图4B举例说明了根据本发明的实施例的双极器件阵列的截面图。
图4C举例说明了根据本发明的实施例的双极器件阵列的截面图。
图4D举例说明了根据本发明的实施例的双极器件阵列的截面图。
图5举例说明了根据本发明的另一个实施例的双极器件阵列的布图构造图。
图6举例说明了根据本发明的又另一个实施例的双极器件阵列的布图构造图。
图7举例说明了根据本发明的又另一个实施例的双极器件阵列的布图构造图。
图8举例说明了根据本发明的又另一个实施例的双极器件阵列的布图构造图。
具体实施方式
本发明描述了一种具有改善的电流增益和与CMOS加工工艺兼容的双极器件。为了说明其原理的目的下面仅仅描述了本发明的不同的实施例。可以明白,虽然在此没有明确描述,但是本领域的技术人员能够设计各种包含本发明的原理的等同物。
图4A举例说明了根据本发明的一个实施例的双极器件阵列60的布图构造图。多个行导电栅62a和多个列导电栅62b设置在N阱64上,并在它们之间限定起集电极或者发射极作用的P+掺杂区66。在导电栅62a和62b下的N阱64起到掺杂有N型杂质的内部基极的作用。外部基极68通过在导电栅62a和62b的交叉区域重掺杂N型杂质形成,以和它下层的内部基极形成欧姆接触。接触65设置在P+掺杂区66上以及接触67形成在外部基极68上。外部基极68,在导电栅62a和62b下的内部基极,以及它的相邻发射极和集电极一起起双极器件的作用。
在构造双极器件阵列60中的一个考虑是发射极和集电极之间的距离d1应该小于发射极接触65和外部基极68之间的距离d2。图4B举例说明了沿着发射极接触65和邻近导电栅62b的集电极之间的距离d1的双极器件阵列60的局部截面图,而图4C举例说明了沿着发射极接触65和外部基极68之间的距离d2的双极器件阵列60的局部截面图。如在这些图中清楚地显示,发射极和集电极之间的距离d1小于发射极和外部基极68之间的距离。当发射极和基极被正向偏压时,本结构确保大部分载流子能够在发射极和集电极之间流动,而不是直接在发射极和外部基极之间流动,因而允许双极器件功能正常。
导电栅62a和62b的材料可以是多晶硅,钨或者其它的金属合金。然后,可以注意因为导电栅62a和62b被设计成虚结构因而不会起到双极器件阵列60的有源部分的作用,作为替代地,它们也可以由非导电材料制成,但这失去了与传统的CMOS工艺的兼容性。导电栅62a和62b仅仅用来从光刻立场限定内部基极。导电栅可以被蚀刻掉,否则当双极器件激活时MOS器件可能被导通。外部基极接触需要是欧姆接触的,否则双极器件的性能可能严重退化。作为一个实施例,可以在外部基极接触开口之后通过如磷或砷离子的N+掺杂物的重离子掺杂形成欧姆接触。
双极器件的密度增加,因而在硅片的单位区域内制造更多的双极器件。代替构造具有一个拉长的内部基极的双极器件,阵列60中的每个双极器件具有围绕发射极的四个内部基极,因而其可以以更紧凑的方式来制造。结果是,可以按比例放大所提出的双极器件以提供放大的电流增益。例如,所述双极器件阵列的电流增益可以超过100,其对电路设计中的大部分的应用是足够的。
图4D举例说明了沿着图4A所示阵列60中的线A-A’的双极器件的截面图。集电极66a和发射极66b设置在N阱64上,并被在导电栅62b下的内部基极区域隔开。为了增加发射极效率,取消了发射极66b的轻掺杂漏以及发射极66a和发射极66b的口袋注入(pocket implant)。本结构可以用为用来构造图4A所示的双极器件阵列60以及将在下面的段落中描述的其它各种阵列的基本结构。
图5举例说明了根据本发明的另一个实施例的双极器件阵列70的布图构造图。双极器件阵列70设置在N阱74上,N阱74形成在半导体衬底(图中未示出)上。导电栅72以包括正方形栅72a和将正方形栅72a连接在一起的桥72b的结构的方式设置在N阱74上。在正方形栅72a的边界内的区域掺杂有P型杂质,以形成起发射极作用的P+掺杂区。通过正方形栅72a和桥72b的边界限定的区域掺杂有P型杂质以形成起集电极作用的P+掺杂区。在导电栅72下的N阱74、正方形栅72a和桥72b起内部基极的作用。部分桥72b掺杂有N型杂质以形成起外部基极作用的N+掺杂区76,在外部基极上形成它们的相应的基极接触。需要注意虽然公开了正方形导电栅,但是作为选择地,它可以以任何多边形形状或几何图形形状制造。
图6举例说明了根据本发明的又另一实施例的双极器件阵列80的布图构造图。除了移除导电栅62a和62b和保留外部基极68之外,双极器件阵列80具有类似于图4A所示的阵列60的结构,与其中MOS栅和外部基极连接的合并MOS/双极器件相反。
图7举例说明了根据本发明的又另一实施例的双极器件阵列90的布图构造图。在阵列90中,导电栅92a,92b和92c设置在表示三角形的三个侧边的三个方向上。P+掺杂区94形成在通过导电栅92a,92b和92c的相邻部分限定的三角形区域内部以起到发射极和集电极的作用。N+掺杂区96形成在导电栅92a,92b和92c的交叉点以起到外部基极的作用。每组相邻的发射极、集电极和外部基极起阵列90内的双极器件的作用。
图8举例说明了根据本发明的又另一实施例的双极器件阵列100的布图构造图。在阵列100中,导电栅102设置为六边形形状。P+掺杂区104形成在通过导电栅102限定的六边形内部以起到发射极和集电极的作用。N+掺杂区106形成在导电栅102的拐角处以起到外部基极的作用。每组相邻的发射极、集电极和外部基极起到阵列100中的双极器件的作用。
需要注意在图4A,图7,和图8中所示的双极器件阵列具有一个共同特征是外部基极形成在导电栅的交叉处,并且散布在发射极和集电极的周围。这种结构允许双极器件按照紧凑的方式设置,因而在单位的布图区域内增加了器件密度。
半导体技术领域的技术人员可以明白虽然以上实施例集中在PNP双极器件,但是通过以上实施例解释的原理可以适用于通过反转双极器件的集电极、发射极和基极的极性来构造NPN双极器件。
以上说明书提供了许多不同的实施例或者用于执行发明的不同特征的多个实施例。描述了组件和工艺的详尽的实施例以帮助阐明发明。当然,这些仅仅是实施例并且不能意味着限定从权利要求中描述的发明。
虽然在此如具体体现在一个或更多详尽实例中举例说明和描述了发明,但是这仍然不意味着限于所示出的详情,因为在此在不超出发明的精神并在权利要求的等价物的范围内,可以作出各种修改和结构改变。因而,恰当地是以广泛地意义并且以与发明的范围一致的方式来解释所附权利要求,如以下权利要求所阐明的。

Claims (15)

1.一种双极器件,包括:
设置在半导体衬底上的第一极性的发射极;
设置在半导体衬底上的第一极性的集电极;
网状配置的用于限定发射极和集电极的栅图案;
在栅图案下的第二极性的内部基极;和
设置在栅图案上并与内部基极耦合的、用于与内部基极一起形成双极器件的基极的外部基极。
2.根据权利要求1的双极器件,其中还包括构造在发射极上的发射极接触。
3.根据权利要求2的双极器件,其中发射极接触与集电极之间的距离小于发射极接触和外部基极之间的距离。
4.根据权利要求1的双极器件,其中栅图案包括与栅的行相交叉的栅的列。
5.根据权利要求4的双极器件,其中外部基极构造在栅的交叉上。
6.根据权利要求1的双极器件,其中栅图案包括通过多个桥连接的多个多边形。
7.根据权利要求6的双极器件,其中外部基极构造在栅图案的桥上。
8.根据权利要求1的双极器件,其中栅图案包括将发射极和集电极构造为多边形形状的、具有多个交叉的栅。
9.根据权利要求8的双极器件,其中上述外部基极形成在上述栅的交叉上。
10.根据权利要求1的双极器件,其中上述栅图案包括多个分立的掺杂区。
11.根据权利要求1的双极器件,其中发射极是不含轻掺杂漏结构的掺杂区。
12.根据权利要求1的双极器件,其中外部基极与内部基极欧姆接触。
13.一种双极器件,包括:
设置在半导体衬底上的第一极性的发射极;
设置在半导体衬底上的第一极性的集电极;
网状配置的限定发射极和集电极的栅图案;
在栅图案下的第二极性的内部基极;
设置在栅图案上并与内部基极耦合的、用于与内部基极一起形成双极器件的基极的外部基极,和
设置在发射极上的发射极接触,其中发射极接触与集电极之间的距离小于发射极接触和外部基极之间的距离。
14.根据权利要求13的双极器件,其中栅图案包括将发射极和集电极构造为多边形形状的、具有多个交叉的栅,其中外部基极形成在栅的交叉上。
15.根据权利要求13的双极器件,其中栅图案包括通过多个桥连接的多个多边形,外部基极构造在栅图案的桥上,其中外部基极与内部基极欧姆接触。
CN2009101263107A 2008-05-28 2009-02-26 与cmos加工技术兼容的双极器件 Active CN101593752B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5670908P 2008-05-28 2008-05-28
US61/056,709 2008-05-28
US12/256,376 2008-10-22
US12/256,376 US8143644B2 (en) 2008-05-28 2008-10-22 Bipolar device compatible with CMOS process technology

Publications (2)

Publication Number Publication Date
CN101593752A CN101593752A (zh) 2009-12-02
CN101593752B true CN101593752B (zh) 2011-11-16

Family

ID=41378667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101263107A Active CN101593752B (zh) 2008-05-28 2009-02-26 与cmos加工技术兼容的双极器件

Country Status (2)

Country Link
US (1) US8143644B2 (zh)
CN (1) CN101593752B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415764B2 (en) * 2009-06-02 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. High-voltage BJT formed using CMOS HV processes
CN102315256B (zh) * 2010-07-08 2014-05-14 旺宏电子股份有限公司 双极接面晶体管装置
US8927379B2 (en) 2012-09-26 2015-01-06 International Business Machines Corporation Method to bridge extrinsic and intrinsic base by selective epitaxy in BiCMOS technology
FR3007575A1 (fr) * 2013-06-24 2014-12-26 St Microelectronics Sa Procede de fabrication d’un transistor bipolaire vertical compatible avec les procedes de fabrication cmos
KR102254766B1 (ko) * 2014-11-07 2021-05-25 에스케이하이닉스 주식회사 높은 전류구동능력을 갖는 수평형 바이폴라 접합 트랜지스터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250384A (en) * 1979-08-24 1981-02-10 Pulvari Charles F Radiant energy systems, memories and thermal imaging methods and apparatus
CN88100546A (zh) * 1987-01-30 1988-08-10 得克萨斯仪器公司 双极型和互补金属氧化物半导体晶体管的集成制造工艺
CN1218288A (zh) * 1997-11-21 1999-06-02 日本电气株式会社 半导体器件及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701038B2 (en) * 2005-10-31 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. High-gain vertex lateral bipolar junction transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250384A (en) * 1979-08-24 1981-02-10 Pulvari Charles F Radiant energy systems, memories and thermal imaging methods and apparatus
CN88100546A (zh) * 1987-01-30 1988-08-10 得克萨斯仪器公司 双极型和互补金属氧化物半导体晶体管的集成制造工艺
CN1218288A (zh) * 1997-11-21 1999-06-02 日本电气株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
US20090294798A1 (en) 2009-12-03
CN101593752A (zh) 2009-12-02
US8143644B2 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
US8415764B2 (en) High-voltage BJT formed using CMOS HV processes
JP5371274B2 (ja) 半導体装置
US6611043B2 (en) Bipolar transistor and semiconductor device having the same
US7385253B2 (en) Device for electrostatic discharge protection and circuit thereof
CN101593752B (zh) 与cmos加工技术兼容的双极器件
KR102254766B1 (ko) 높은 전류구동능력을 갖는 수평형 바이폴라 접합 트랜지스터
US7812377B2 (en) Semiconductor device
JP5041749B2 (ja) 半導体装置
JP6131114B2 (ja) 半導体装置及びその製造方法
JPH09148903A (ja) 半導体装置
US9548296B2 (en) Semiconductor electrostatic protection circuit device
JP3713490B2 (ja) 半導体装置
CN101930997A (zh) 薄体双极器件
US6894321B2 (en) ESD protection circuit with plural thyristors
US9548295B2 (en) System and method for an integrated circuit having transistor segments
JP2002064106A (ja) 半導体装置
JP5080056B2 (ja) 静電気保護用半導体装置
JP4197660B2 (ja) Mosトランジスタおよびこれを備えた半導体集積回路装置
JP2009164278A (ja) Mosトランジスタ及びこれを用いた半導体集積回路装置
CN103904077A (zh) Esd保护结构、集成电路和半导体器件
CN110534512B (zh) 一种抗闩锁版图结构
JP2009105421A (ja) 半導体装置
KR20060010665A (ko) 종방향 트랜지스터
JP2007081278A (ja) 固体撮像装置
EP1990835A2 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211210

Address after: 4000 Wenxiang Road, Songjiang District, Shanghai

Patentee after: TSMC (China) Co.,Ltd.

Address before: Taiwan, Hsinchu, China

Patentee before: Taiwan Semiconductor Manufacturing Co.,Ltd.