CN101520421B - 一种土壤重金属含量检测模型的建模方法及其应用 - Google Patents

一种土壤重金属含量检测模型的建模方法及其应用 Download PDF

Info

Publication number
CN101520421B
CN101520421B CN200910081688XA CN200910081688A CN101520421B CN 101520421 B CN101520421 B CN 101520421B CN 200910081688X A CN200910081688X A CN 200910081688XA CN 200910081688 A CN200910081688 A CN 200910081688A CN 101520421 B CN101520421 B CN 101520421B
Authority
CN
China
Prior art keywords
heavy metal
soil
ray fluorescence
fluorescence spectra
modeling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910081688XA
Other languages
English (en)
Other versions
CN101520421A (zh
Inventor
陆安祥
朱大洲
韩平
潘立刚
王纪华
李云伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING RESEARCH CENTER OF AGRIFOOD AND FARMLAND MONITORING CHIAN
Original Assignee
BEIJING RESEARCH CENTER OF AGRIFOOD AND FARMLAND MONITORING CHIAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING RESEARCH CENTER OF AGRIFOOD AND FARMLAND MONITORING CHIAN filed Critical BEIJING RESEARCH CENTER OF AGRIFOOD AND FARMLAND MONITORING CHIAN
Priority to CN200910081688XA priority Critical patent/CN101520421B/zh
Publication of CN101520421A publication Critical patent/CN101520421A/zh
Application granted granted Critical
Publication of CN101520421B publication Critical patent/CN101520421B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种土壤重金属含量检测模型的建模方法及其应用,所述建模方法包括步骤:采集土壤样品;采集所述样品的X射线荧光光谱;测定土壤样品中待测重金属元素含量参考值;建立X射线荧光光谱与重金属元素含量参考值之间的校正关系。该方法可同时对土壤的多种重金属元素含量进行快速无损检测;该方法适应范围广,普适性强,为农田土壤重金属污染的现场检测提供了技术基础。

Description

一种土壤重金属含量检测模型的建模方法及其应用
技术领域
本发明涉及农业与环境领域,特别是涉及一种土壤重金属含量检测模型的建模方法及其应用。
背景技术
土壤是农业生产最重要的自然资源,又对环境产生重大的影响。随着城市化进程及工业的迅速发展,重金属、化学农药等污染物通过污水灌溉、大气烟尘沉降、垃圾掩埋处理等各种途径进入土壤。土壤中的重金属因不被微生物降解,不易移动,故会不断积累,造成严重污染,并可通过植物吸收进入食物链,造成农产品安全质量隐患,危害人类健康。因此,对农田土壤中的重金属进行监测,已经成为环境保护和农业生产的重要工作。
然而,现行的基于定点采样、点源观测的土壤参数传统监测方法成本较高、效率低下。目前常用的土壤重金属检测手段为:通过将强酸土壤样品消解,然后将消解液中的金属元素用原子吸收、石墨炉原子吸收法或等离子体光谱等方法进行测定。这些方法往往检测步骤繁琐、时间长,费用高,且用强酸消解样品存在一定污染。传统检测方法的上述缺点限制了大规模土壤监测工作的开展,无法做到快速、实时的土壤参数动态监控。
X射线荧光光谱检测技术具有分析速度快、检测元素范围广、前处理简便、可以无损检测等优点,已广泛应用于冶金、地质、石油等领域的重金属检测,取得了广泛的社会经济效益。针对X射线荧光光谱检测在环境监测中的应用,特别是对土壤的检测,众多学者进行了研究,美国EPA也制定了使用X射线荧光光谱技术现场测定土壤和沉积物中的元素含量的标准方法,规定了仪器的使用范围和方法,但是其中概念性的内容较多,缺乏细致的技术探讨。通过对仪器的小型化,便携式X射线荧光光谱检测在土壤中重金属污染监测方面的应用正方兴未艾,但方法手段尚不完善。土壤相对于石油、地质等待测对象,样品组成更加复杂,其中除分析元素以外的元素构成的基体对测量存在巨大干扰,这些统称为基体效应,它包括元素间的吸收和增强效应,还包括样品的物理状态如颗粒度、表面效应、水分影响、以及分析元素化学价态不一样引起的分析线谱峰位移或谱峰形状改变等。样品的物理状态的影响可以通过合理制样使其减小或消除。对于分析元素间的吸收-增强效应,目前已提出了多种方法来校正。比如经验系数法、基本参数法、理论影响系数法等数学校正方法,以及内标法、标准加入法和稀释法等实验校正方法。但这些方法都有一定的适应范围,而对于土壤样品,特别是我国的土壤,由于地貌复杂,土壤类别众多,采用一种土壤建立的标准曲线很难适用于其它土壤。
化学计量学方法是应用于化学分析、化学信息提取的统计方法,它已在处理近红外光谱中背景复杂、谱峰重叠及多维统计模型建立等方面取得了巨大成功,在色谱曲线解析等方面也得到了广泛应用。
发明内容
本发明的目的是提供一种土壤重金属的定量检测方法,特别是提供一种基于X射线荧光光谱与偏最小二乘回归模型的土壤重金属元素含量快速检测方法。
为达到上述目的,一种土壤重金属含量检测模型的建模方法,所述建模方法包括步骤:
S1,采集土壤样品;
S2,采集所述样品的X射线荧光光谱;
S3,测定土壤样品中待测重金属元素含量参考值;
S4,建立荧光光谱与重金属元素含量参考值之间的多元校正关系。
其中,所述步骤S4中的校正关系为:
yi=x(UiX)′BiQi
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为重金属元素的含量载荷矩阵,Ui、Bi、Qi根据土壤样品的X射线荧光光谱矩阵及对应重金属元素含量参考值由偏最小二乘法确定。上述校正关系可由软件自动简化为多元一次方程:
yi=Aix+a0,其中Ai为系数向量,其长度与光谱x的自变量个数相同,a0为常数项。Ai及a0可由偏最小二乘程序输出。
其中,所述步骤S2还包括对所采集的X射线荧光光谱进行噪声去除、拟合谱形及净计数率的计算。
其中,所述重金属元素包括铜、锌、铅、铬、镉、汞和砷。
其中,在所述步骤S4中,对于不同的元素,根据其主峰、次峰的位置,选择包含其主次峰的光谱区域为建立校正关系的区域。
其中,对于铬、锌、铅和砷四种重金属元素,选择的建立校正关系的光谱区域的能量范围分别为:250-480能量单元、650-750能量单元、750-1000和750-1000能量单元。
其中,在所述步骤S4中,对于所有的元素,均采用全部谱区作为建立校正关系的区域。
其中,对Fe峰所在区域进行权重为1/50的加权。
其中,Fe峰所在谱区为230-350能量单元。
其中,对步骤S4中建立的校正关系进行反复修正,直至其误差范围小于该方法应用的农业生产或环境监测中的最小误差要求。
本发明还提供一种利用上述建模方法检测土壤重金属含量的方法,包括步骤:
采集待测土壤的X射线荧光光谱;
预处理所述荧光光谱得到待测土壤的X射线荧光光谱向量;
利用校正关系yi=x(UiX)′BiQi得到待测土壤重金属含量,
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为重金属元素的含量载荷矩阵,Ui、Bi、Qi根据待测土壤的X射线荧光光谱矩阵及对应重金属元素含量参考值由偏最小二乘法确定。上述校正关系可由软件自动简化为多元一次方程:
yi=Aix+a0,其中Ai为系数向量,其长度与光谱x的自变量个数相同,a0为常数项。Ai及a0可由偏最小二乘程序输出。
本发明所提供的土壤重金属元素的定量检测方法,无需复杂的样品前处理,便可对土壤样品进行测量;由于X射线荧光光谱的采集时间以及模型计算较短,该方法可对重金属元素含量进行快速无损检测;该方法应用建立的多元校正模型,可同时计算出土壤的多个重金属元素含量;该方法采集不同区域、不同类型的土壤,可有效校正基体效应,所建立的模型适应范围广,普适性强,此外该方法为农田土壤重金属污染的现场检测提供了技术基础。
附图说明
图1是本发明土壤重金属含量检测模型的建模方法流程示意图;
图2是本发明实施例所有土壤样品的X射线荧光光谱图;
图3是本发明实施例采用特征波段建立的土壤重金属元素含量模型的预测散点图;
图4是本发明实施例采用全谱及Fe峰加权系数法建立的土壤重金属元素含量模型的预测散点图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本发明所提供的土壤重金属含量检测模型的建模方法,所述建模方法包括步骤:S1,采集土壤样品;S2,采集所述样品的X射线荧光光谱;S3,测定土壤样品中待测重金属元素含量参考值;S4,建立荧光光谱与重金属元素含量参考值之间的校正关系。
其中,所述步骤S4中的校正关系为:yi=x(UiX)′BiQi
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为重金属元素的含量载荷矩阵,Ui、Bi、Qi根据土壤样品的X射线荧光光谱矩阵及对应重金属元素含量参考值由偏最小二乘法确定。上述校正关系可由软件自动简化为多元一次方程:
yi=Aix+a0,其中Ai为系数向量,其长度与光谱x的自变量个数相同,a0为常数项。Ai及a0可由偏最小二乘程序输出。
所述步骤S2还包括对所采集的X射线荧光光谱进行噪声去除、拟合谱形及净计数率的计算。所述重金属元素包括铜、锌、铅、铬、镉、汞和砷。在所述步骤S4中,对于不同的元素,根据其主峰、次峰的位置,选择包含其主次峰的光谱区域为建立校正关系的区域。对于铬、锌、铅和砷四种重金属元素,选择的建立校正关系的光谱区域的能量范围分别为:250-480能量单元、650-750能量单元、750-1000和750-1000能量单元。在所述步骤S4中,也可以对于所有的元素,均采用全部谱区作为建立校正关系的区域。其中,对Fe峰所在区域进行权重为1/50的加权,Fe峰所在谱区为230-350能量单元。模型建好之后,对S4中建立的校正关系进行反复修正,直至其误差范围小于该方法应用的农业生产或环境监测中的最小误差要求。
本发明还提供了一种利用所述建模方法检测土壤重金属含量的方法,所述检测土壤重金属含量的方法包括步骤:
采集待测土壤的X射线荧光光谱;
预处理所述荧光光谱得到待测土壤的X射线荧光光谱向量;
利用校正关系yi=x(UiX)′BiQi得到待测土壤重金属含量,
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为重金属元素的含量载荷矩阵,Ui、Bi、Qi根据待测土壤的X射线荧光光谱矩阵及对应重金属元素含量参考值由偏最小二乘法确定。上述校正关系可由软件自动简化为多元一次方程:
yi=Aix+a0,其中Ai为系数向量,其长度与光谱x的自变量个数相同,a0为常数项。Ai及a0可由偏最小二乘程序输出。
本实施例主要包括模型建立和模型的使用及维护,软硬件设施包括便携式X射线荧光光谱仪、取样附件、化学计量学软件等部分。若用于田间实时检测则需设计专门的光谱采集系统如光纤探头。下面以实例说明本发明的具体实施方式。
首先进行样品采集与处理:样品分别采集自北京、黑龙江、江苏、云南和新疆五个省市的典型土壤,从土壤类型上区分,分别是褐土、黑土、水稻土、红壤和棕钙土。样品均来自各地的基本农田,周边1000米没有污染源,采取耕层土壤(0~20cm),土样在室内风干,磨碎,过尼龙网筛后存放。样品的混合、装袋、粉碎、研磨等处理都采用木头、陶瓷或玛瑙用具。为了形成梯度浓度的重金属污染土壤,向过100目土壤样品中分别加入不同体积的Cr、Zn、Pb和As的标准溶液,逐滴加入并充分混合均匀,从而形成添加浓度分别为100mg kg-1,200mgkg-1,400mg kg-1,600mg kg-1,800mg kg-1和1000mg kg-1的土壤样品。土壤样品中实际重金属含量将以按国标方法实际测量值为准。加标后的土壤中重金属的含量约等于土壤本底浓度与加标浓度之和,其间的误差与加标过程的均一程度和测定的误差有关。共计制得土壤样品5×6=30个。
然后进行X射线荧光光谱采集:取研磨后的样品,装进样品杯中,压紧后覆上麦拉膜。将样品杯放入仪器检测台上进行测试。Cr和Zn的测定都选取Kα线,能量分别为5.414 keV和8.638 keV,As测定选取KB线11.725 keV;Pb的测定选取LB线,能量为12.611 keV。如图2所示。为了获得更好的检测结果,测定时间经过优化,选择300秒。
之后进行参考值的测定:土壤样品的分析测定都按照国家标准执行,分析过程中均加入国家标准土壤样品(GSS-1)进行分析质量控制,并重复3次,Cr、Zn、Pb的分析测试使用美国热电Solaar-M原子吸收石墨炉,As的分析测试使用吉天仪器AFS-830原子荧光分析仪。
在建模之前,要先选择建模光谱区间:由于土壤的X射线荧光光谱存在谱峰重叠问题,另外Fe的Kα峰的强度非常大,对建模的影响非常大。本发明采用两种策略来解决这个问题。
第一种方法,对于不同的元素,根据其主峰、次峰的位置,选择包含其主次峰的光谱区域进行建模,如Cr的建模区域为250-480能量单元,Zn、Pb、和As的建模波段分别为650-750、750-1000、750-1000能量单元。我们称这种方法为“特征谱区建模”。
第二种方法,对于不同的元素,均采用全部谱区(去除两端噪声较大的区域)建模,为了减小Fe峰对模型的影响,对Fe峰所在区域进行加权,其权重设为1/50(经过尝试确定),从而将Fe峰的强度降为原来的1/50,而其它谱区的强度保持原值不变。我们称这种方法为“全谱区及Fe峰加权系数法建模”。本实例中Fe峰所在谱区为230-350能量单元。
进行定量模型的建立:对于30个土壤样本,分别建立Cr、Zn、Pb和As的预测模型。建模时先采用浓度梯度法划分校正集、预测集。校正集样本用来建立模型,预测集样本用来对模型进行评价。建模前对光谱进行噪声去除和谱形拟合处理,再用偏最小二乘回归法建立X射线荧光光谱与参考值之间的校正模型。具体过程如下:将预处理后的光谱矩阵X及建模样本的重金属元素含量y作为输入数据,输入到偏最小二乘法软件中,经过迭代运算,软件自动计算出偏最小二乘模型的一系列参数,包括元素含量特征因子矩阵Ui、元素X射线荧光光谱特征因子矩阵Bi、元素含量载荷矩阵Qi。从而得到该元素含量预测模型的函数表达式:yi=x(UiX)′BiQi,其中,向量x为待测土壤的X射线荧光光谱,由于上述参数的矩阵规模较大,在计算时不显示出来,上述校正关系可由软件自动简化为多元一次方程:
yi=Aix+a0,其中Ai为系数向量,其长度与光谱x的自变量个数相同,a0为常数项。Ai及a0可由偏最小二乘程序输出。
进行新样品的预测与模型的验证:对于建立的校正模型,均采用预测集样品来进行验证。按照上述X射线荧光光谱采集的方法分别采集待测土壤的X射线荧光光谱,并经过上述光谱预处理后得到待测土壤的X射线荧光光谱向量,利用上述数学模型yi=x(UiX)′BiQi或yi=Aix+a0即可计算出上述待测土壤的重金属元素含量。该计算过程也可编制成程序,输入待测土壤的X射线荧光光谱向量x,就可自动计算出其重金属元素含量。经预测集样品检验,结果表明,“特征谱区建模”和“全谱区及Fe峰加权系数法建模”两种策略所建立的模型能够准确地预测Cr、Zn、Pb和As这四个参数指标,其相关系数均较高(均大于0.9),如表1和表2所示。
表1
Figure G200910081688XD00081
表2
Figure G200910081688XD00091
模型的交互验证标准差与预测标准差的值比较接近,说明模型效果较好,预测集样本的分布能够较好地衡量模型的性能。模型Pb的RPD值稍小一些,其余三种元素采用两种建模方法得到的RPD值能达到2.5以上,说明预测准确度较高。从图3、图4的预测散点图可以看出,预测值和实测值相差较小,两者分布在45°线附近。以上建模结果表明,应用X射线荧光光谱快速准确地测定土壤的重金属元素含量是可行的。
本发明所提供的土壤重金属含量检测模型的建模方法及其应用,无需复杂的样品前处理,便可对土壤样品进行测量;由于X射线荧光光谱的采集时间以及模型计算较短,该方法可对重金属元素含量进行快速无损检测;该方法应用建立的多元校正模型,可同时计算出土壤的多个重金属元素含量;该方法采集不同区域、不同类型的土壤,可有效校正基体效应,所建立的模型适应范围广,普适性强,此外该方法为农田土壤重金属污染的现场检测提供了技术基础。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种土壤重金属含量检测模型的建模方法,其特征在于,所述建模方法包括步骤:
S1,采集土壤样品;
S2,采集所述样品的X射线荧光光谱;
S3,测定土壤样品中待测重金属元素含量参考值;
S4,建立X射线荧光光谱与重金属元素含量参考值之间的多元校正关系,所述多元校正关系为:
yi=x(UiX)′BiQi
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为某重金属元素的含量载荷矩阵,Ui、Bi、Qi根据土壤样品的X射线荧光光谱矩阵及对应某重金属元素含量参考值由偏最小二乘法确定。
2.如权利要求1所述土壤重金属含量检测模型的建模方法,其特征在于,所述步骤S2还包括对所采集的X射线荧光光谱进行噪声去除、拟合谱形及净计数率的计算。
3.如权利要求1所述土壤重金属含量检测模型的建模方法,其特征在于,所述重金属元素包括铜、锌、铅、铬、镉、汞和砷。
4.如权利要求1所述土壤重金属含量检测模型的建模方法,其特征在于,在所述步骤S4中,对于不同的元素,根据其主峰、次峰的位置,选择包含其主次峰的光谱区域为建立多元校正关系的区域。
5.如权利要求4所述土壤重金属含量检测模型的建模方法,其特征在于,对于铬、锌、铅和砷四种重金属元素,选择的建立多元校正关系的光谱区域的能量范围分别为:250-480能量单元、650-750能量单元、750-1000和750-1000能量单元。
6.如权利要求1所述土壤重金属含量检测模型的建模方法,其特征在于,在所述步骤S4中,对于所有的元素,均采用全部谱区作为建立多元校正关系的区域。
7.如权利要求6所述土壤重金属含量检测模型的建模方法,其特征在于,对Fe峰所在区域进行权重为1/50的加权。
8.如权利要求7所述土壤重金属含量检测模型的建模方法,其特征在于,Fe峰所在谱区为230-350能量单元。
9.如权利要求1所述土壤重金属含量检测模型的建模方法,其特征在于,对S4中建立的多元校正关系进行反复修正,直至其误差范围小于该方法应用的农业生产或环境监测中的最小误差要求。
10.利用权利要求1-9任一项所述的建模方法检测土壤重金属含量的方法,其特征在于,所述检测土壤重金属含量的方法包括步骤:
采集待测土壤的X射线荧光光谱;
预处理所述X射线荧光光谱得到待测土壤的X射线荧光光谱向量;
利用多元校正关系yi=x(UiX)′BiQi得到待测土壤重金属含量,
其中yi为某种重金属元素的含量,向量x为待测土壤的X射线荧光光谱,Ui为某重金属元素含量特征因子矩阵,X为土壤样品的X射线荧光光谱矩阵,Bi为某重金属元素光谱强度特征因子矩阵,Qi为某重金属元素的含量载荷矩阵,Ui、Bi、Qi根据待测土壤的X射线荧光光谱矩阵及对应某重金属元素含量参考值由偏最小二乘法确定。
CN200910081688XA 2009-04-08 2009-04-08 一种土壤重金属含量检测模型的建模方法及其应用 Expired - Fee Related CN101520421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910081688XA CN101520421B (zh) 2009-04-08 2009-04-08 一种土壤重金属含量检测模型的建模方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910081688XA CN101520421B (zh) 2009-04-08 2009-04-08 一种土壤重金属含量检测模型的建模方法及其应用

Publications (2)

Publication Number Publication Date
CN101520421A CN101520421A (zh) 2009-09-02
CN101520421B true CN101520421B (zh) 2011-06-22

Family

ID=41081126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910081688XA Expired - Fee Related CN101520421B (zh) 2009-04-08 2009-04-08 一种土壤重金属含量检测模型的建模方法及其应用

Country Status (1)

Country Link
CN (1) CN101520421B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245682A (zh) * 2012-02-06 2013-08-14 江苏天瑞仪器股份有限公司 一种在线检测气体中颗粒物的重金属含量的方法及装置
CN102841081A (zh) * 2012-08-30 2012-12-26 湖南科技大学 有色金属矿区土-水界面污染流中各重金属分布预测方法
CN103776859A (zh) * 2013-10-14 2014-05-07 无锡艾科瑞思产品设计与研究有限公司 一种液态食品重金属含量快速检测方法
CN103645201A (zh) * 2013-12-13 2014-03-19 彭新凯 基于x射线荧光快速检测大米中重金属镉的方法
CN103776789B (zh) * 2014-02-26 2015-12-09 张显超 一种基于紫外可见光谱的未知污染物预警方法
CN103793580B (zh) * 2014-03-03 2016-09-14 黑龙江省环境科学研究院 基于河流生态系统的重金属优控污染物筛选模型的建模方法
CN104198512A (zh) * 2014-08-18 2014-12-10 北京农业质量标准与检测技术研究中心 基于支持向量机的x射线荧光光谱分析方法及装置
CN104359930A (zh) * 2014-09-03 2015-02-18 重庆大学 一种快速评价水稻土中重金属污染的方法
CN104181182A (zh) * 2014-09-12 2014-12-03 江苏天瑞仪器股份有限公司 一种x荧光光谱法对谷物中砷元素的快速测定方法
CN104198513A (zh) * 2014-09-12 2014-12-10 江苏天瑞仪器股份有限公司 一种x荧光光谱法对谷物中镉元素的快速测定方法
CN104713834B (zh) * 2015-03-04 2017-04-05 天津师范大学 一种原子光谱仪的定量方法
CN104990874B (zh) * 2015-06-30 2017-10-20 苏州浪声科学仪器有限公司 金属材料的牌号鉴定方法及系统
CN105057325B (zh) * 2015-07-14 2017-07-07 中国科学院沈阳应用生态研究所 基于坐标转换的土壤重金属浓度与修复适宜性表征方法
CN105067651B (zh) * 2015-08-21 2018-04-06 南京市产品质量监督检验院 一种室内乳胶漆墙面中铅、镉、铬、砷的检测方法
CN106338495A (zh) * 2016-10-09 2017-01-18 塔里木大学 一种盐渍化土壤有机碳含量的检测方法
EP3572805A4 (en) * 2017-01-19 2020-09-16 Shimadzu Corporation ANALYSIS METHOD FOR ANALYSIS DATA AND ANALYSIS DEVICE FOR ANALYSIS DATA
CN108563974A (zh) * 2017-03-20 2018-09-21 浙江大学 一种土壤重金属Hg含量的空间预测方法
CN107179329A (zh) * 2017-06-29 2017-09-19 苏州浪声科学仪器有限公司 一种手持式x荧光光谱仪测定土壤中重金属含量的方法
CN109425531A (zh) * 2017-08-24 2019-03-05 上海利元环保检测技术有限公司 土壤汞、砷、铜、锌、铅、镉超声快速测定方法
CN107655918B (zh) * 2017-09-04 2020-01-07 北京农业质量标准与检测技术研究中心 土壤重金属能谱范围确定方法及装置
CN107421894A (zh) * 2017-09-28 2017-12-01 威海五洲卫星导航科技有限公司 基于无人机高光谱反演土壤中重金属污染监测方法
CN107931315B (zh) * 2017-10-27 2020-06-16 南方科技大学 一种土地污染处理系统
CN108120736A (zh) * 2017-12-27 2018-06-05 吴俊逸 一种快速半定量检测烟花爆竹用烟火药盲样中铅含量的方法
CN108120738A (zh) * 2017-12-27 2018-06-05 吴俊逸 一种快速半定量检测烟花爆竹用烟火药盲样中镉含量的方法
CN109839395B (zh) * 2018-07-25 2020-05-22 中国环境科学研究院 土壤污染物分析方法、装置、设备和系统
CN109060858A (zh) * 2018-09-17 2018-12-21 中国科学院地理科学与资源研究所 一种土壤重金属浓度空间分布预测准确性的定量评价方法
CN109507391B (zh) * 2018-12-04 2021-04-06 南通大学 一种基于dds的土壤重金属含量的检测装置
CN109813737B (zh) * 2019-01-17 2021-05-25 北京农业质量标准与检测技术研究中心 土壤重金属含量的估算方法及装置
CN109902411B (zh) * 2019-03-07 2020-08-11 三峡大学 土壤重金属含量检测建模方法及装置、检测方法及装置
CN110530914A (zh) * 2019-09-26 2019-12-03 北京农业质量标准与检测技术研究中心 土壤重金属检测系统及检测方法
CN111879803A (zh) * 2020-07-03 2020-11-03 三峡大学 土壤重金属含量检测装置及检测方法
CN112345569A (zh) * 2020-09-23 2021-02-09 中国地质调查局水文地质环境地质调查中心 一种基于x射线的典型污染场地土壤重金属检测系统及方法
CN112304997B (zh) * 2020-10-29 2023-03-31 三峡大学 基于空间耦合模型的土壤重金属含量检测系统及检测方法
CN113049509B (zh) * 2021-03-17 2022-04-22 盐城师范学院 一种基于光谱技术的农产品检测管理系统
CN113567652A (zh) * 2021-07-27 2021-10-29 中国地质调查局水文地质环境地质调查中心 一种基于XRF检测技术的Cr元素土壤含水率校正方法
CN113588572B (zh) * 2021-08-04 2024-03-19 广州市华南自然资源科学技术研究院 一种农田重金属在线检测校正模型智能管理系统
CN114289340B (zh) 2021-12-29 2022-07-29 北京市生态环境保护科学研究院 重金属污染土壤便携式xrf筛查数据的方法
CN115753677A (zh) * 2022-11-23 2023-03-07 福州大学 一种用于粮油原料的铅、镉快速检测方法

Also Published As

Publication number Publication date
CN101520421A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101520421B (zh) 一种土壤重金属含量检测模型的建模方法及其应用
Wang et al. Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China
Zhou et al. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model
Chakraborty et al. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy
Chen et al. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China
CN104897592B (zh) 基于高光谱技术的盐渍化土壤盐分离子含量监测方法
Huang et al. Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method
CN103792246A (zh) 一种基于lm-bp神经网络的x射线荧光光谱定量分析方法
Zhu et al. An assessment of selected heavy metal contamination in the surface sediments from the South China Sea before 1998
Ding et al. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions
Brent et al. Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils
CN114018833B (zh) 基于高光谱遥感技术估算土壤重金属含量的方法
CN101738383A (zh) 基于中红外光谱的土壤重金属元素含量快速检测方法
CN104596957A (zh) 基于可见光近红外光谱技术的土壤铜含量估算方法
Begum et al. Heavy metal pollution and major nutrient elements assessment in the soils of Bogra city in Bangladesh
CN110596028B (zh) 一种沉积型稀土La元素含量的高光谱反演方法
Qu et al. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH
CN103575694A (zh) 一种基于近红外光谱技术的稻谷黄曲霉毒素b1 快速检测方法
CN111678969A (zh) 利用土壤剖面表层重金属累积比例解析重金属污染来源的方法
CN104596943A (zh) 一种矿区复垦场地有毒有害元素室内光谱分层测量方法
CN106918565A (zh) 基于室内标样高光谱特征的土壤重金属Cd含量反演建模及其光谱响应特征波段识别方法
Fard et al. Capability of vis-NIR spectroscopy and Landsat 8 spectral data to predict soil heavy metals in polluted agricultural land (Iran)
CN106680052A (zh) 城镇污泥中无机成分标准样品的制备方法及制得的标准样品
CN104198512A (zh) 基于支持向量机的x射线荧光光谱分析方法及装置
CN104062255A (zh) 基于样品盒法的土壤重金属含量的检测方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20210408

CF01 Termination of patent right due to non-payment of annual fee