CN101517763B - 用于现场过程设备的热电发电机组件 - Google Patents
用于现场过程设备的热电发电机组件 Download PDFInfo
- Publication number
- CN101517763B CN101517763B CN2007800357888A CN200780035788A CN101517763B CN 101517763 B CN101517763 B CN 101517763B CN 2007800357888 A CN2007800357888 A CN 2007800357888A CN 200780035788 A CN200780035788 A CN 200780035788A CN 101517763 B CN101517763 B CN 101517763B
- Authority
- CN
- China
- Prior art keywords
- flange
- thermoelectric generator
- thermoelectric
- circulation wall
- hot junction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000008569 process Effects 0.000 title claims abstract description 55
- 239000012530 fluid Substances 0.000 claims abstract description 48
- 238000004891 communication Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 239000013529 heat transfer fluid Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims 2
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 229910052711 selenium Inorganic materials 0.000 claims 1
- 229910052714 tellurium Inorganic materials 0.000 claims 1
- 239000012080 ambient air Substances 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000032258 transport Effects 0.000 abstract 1
- 230000005619 thermoelectricity Effects 0.000 description 11
- 239000003570 air Substances 0.000 description 5
- 238000004146 energy storage Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000010248 power generation Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/025—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Temperature (AREA)
- Photovoltaic Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Hybrid Cells (AREA)
Abstract
一种热电发电机组件(200)包括具有热结接凸缘和冷结接凸缘(204、206)的热电发电机(202)。所述热结接凸缘包括接头(208),所述接头形状适合于热耦合至过程容器(210)。热电发电机(202)产生热电电力输出(212)。散热器(214)热耦合至周围环境的空气并具有散热器凸缘。热管组件包括在循环室中的流体。循环室(224)具有安装到冷结接凸缘的蒸发器凸缘和安装到散热器凸缘的冷凝器凸缘。至少一部分流体将热量从蒸发器凸缘传输至冷凝器凸缘。
Description
背景技术
现场仪器通常广泛地遍布于过程工厂,并由过程控制环连接到控制系统。现场仪器通常需要用于运行的电力供给。所述电力可以通过控制环自身或通过单独的电力线供给所述仪器。每个仪器所需的电量通常很小,并通常在大约50毫瓦或更少的量级上。
当将线用于控制环时,所述线通常被封闭在电线管道中,所述电线管道需要机械安装以在长距离上支撑在过程设备的框架上。经常,在长距离上对现场仪器进行布线的费用超过所述现场仪器自身的费用。
当无线通信环用于与现场仪器通信时,所述无线通信环不向所述现场仪器提供电能,因而需要单独的电力供应线。
尽管典型的现场仪器所需的功率非常低,但是现场仪器经常位于过程工厂中很热的、危险的或无法接近的位置。在这些位置处,将化学电池用作现场仪器中的低功率源可能是不现实的。在这种位置上的环境经常是脏的或者被遮蔽了阳光的,利用太阳能电池进行电力供应是不现实的。太阳能电池和其它电池在所述的工厂环境中需要太多的维护以至于不能用于在许多现场仪器应用中的电力供应。
在工厂中的过程设备通常包括锅炉、蒸汽管道、加热水箱、热油气管线、制冷液体(例如液氮、液氦等)以及其它装备,所述装备能被加热或冷却到不同于所述过程工厂中的环境空气温度的温度。形成大的温度差,且废热在周围环境的空气和所述过程设备之间流动。由于废热流所造成的能量损失量经常大大超过现场仪器所需的电能。
热电发电机的功率和电压通常直接正比于在热电发电机的热板和冷板之间的温度差或温度梯度。采用热流结合热电偶来提供电力是已知的,例如可从德国Gebrauchsmusterschrift DE 20107112U1和US专利6,891,477B2。然而,存在多个实际问题。
发明内容
热电发电机组件包括热电发电机。所述热电发电机具有间隔开的热和冷结接凸缘。所述热结接凸缘具有接头,所述接头的形状适用于热耦合过程容器。所述热电发电机产生用于给过程设备提供电力的热电电力输出。在一个示例结构中,所述热电发电机组件包括散热器。所述散热器热耦合到周围环境的空气并具有散热器凸缘。在另一个示例结构中,所述热电发电机组件包括热管组件。所述热管组件包括在循环室中的流体。所述循环室具有安装到所述冷结接凸缘上的蒸发器凸缘。所述循环室具有安装到所述散热器凸缘上的冷凝器凸缘。至少一部分所述流体将热量从所述蒸发器凸缘传递到所述冷凝器凸缘。在冷结接凸缘上的热管组件与在过程工业中可利用的多种类型的热流一起使用的实施例中,可以在所述过程工业中提供更多的有效的热电发电。
附图说明
图1示出包括热管的热电发电机组件。
图2示出与一个包括热管的热电发电机相关和不包括热管的比较热电发电机相关的温度差的图。
图3示出热管的实施例。
图4示出热电输出的电压作为在热电发电机的热、冷结接凸缘之间的温度差的函数的图。
图5示出耦合到热电发电机的热电输出的现场数据集线器。
具体实施方式
在下述实施例中,热电发电机具有热结接凸缘或者热结接凸缘接头,其形状适用于耦合到被加热的过程容器,例如管线或水箱。所述热结接凸缘的形状提供了在所述热结接和所述过程容器之间的良好的热传导。所述热电发电机具有冷结接凸缘,所述冷结接凸缘耦合到热管的蒸发器凸缘。所述热管的冷凝器凸缘耦合到散热器。采用所述热管降低了所述冷结接凸缘的温度,这在所述热结接凸缘和所述冷结接凸缘之间提供更大的温度差。增大的温度差将热电电力输出的电压增加到大于5伏。增加后的温度差增加了热电发电的效率。所述热电电力输出可以被用于为现场过程设备或现场过程数据集线器直接供电,而不用使用电压倍增器或电池。现场过程设备因而由热电发电机在本地供电,且不需要来自中央控制室的电力线。热电电力足以给所述现场设备和所述控制室之间的无线通信提供能量,并消除了对现场设备和控制室之间的通信线的需要。
下述实施例也可以与温度低于环境温度的过程流体一起使用,在此情况下,热管被用作“冷管”。
图1示出热电发电机组件200。所述热电发电机组件200包括热电发电机202。所述热电发电机202具有热结接凸缘(热侧)204和冷结接凸缘206(冷侧)。所述凸缘204、206彼此间隔开。所述热结接凸缘204连接到(或包括)接头208,所述接头被成形为用于热耦合到过程容器210。所述过程容器210装载被加热的过程流体,并为所述热电发电机组件200提供废热源。所述热电发电机组件202产生在电压水平V下的热电电力输出。所述热电发电机包括热电元件203。在一个实施例中,所述热电元件203包括半导体材料。例如所述热电元件203可以包括具有半导体性质的元素Si、Ge、Bi、Sb和Te。在另一个实施例中,所述热电元件203包括用于提供高品质因数(figure of merit)的硫族化物。在一个实施例中,所述热、冷结接凸缘204、206被设置为增大的平板,所述平板大于热电元件203并伸出到所述热电元件203之外。所述外伸的凸缘204、206提供具有高热传导性的大的热传递表面。外伸凸缘204、206还包括用于安装螺栓205的通孔。在一个实施例中,螺栓205由具有高热阻抗的不锈钢合金制成,并安装有绝热垫圈207,且螺栓205和垫圈207限制通过所述螺栓的不希望的热流。螺栓205紧固地将热电发电机202装配到过程接头208和热管组件220上。
热电发电机组件200包括散热器214。散热器214热耦合到周围环境的空气,并具有散热器凸缘216。散热器凸缘216由螺栓(未示出)紧固到热管组件220的蒸发器板228。在一个实施例中,散热器214包括多个销(未示出)或多个鳍,以用于耦合到周围环境的空气的大的热辐射。
热电发电机组件200包括热管组件220。热管组件220包括在循环室224中的流体222。热管组件220具有安装到冷结接凸缘206上的蒸发器凸缘226。热管组件220具有安装到散热器凸缘216上的冷凝器凸缘228。至少一部分流体222从蒸发器凸缘226流到冷凝器凸缘228,并将热量从蒸发器凸缘226传递到冷凝器凸缘228。在下文将结合图3所示的示例对热管组件220进行更详细的描述。
将热管组件220设置在冷结接凸缘206和散热器214之间增加了ΔT。在下文中结合图2中的图对大ΔT进行更详细的解释。在一个实施例中,当热结接凸缘204处于超过100摄氏度的热结接温度范围中时,ΔT增加25%。在另一个实施例中,当热结接凸缘204处于超过100摄氏度的热结接温度范围中时,将热管组件220设置在冷结接凸缘206和散热器之间维持至少50摄氏度的ΔT。在一个实施例中,当热结接凸缘204处于超过100摄氏度的热结接温度范围中时,在热电电力输出212处的电压水平V至少为6伏。在另一个实施例中,当热结接凸缘204处于超过100摄氏度的热结接温度范围中时,热电电力输出212为至少150毫瓦。热电功率和电压通常正比于热电模块203的热结接凸缘206和冷结接凸缘204之间的温度差。
在一个实施例中,流体222具有适合于在50摄氏度和150摄氏度之间的热结接温度范围的成分。在另一个实施例中,流体222包括酒精和水的混合物,其中酒精和水的比例针对所应用的温度进行优化。在另一个实施例中,流体222包括增压气体、酒精、水或其它热传导流体的成比例的混合物,以针对特定应用中的温度范围来优化性能。
在一个实施例中,循环室224包括内部室表面230,其为多孔表面。在另一个实施例中,循环室224包括内部室,所述内部室包括毛细管。循环室224优选包括中心管或通道232,其具有在蒸发器凸缘226上垂直对准的孔。
图2示出与两种不同结构的热电发电机相关联的温度差的图。一种结构包括热管,而另一种结构不包括热管。
水平轴线104表示热结接凸缘(例如结合图1的上述热结接凸缘204)的温度T HOT,单位为摄氏度。垂直轴线102表示在热电模块上的热结接和冷结接之间的温度差。虚线106代表在自由的周围环境的空气温度和热结接凸缘温度之间的温度差ΔTTOTAL。该虚线106代表热电发电机组件能够获得的最大可得到的温度差。在实践中,在热结接凸缘和过程容器之间存在高的热传导,从而所述热结接温度非常接近所述过程容器温度。
由于所述热电发电机的热传导,热量从所述热结接凸缘传导到所述冷结接凸缘。被传导的热量提高了所述冷结接凸缘的温度,这降低了能用于热电发电的温度差。因为加热所述冷结接凸缘,产生了温度差的损失。实际上,仅仅一定百分比的ΔT TOTAL(虚线106)存在于所述热结接凸缘和所述冷结接凸缘之间。
具有圆形(●)端点的实线108代表在图1中的热电发电机202的热结接凸缘204和冷结接凸缘206之间的有热管情况下温度差ΔT。热电发电机202(由实线108所表示)包括热管220(图1)。
具有钻石状(◆)数据点的实线110代表在不包括热管的热电发电机202的热结接凸缘和冷结接凸缘之间的没有热管情况下温度差ΔT。由实线110所表示的热电发电机类似于上述结合图1描述的热电发电机202,然而,热管220不存在,且散热器214直接连接到冷结接凸缘206,如实线110所示。实线110代表在不使用热管的情况下的ΔT。从图2中可以看出,在使用热管220的情况下,维持了更大的温度差。热管220降低了冷结接凸缘206的温度,增大了温度差。在虚线106和实线之间的垂直距离代表由于冷结接凸缘的加热所造成的最大的温度差损失。当采用热管220时,最大温度差的损失较小。
在图2中,虚线114代表在100度及以上时在线110和106之间的温度差损失的25%(图2中表示100%)。在图2中,点线116代表50摄氏度的温度差。线108代表在使用热管情况下(如图1所示)的温度差,其位于在100摄氏度以及100摄氏度以上的点线116以及虚线114的上方。该图示出,对于100摄氏度以上的过程温度,具有热管的热电发电机200维持的ΔT损失与线110相比至少有25%的改善。该图还示出,对于100摄氏度以上的过程温度,具有热管的热电发电机维持至少50摄氏度的ΔT。借助通过利用热管获得的这些改善的ΔT值,热电发电机在至少6伏的电压下产生至少150毫瓦的热电输出。该电压足够高,以使得所述热电输出可以被连接以对现场过程设备(例如压力变送器)提供能量,所述现场过程设备在不使用将较低的热电电压提升到5伏以上的水平的电压倍增器电路的情况下包括额定5伏的电路。电力输出足够高且足够可靠,以使得所述热电发电机可以被连接以为至少一个现场过程设备提供高达150毫瓦的功率而不用使用电池。借助于将热管用于热电发电机上,在现场设备中的电力供应可以摆脱对电池和电压倍增器电路的依赖。从热电设备能够获得的电力量也足以满足所述现场过程设备中的无线通信对于能量的要求。无线变送器可以由所述热电发电机提供能量。可选地,可以采用所述热电发电机来为无线现场数据集线器提供能量,所述数据集线器将过程数据从现场变送器无线发送到在远程位置处的控制系统。
图3示出热管300的实施例。热管300包括蒸发器凸缘302、冷凝器凸缘304和流体循环室306。流体308借助于周壁312中的填充管310被引导到循环室306中。循环室306优选在引入流体308之前被排空。在引入受控量(装填)的流体308之后,填充管310被密封。在流体循环室306的压力和温度的操作条件下,流体308(或者流体308的分量)在蒸发器凸缘302处蒸发,以冷却所述蒸发器凸缘302。热量314(来自热结接凸缘,例如图1中的热结接凸缘206)被施加到蒸发器凸缘302以蒸发所述流体。流体308(或者流体308的分量)在冷凝器凸缘304处或在周壁312的内表面上凝结。冷凝器凸缘304被散热器(例如图1中的散热器214)冷却以凝结流体318。
填充流体308的成分和填充流体308的量被选择以在特定的过程温度范围内优化热传递。适合于所述操作温度的任何已知流体可以被用作流体308。在一个实施例中,流体308包括酒精和水的混合物。循环室306的内壁优选覆盖有金属的多孔或烧结层316,其便于液体流体308凝结以及液体流体308回流到蒸发器凸缘302。可选地,毛细管可以被设置在循环室306中,来替代烧结层316。
中心管318被支撑在循环室306中。中心管318具有与所施加的热量314基本垂直对准的孔320,以使得蒸发流体308在孔320中向上流动。孔320在顶部和底部都是开放的。大致环形(toroidal)的流体流动图案如图所示被建立,提供质量传递,其将热量从蒸发器凸缘302向上通过孔320带到冷凝器凸缘304。如图所示,热管300可以在冷凝器凸缘304和周壁312处具有凝结表面,所述冷凝器凸缘304和周壁312具有比蒸发器凸缘302大得多的组合表面区域。可以传递大量的热量,且所述冷结接凸缘(例如图1中的冷结接凸缘206)运行的温度与其直接耦合到散热器的情况相比更接近周围环境。采用热管,可以在所述热电发电机(例如图1中的热电发电机202)上维持大的ΔT,结果在相对高的电压下获得高的热电发电。来自所述冷结接凸缘的热流314趋向于被集中到中心区域附近,如图3所示,这是由于所述热电元件的中心核心区域中的热量的累积。
图4示出在热电输出处的电压V作为在热电发电机的热、冷结接凸缘之间的温度差的函数的图形。水平轴线402代表以摄氏度为单位的温度差ΔT。垂直轴线404代表热电输出处的电压V。实线406代表作为温度差的函数的电压V。如图4所示,电压V对于温度差高度敏感。通过热管的使用维持大温度差将电压V增加到这样的水平,以至于可以用于为现场变送器中的5伏电子设备提供能量而不需使用电压倍增器电路。如图4所示,50度的温度差可以提供大于6伏的电压V,并能够为现场设备中的5伏电源提供能量而不用使用电压倍增器。
图5示出现场数据集线器502,其耦合到热电发电机506(例如图1中的热电发电机200)的热电输出504。现场过程设备508、510可以是现场过程传感器或现场过程致动器,由热电输出504提供能量。现场过程设备508、510包括5伏电子电路,所述电子电路由热电输出504提供能量。热电发电机506为现场过程设备508、510提供能量,而不需要低效的电压倍增器,因为所述热电输出大于5伏。现场过程设备508、510的能量提供可以直接来自热电输出504,如图所示,或者可以间接地从现场数据集线器502获得。现场过程设备508、510沿着线512、514与现场数据集线器502交换数据。线512、514可以是任何类型的通信链接,例如有线、无线或光学链接。线512、514也可以将热电电力携带到现场过程设备508、510。
数据沿着数据总线516与无线收发器518交换。无线收发器518在无线链接520上与控制系统522进行数据通信,所述控制系统522位于远离现场环境的位置。
现场数据集线器502包括调节器电路530和能量存储电路532,所述调节器电路530和能量存储电路532接收热电电力输出504。调节器电路530沿着所调节的电力总线534为在现场数据集线器520中的电路提供能量。调节器电路530不包括电压倍增器电路,并能够提供5伏的经过调节的电压输出。能量存储电路532包括存储电容536,所述存储电容536存储能够从热电电力输出504获得的多余能量。当所述能量存储电路感测到在经过调节的电力总线534上功率不足时,能量存储电路532沿着线538将补充能量耦合到调节器电路530。
本领域的技术人员应当理解,所述温度差可以在过程流体冷却到周围环境的温度以下的情况下被颠倒,而非上述的过程流体比周围环境的温度高的情况,且在此所描述的实施例对于这种冷的过程流体也是同样有用的。可以想象将这里所述的实施例用于冷的过程流体。
热管可以被安装在所述冷结接凸缘和散热器之间,提高从所述热电模块到环境的热传递效率。这更增大了穿过所述热电模块的温度梯度。因此,利用相同的过程热量,由所述热电发电机所产生的电力远大于利用传统的散热器所产生的电力。在所述过程流体比环境温度低的情况下,热管也可以用作“冷管”。所示的实施例可以被用于为工业以及家庭用的远程位置的传感器和换能器供电。
尽管已经参照优选的实施例描述了本发明,但是本领域技术人员应当理解,在不背离本发明的精神和范围的情况下,可以进行形式和细节上的修改。
Claims (22)
1.一种热电发电机组件,包括:
热电发电机,其具有间隔开的热结接凸缘和冷结接凸缘以及安装在热结接凸缘和冷结接凸缘之间的热电元件,所述热结接凸缘具有成形为用于热耦合至过程容器的接头,热结接凸缘和冷结接凸缘被设置为增大的平板,所述增大的平板大于热电元件并伸出到所述热电元件之外,且在大约100摄氏度的热结接温度范围中,所述热电发电机产生在至少150毫瓦功率水平上的热电电力输出;
散热器,其耦合至周围环境的空气,并具有散热器凸缘;以及
热管组件,其包括在循环室中的流体,所述循环室具有矩形箱形形状、安装到所述冷结接凸缘上的外伸的蒸发器凸缘以及被安装到所述散热器凸缘上的外伸的冷凝器凸缘,至少一部分所述流体将热量从所述蒸发器凸缘传输到所述冷凝器凸缘,所述热管组件还包括第一循环壁和第二循环壁,第一循环壁和第二循环壁在该矩形箱形形状内向着所述外伸的蒸发器凸缘和所述外伸的冷凝管凸缘延伸,所述第一循环壁和第二循环壁彼此隔开以在所述第一循环壁和第二循环壁的内侧之间限定中心的向上流动腔,并在所述第一循环壁和第二循环壁的外侧的外围限定的第一外围向下流动腔和第二外围向下流动腔;
其中将所述热管组件设置于所述冷结接凸缘和所述散热器之间而提高效率,并在大约100摄氏度的热结接温度范围中维持至少50摄氏度的ΔT,电压水平为至少6伏。
2.根据权利要求1所述的热电发电机组件,其中在大约100摄氏度的热结接温度范围中,将所述热管组件设置于所述冷结接凸缘和所述散热器之间使ΔT增加至少25%。
3.根据权利要求1所述的热电发电机组件,其中所述流体具有适用于热结接温度范围在50摄氏度和105摄氏度之间的成分。
4.根据权利要求1所述的热电发电机组件,其中所述流体包括酒精、水、增压气体或其它热传导流体的混合物。
5.根据权利要求1所述的热电发电机组件,其中所述循环室包括内部室表面,所述内部室表面为多孔表面。
6.根据权利要求1所述的热电发电机组件,其中所述循环室包括内部室,所述内部室包括毛细管。
7.根据权利要求1所述的热电发电机组件,其中所述循环室包括中心管,所述中心管垂直对准在所述蒸发器凸缘上方。
8.根据权利要求1所述的热电发电机组件,其中所述热电发电机将电力提供给在远程工业/家庭位置处的过程设备和传感器。
9.根据权利要求1所述的热电发电机组件,还包括用于接收所述热电电力输出的现场过程变送器。
10.根据权利要求9所述的热电发电机组件,其中所述现场过程变送器包括无线变送器。
11.根据权利要求1所述的热电发电机组件,还包括用于接收所述热电电力输出的无线收发器。
12.根据权利要求1所述的热电发电机组件,其中热电元件由包含Si、Ge或其合金的半导体材料制成。
13.根据权利要求12所述的热电发电机组件,其中所述半导体材料包括Bi、Sb、Te、Se或其合金的硫族化物。
14.根据权利要求1所述的热电发电机组件,其中所述热电发电机适用于高达450摄氏度的腐蚀性环境。
15.根据权利要求1所述的热电发电机组件,还包括现场仪器,所述现场仪器由所述热电电力输出来供应电力,所述现场仪器摆脱对电池的依赖。
16.根据权利要求1所述的热电发电机组件,还包括现场仪器,所述现场仪器由所述热电电力输出来供应电力,所述现场仪器摆脱对用于产生大于所述电压水平的电势差的电压倍增器电路的依赖。
17.一种热电发电机组件,包括:
热电发电机,其具有间隔开的热结接凸缘和冷结接凸缘以及安装在热结接凸缘和冷结接凸缘之间的热电元件,所述热结接凸缘具有能热耦合至过程容器形状的形状,热结接凸缘和冷结接凸缘被设置为增大的平板,所述增大的平板大于热电元件并伸出到所述热电元件之外,且在大约100摄氏度的热结接温度范围中,所述热电发电机产生在至少150毫瓦功率水平上的热电电力输出;
散热器,其热耦合至周围环境的空气,并具有散热器凸缘;以及
热管装置,其用于将循环室中的流体蒸发,以将热量从所述冷结接凸缘传输到所述散热器凸缘,所述循环室中除了所述流体之外是真空的,所述热管装置具有矩形箱形形状,并且还包括第一循环壁和第二循环壁,第一循环壁和第二循环壁在该矩形箱形形状内向着安装到所述冷结接凸缘上的外伸的蒸发器凸缘和安装到所述散热器凸缘上的外伸的冷凝管凸缘延伸,所述第一循环壁和第二循环壁彼此隔开以在所述第一循环壁和第二循环壁的内侧之间限定中心的向上流动腔,并在所述第一循环壁和第二循环壁的外侧的外围限定的第一外围向下流动腔和第二外围向下流动腔;
其中将所述热管装置设置于所述冷结接凸缘和所述散热器之间而提高效率,并在大约100摄氏度的热结接温度范围中维持至少50摄氏度的ΔT,电压水平为至少6伏。
18.根据权利要求17所述的热电发电机组件,其中所述热管装置包括耦合到所述冷结接凸缘的蒸发器凸缘。
19.一种用于提供热电电力输出的方法,包括步骤:
使热结接凸缘接头成形为用于耦合至过程容器;
提供具有间隔开的热结接凸缘和冷结接凸缘以及安装在热结接凸缘和冷结接凸缘之间的热电元件的热电发电机,其中热结接凸缘和冷结接凸缘被设置为增大的平板,所述增大的平板大于热电元件并伸出到所述热电元件之外;
将所述热结接凸缘热耦合至所述热结接凸缘接头;
提供散热器,所述散热器具有耦合至所述冷结接凸缘的散热器凸缘;
将热管组件安装到所述散热器,该热管组件具有由外围壁围绕的真空循环室,所述热管组件具有矩形箱形形状,并且还包括第一循环壁和第二循环壁,第一循环壁和第二循环壁在该矩形箱形形状内向着安装到所述冷结接凸缘上的外伸的蒸发器凸缘和安装到所述散热器凸缘上的外伸的冷凝管凸缘延伸,所述第一循环壁和第二循环壁彼此隔开以在所述第一循环壁和第二循环壁的内侧之间限定中心的向上流动腔,并在所述第一循环壁和第二循环壁的外侧的外围限定的第一外围向下流动腔和第二外围向下流动腔;以及
在大约100摄氏度的热结接温度范围中,提供至少150毫瓦功率水平的热电电力输出;
其中将所述热管组件设置于所述冷结接凸缘和所述散热器之间而提高效率,并在大约100摄氏度的热结接温度范围中维持至少50摄氏度的ΔT,电压水平为至少6伏。
20.根据权利要求19所述的方法,还包括步骤:将所述热结接凸缘接头成形为圆柱弧形,该形状与过程容器相配。
21.一种热电发电机组件,包括:
热电发电机,所述热电发电机具有间隔开的热侧和冷侧以及安装在热侧和冷侧之间的热电元件,热侧和冷侧被设置为增大的平板,所述增大的平板大于热电元件并伸出到所述热电元件之外,该热侧具有成形为用于热耦合至过程容器的接头,该冷侧耦合至热传导构件,且在大约100摄氏度的热结接温度范围中,所述热电发电机产生至少150毫瓦的热电电力输出;
现场设备,所述现场设备由所述热电电力输出提供能量,所述现场设备将过程变量进行转换,并经由数字协议进行过程信息的通信;
热管组件,所述热管组件包括在循环室中的流体,所述循环室具有矩形箱形形状、安装到所述冷侧上的外伸的蒸发器凸缘以及被安装到散热器上的外伸的冷凝器凸缘,至少一部分所述流体将热量从所述蒸发器凸缘传输到所述冷凝器凸缘,所述热管组件还包括第一循环壁和第二循环壁,第一循环壁和第二循环壁在该矩形箱形形状内向着所述外伸的蒸发器凸缘和所述外伸的冷凝管凸缘延伸,所述第一循环壁和第二循环壁彼此隔开以在所述第一循环壁和第二循环壁的内侧之间限定中心的向上流动腔,并在所述第一循环壁和第二循环壁的外侧的外围限定的第一外围向下流动腔和第二外围向下流动腔;
其中将热管组件设置于所述冷侧和所述散热器之间而提高效率,并在大约100摄氏度的热结接温度范围中维持至少50摄氏度的ΔT,电压水平为至少6伏。
22.根据权利要求21所述的热电发电机组件,其中所述数字协议选自现场协议的组:可寻址远程传感器高速通道协议(Hart)和现场总线协议(Fieldbus)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/529,767 US8188359B2 (en) | 2006-09-28 | 2006-09-28 | Thermoelectric generator assembly for field process devices |
US11/529,767 | 2006-09-28 | ||
PCT/US2007/019636 WO2008042077A2 (en) | 2006-09-28 | 2007-09-10 | Thermoelectric generator assembly for field process devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101517763A CN101517763A (zh) | 2009-08-26 |
CN101517763B true CN101517763B (zh) | 2013-05-15 |
Family
ID=39136129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800357888A Active CN101517763B (zh) | 2006-09-28 | 2007-09-10 | 用于现场过程设备的热电发电机组件 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8188359B2 (zh) |
EP (1) | EP2076927B1 (zh) |
JP (1) | JP5147848B2 (zh) |
CN (1) | CN101517763B (zh) |
WO (1) | WO2008042077A2 (zh) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7942010B2 (en) | 2001-02-09 | 2011-05-17 | Bsst, Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US7608777B2 (en) | 2005-06-28 | 2009-10-27 | Bsst, Llc | Thermoelectric power generator with intermediate loop |
US20080142067A1 (en) | 2006-12-14 | 2008-06-19 | Robert Dell | Thermoelectric power generation device |
CN104990301B (zh) | 2007-05-25 | 2019-04-16 | 詹思姆公司 | 分配式热电加热和冷却的系统和方法 |
WO2009129547A1 (en) * | 2008-04-18 | 2009-10-22 | The Board Of Trustees Of The University Of Alabama | Meso-scaled combustion system |
US8701422B2 (en) | 2008-06-03 | 2014-04-22 | Bsst Llc | Thermoelectric heat pump |
US20100024859A1 (en) * | 2008-07-29 | 2010-02-04 | Bsst, Llc. | Thermoelectric power generator for variable thermal power source |
WO2010014958A2 (en) * | 2008-08-01 | 2010-02-04 | Bsst Llc | Enhanced thermally isolated thermoelectrics |
EP3151293A1 (en) | 2009-07-24 | 2017-04-05 | Gentherm Incorporated | Thermoelectric-based power generation systems and methods |
DE102009051949A1 (de) * | 2009-11-04 | 2011-05-05 | Benteler Automobiltechnik Gmbh | Thermoelektrisches Generatorenmodul und abgasführendes Bauteil |
WO2011120676A2 (en) * | 2010-03-30 | 2011-10-06 | Tata Steel Uk Limited | Arrangement for generating electricity with thermoelectric generators and solar energy collector means |
US20110284047A1 (en) * | 2010-05-20 | 2011-11-24 | Joshua Heath Johnson | Multi-use camping pot that produces power from heat |
GB2483293A (en) * | 2010-09-03 | 2012-03-07 | Spirax Sarco Ltd | Steam flow meter with thermoelectric power source |
WO2012033908A1 (en) * | 2010-09-09 | 2012-03-15 | Masco Corporation | Self-energizing fluid flow detection system |
WO2012056410A1 (en) * | 2010-10-27 | 2012-05-03 | Basf Se | Thermoelectric generator |
US8800373B2 (en) * | 2011-02-14 | 2014-08-12 | Rosemount Inc. | Acoustic transducer assembly for a pressure vessel |
KR101654587B1 (ko) | 2011-06-06 | 2016-09-06 | 젠썸 인코포레이티드 | 카트리지 기반 열전 시스템 |
US9006557B2 (en) | 2011-06-06 | 2015-04-14 | Gentherm Incorporated | Systems and methods for reducing current and increasing voltage in thermoelectric systems |
US20130005372A1 (en) * | 2011-06-29 | 2013-01-03 | Rosemount Inc. | Integral thermoelectric generator for wireless devices |
WO2014022428A2 (en) | 2012-08-01 | 2014-02-06 | Gentherm Incorporated | High efficiency thermoelectric generation |
DE202012007501U1 (de) | 2012-08-03 | 2012-08-27 | Abb Technology Ag | Autonome Druckmesseinrichtung |
US9518852B2 (en) * | 2012-09-27 | 2016-12-13 | Rosemount Inc. | Hybrid power module with fault detection |
CN103728050A (zh) * | 2012-10-10 | 2014-04-16 | 财团法人精密机械研究发展中心 | 自发电感测模块、监控系统及该监控系统的操作方法 |
US10910962B2 (en) | 2012-10-19 | 2021-02-02 | University Of Southern California | Pervasive power generation system |
JP5842786B2 (ja) * | 2012-10-30 | 2016-01-13 | ヤマハ株式会社 | 熱電変換装置 |
JP6149407B2 (ja) * | 2013-01-29 | 2017-06-21 | ヤマハ株式会社 | 熱電発電システム |
JP6196074B2 (ja) * | 2013-06-20 | 2017-09-13 | 高砂熱学工業株式会社 | 配管への熱電発電素子の設置方法および熱電発電装置 |
US9989442B2 (en) * | 2013-10-02 | 2018-06-05 | Eaton Intelligent Power Limited | Hydraulic system sensor |
US20150233241A1 (en) * | 2014-02-14 | 2015-08-20 | Rockwell Automation Asia Pacific Business Center Pte. Ltd. | Energy harvesting system for remote monitoring devices |
DE102014216449A1 (de) * | 2014-08-19 | 2016-02-25 | Siemens Aktiengesellschaft | Thermoelektrische Vorrichtung |
US9752947B2 (en) * | 2014-09-23 | 2017-09-05 | P I Components Corp. | Thermoelectric heating, cooling and power generation for direct mount and dual compartment fill remote seal systems |
US9752946B2 (en) * | 2014-09-23 | 2017-09-05 | Rosemount Inc. | Cooling for industrial process variable transmitters |
US9772246B2 (en) | 2014-09-30 | 2017-09-26 | Rosemount Inc. | Fill fluid thermal management |
KR20160067455A (ko) * | 2014-12-04 | 2016-06-14 | 현대자동차주식회사 | 차량의 열발전 소자 모듈 장착구조 |
GB2553681B (en) * | 2015-01-07 | 2019-06-26 | Homeserve Plc | Flow detection device |
GB201501935D0 (en) | 2015-02-05 | 2015-03-25 | Tooms Moore Consulting Ltd And Trow Consulting Ltd | Water flow analysis |
DE102015002768A1 (de) * | 2015-03-05 | 2016-09-08 | AMK Arnold Müller GmbH & Co. KG | Antriebssystem mit mindestens einem Wärmerohr und Verwendung desselben bei einem Antriebssystem |
CN105698271B (zh) * | 2016-04-01 | 2019-07-16 | 浙江嘉熙科技有限公司 | 温差电热泵型空调器 |
JP6448093B2 (ja) * | 2016-07-27 | 2019-01-09 | ナブテスコ株式会社 | センサー装置 |
US20180058295A1 (en) * | 2016-09-01 | 2018-03-01 | Quantum Industrial Development Corp. & Texas A&M University - San Antonio | Thermoelectric heat energy recovery module |
JP2018054591A (ja) * | 2016-09-26 | 2018-04-05 | 三菱マテリアル株式会社 | 発熱体用計測装置 |
US12000535B2 (en) | 2018-04-09 | 2024-06-04 | Velan Inc. | Electronic steam trap |
JP6953365B2 (ja) * | 2018-06-07 | 2021-10-27 | 横河電機株式会社 | 温度差発電装置及び測定システム |
JP7305313B2 (ja) * | 2018-06-22 | 2023-07-10 | 三菱電機エンジニアリング株式会社 | 熱電発電装置 |
WO2020018855A1 (en) | 2018-07-18 | 2020-01-23 | Quantum Industrial Development Corporation | External combustion heat engine combustion chamber |
KR102198581B1 (ko) * | 2018-11-30 | 2021-01-05 | 주식회사 코아칩스 | 열전 에너지하베스팅에 기반한 파이프라인 모니터링 시스템 및 방법 |
CN110454967B (zh) * | 2019-08-19 | 2024-07-23 | 珠海格力电器股份有限公司 | 一种燃气供热装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145876A (en) * | 1983-08-24 | 1985-04-03 | Shlomo Beitner | DC power generation for telemetry and like equipment from geothermal energy |
GB2320733A (en) * | 1996-12-26 | 1998-07-01 | France Etat | Subsea thermoelectric generator with thermoelectric modules |
Family Cites Families (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2883489A (en) | 1954-12-06 | 1959-04-21 | Daystrom Inc | Encased electrical instrument |
US2882489A (en) * | 1956-05-07 | 1959-04-14 | Brazitis William | Method and means for magnetizing rails in rail flaw detection systems |
US3232712A (en) | 1962-08-16 | 1966-02-01 | Continental Lab Inc | Gas detector and analyzer |
GB1027719A (zh) | 1963-12-02 | |||
US3568762A (en) * | 1967-05-23 | 1971-03-09 | Rca Corp | Heat pipe |
US3612851A (en) | 1970-04-17 | 1971-10-12 | Lewis Eng Co | Rotatably adjustable indicator instrument |
US3881962A (en) | 1971-07-29 | 1975-05-06 | Gen Atomic Co | Thermoelectric generator including catalytic burner and cylindrical jacket containing heat exchange fluid |
GB1397435A (en) | 1972-08-25 | 1975-06-11 | Hull F R | Regenerative vapour power plant |
US3931532A (en) | 1974-03-19 | 1976-01-06 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Thermoelectric power system |
JPS51110983A (en) * | 1975-03-26 | 1976-09-30 | Akinobu Ueno | Netsudenhenkansochi |
GB1525709A (en) * | 1975-04-10 | 1978-09-20 | Chloride Silent Power Ltd | Thermo-electric generators |
US4125122A (en) * | 1975-08-11 | 1978-11-14 | Stachurski John Z O | Direct energy conversion device |
US4026348A (en) * | 1975-10-06 | 1977-05-31 | Bell Telephone Laboratories, Incorporated | Heat pipe switch |
GR67600B (zh) | 1979-06-29 | 1981-08-31 | Payot Jocelyne | |
US4370890A (en) | 1980-10-06 | 1983-02-01 | Rosemount Inc. | Capacitive pressure transducer with isolated sensing diaphragm |
US4485670A (en) | 1981-02-13 | 1984-12-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Heat pipe cooled probe |
US4383801A (en) | 1981-03-02 | 1983-05-17 | Pryor Dale H | Wind turbine with adjustable air foils |
US4389895A (en) | 1981-07-27 | 1983-06-28 | Rosemount Inc. | Capacitance pressure sensor |
SE445389B (sv) | 1982-06-28 | 1986-06-16 | Geotronics Ab | Forfarande och anordning for att erhalla metdata fran en kemisk process |
US4476853A (en) | 1982-09-28 | 1984-10-16 | Arbogast Clayton C | Solar energy recovery system |
US4546608A (en) * | 1982-09-29 | 1985-10-15 | Hitachi, Ltd. | Thermo-siphon type generator apparatus |
JPS5975684A (ja) * | 1982-10-23 | 1984-04-28 | Tdk Corp | 熱発電素子 |
US4520305A (en) * | 1983-08-17 | 1985-05-28 | Cauchy Charles J | Thermoelectric generating system |
DE3340834A1 (de) | 1983-11-11 | 1985-05-23 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Schaltungsanordnung zur konstanthaltung der temperaturabhaengigen empfindlichkeit eines differenzdruckmessgeraetes |
JPS60125181A (ja) * | 1983-12-09 | 1985-07-04 | Kawasaki Heavy Ind Ltd | ヒ−トパイプ発電装置 |
US4639542A (en) * | 1984-06-11 | 1987-01-27 | Ga Technologies Inc. | Modular thermoelectric conversion system |
GB8426964D0 (en) | 1984-10-25 | 1984-11-28 | Sieger Ltd | Adjusting circuit parameter |
US4651019A (en) | 1984-11-16 | 1987-03-17 | Pennsylvania Power & Light Company | Dual fueled thermoelectric generator |
DE3503347A1 (de) | 1985-02-01 | 1986-08-14 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart | Vorrichtung zur drahtlosen messsignaluebertragung |
US4860232A (en) | 1987-04-22 | 1989-08-22 | Massachusetts Institute Of Technology | Digital technique for precise measurement of variable capacitance |
CH672368A5 (en) | 1987-08-20 | 1989-11-15 | Rudolf Staempfli | Solar thermal power plant with expansive heat engine - utilises pressure increase of working fluid in thermal storage heater transmitting energy between two closed circuits |
US4878012A (en) | 1988-06-10 | 1989-10-31 | Rosemount Inc. | Charge balanced feedback transmitter |
US4977480A (en) | 1988-09-14 | 1990-12-11 | Fuji Koki Mfg. Co., Ltd. | Variable-capacitance type sensor and variable-capacitance type sensor system using the same |
DE3907209C1 (de) | 1989-01-18 | 1990-03-01 | Danfoss A/S, Nordborg | Vorrichtung zum Überwachen eines Leitungssystems für Fluid auf Leckstellen |
GB9000936D0 (en) * | 1990-01-16 | 1990-03-14 | Tgp235 Limited | Thermo-electric power generators |
USD331370S (en) | 1990-11-15 | 1992-12-01 | Titan Industries, Inc. | Programmable additive controller |
US5094109A (en) | 1990-12-06 | 1992-03-10 | Rosemount Inc. | Pressure transmitter with stress isolation depression |
DE4124662A1 (de) | 1991-07-25 | 1993-01-28 | Fibronix Sensoren Gmbh | Relativdrucksensor |
US5329818A (en) | 1992-05-28 | 1994-07-19 | Rosemount Inc. | Correction of a pressure indication in a pressure transducer due to variations of an environmental condition |
USD345107S (en) | 1992-06-01 | 1994-03-15 | Titan Industries, Inc. | Programmable additive controller |
US5313831A (en) * | 1992-07-31 | 1994-05-24 | Paul Beckman | Radial junction thermal flowmeter |
US5412535A (en) | 1993-08-24 | 1995-05-02 | Convex Computer Corporation | Apparatus and method for cooling electronic devices |
SG44494A1 (en) | 1993-09-07 | 1997-12-19 | R0Semount Inc | Multivariable transmitter |
US5606513A (en) | 1993-09-20 | 1997-02-25 | Rosemount Inc. | Transmitter having input for receiving a process variable from a remote sensor |
JP3111816B2 (ja) | 1993-10-08 | 2000-11-27 | 株式会社日立製作所 | プロセス状態検出装置 |
US5642301A (en) | 1994-01-25 | 1997-06-24 | Rosemount Inc. | Transmitter with improved compensation |
US5531936A (en) | 1994-08-31 | 1996-07-02 | Board Of Trustees Operating Michigan State University | Alkali metal quaternary chalcogenides and process for the preparation thereof |
GB2293446A (en) * | 1994-09-17 | 1996-03-27 | Liang Chung Lee | Cooling assembly |
US5793963A (en) | 1994-10-24 | 1998-08-11 | Fisher Rosemount Systems, Inc. | Apparatus for providing non-redundant secondary access to field devices in a distributed control system |
CN1148620C (zh) | 1994-10-24 | 2004-05-05 | 费舍-柔斯芒特系统股份有限公司 | 访问分布式控制系统中现场设备的装置 |
US5656782A (en) | 1994-12-06 | 1997-08-12 | The Foxboro Company | Pressure sealed housing apparatus and methods |
US5637802A (en) | 1995-02-28 | 1997-06-10 | Rosemount Inc. | Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates |
US5644185A (en) | 1995-06-19 | 1997-07-01 | Miller; Joel V. | Multi stage thermoelectric power generation using an ammonia absorption refrigeration cycle and thermoelectric elements at numerous locations in the cycle |
US5705978A (en) | 1995-09-29 | 1998-01-06 | Rosemount Inc. | Process control transmitter |
JPH09130289A (ja) | 1995-10-31 | 1997-05-16 | Mitsubishi Electric Corp | アナログ携帯通信機 |
DE19608310C1 (de) | 1996-02-22 | 1997-07-17 | Hartmann & Braun Ag | Differenzdruckmeßumformereinheit mit einem Überlastschutzsystem |
US5665899A (en) | 1996-02-23 | 1997-09-09 | Rosemount Inc. | Pressure sensor diagnostics in a process transmitter |
US7949495B2 (en) | 1996-03-28 | 2011-05-24 | Rosemount, Inc. | Process variable transmitter with diagnostics |
US6907383B2 (en) | 1996-03-28 | 2005-06-14 | Rosemount Inc. | Flow diagnostic system |
FR2747238B1 (fr) | 1996-04-04 | 1998-07-10 | France Etat | Generateur thermoelectrique |
ES2127122B1 (es) | 1996-09-02 | 1999-12-16 | Blaquez Navarro Vicente | Sistema mejorado electronico autonomo de monitorizacion para purgadores, valvulas e instalaciones en tiempo real. |
US5803604A (en) | 1996-09-30 | 1998-09-08 | Exergen Corporation | Thermocouple transmitter |
US5851083A (en) | 1996-10-04 | 1998-12-22 | Rosemount Inc. | Microwave level gauge having an adapter with a thermal barrier |
US5954526A (en) | 1996-10-04 | 1999-09-21 | Rosemount Inc. | Process control transmitter with electrical feedthrough assembly |
DK0960410T3 (da) | 1997-02-12 | 2002-02-18 | Siemens Ag | Indretning og fremgangsmåde til frembringelse af kodede højfrekvenssignaler |
US6458319B1 (en) | 1997-03-18 | 2002-10-01 | California Institute Of Technology | High performance P-type thermoelectric materials and methods of preparation |
US6013204A (en) | 1997-03-28 | 2000-01-11 | Board Of Trustees Operating Michigan State University | Alkali metal chalcogenides of bismuth alone or with antimony |
US7068991B2 (en) | 1997-05-09 | 2006-06-27 | Parise Ronald J | Remote power recharge for electronic equipment |
US6792259B1 (en) | 1997-05-09 | 2004-09-14 | Ronald J. Parise | Remote power communication system and method thereof |
US5872494A (en) | 1997-06-27 | 1999-02-16 | Rosemount Inc. | Level gage waveguide process seal having wavelength-based dimensions |
RU2131934C1 (ru) | 1997-09-01 | 1999-06-20 | Санков Олег Николаевич | Нагревательная установка для обработки материалов |
US6260410B1 (en) * | 1997-09-05 | 2001-07-17 | John Cook | Initialization method for an automotive evaporative emission leak detection system |
US6282247B1 (en) | 1997-09-12 | 2001-08-28 | Ericsson Inc. | Method and apparatus for digital compensation of radio distortion over a wide range of temperatures |
JPH11121816A (ja) * | 1997-10-21 | 1999-04-30 | Morikkusu Kk | 熱電モジュールユニット |
JPH11215867A (ja) * | 1998-01-23 | 1999-08-06 | Tokyo Gas Co Ltd | 熱電発電素子構造体及び熱電発電システム |
EP1088206A1 (en) | 1998-06-26 | 2001-04-04 | Texaco Development Corporation | Thermocouple for use in gasification process |
US6360277B1 (en) | 1998-07-22 | 2002-03-19 | Crydom Corporation | Addressable intelligent relay |
US6480699B1 (en) | 1998-08-28 | 2002-11-12 | Woodtoga Holdings Company | Stand-alone device for transmitting a wireless signal containing data from a memory or a sensor |
US6405139B1 (en) | 1998-09-15 | 2002-06-11 | Bently Nevada Corporation | System for monitoring plant assets including machinery |
US6312617B1 (en) | 1998-10-13 | 2001-11-06 | Board Of Trustees Operating Michigan State University | Conductive isostructural compounds |
JP2000171181A (ja) * | 1998-12-01 | 2000-06-23 | Mitsubishi Electric Corp | ヒートパイプ |
US6127739A (en) | 1999-03-22 | 2000-10-03 | Appa; Kari | Jet assisted counter rotating wind turbine |
US6783167B2 (en) | 1999-03-24 | 2004-08-31 | Donnelly Corporation | Safety system for a closed compartment of a vehicle |
FI111760B (fi) | 1999-04-16 | 2003-09-15 | Metso Automation Oy | Kenttälaitteen langaton ohjaus teollisuusprosessissa |
JP2000321361A (ja) | 1999-05-07 | 2000-11-24 | Kubota Corp | 通信装置 |
US6508131B2 (en) | 1999-05-14 | 2003-01-21 | Rosemount Inc. | Process sensor module having a single ungrounded input/output conductor |
US6295875B1 (en) | 1999-05-14 | 2001-10-02 | Rosemount Inc. | Process pressure measurement devices with improved error compensation |
US6255010B1 (en) | 1999-07-19 | 2001-07-03 | Siemens Westinghouse Power Corporation | Single module pressurized fuel cell turbine generator system |
US6385972B1 (en) | 1999-08-30 | 2002-05-14 | Oscar Lee Fellows | Thermoacoustic resonator |
US6510740B1 (en) | 1999-09-28 | 2003-01-28 | Rosemount Inc. | Thermal management in a pressure transmitter |
US6667594B2 (en) | 1999-11-23 | 2003-12-23 | Honeywell International Inc. | Determination of maximum travel of linear actuator |
RU2168062C1 (ru) | 1999-12-07 | 2001-05-27 | Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" | Ветрогенератор |
US6934862B2 (en) | 2000-01-07 | 2005-08-23 | Robertshaw Controls Company | Appliance retrofit monitoring device with a memory storing an electronic signature |
JP2001222787A (ja) | 2000-02-07 | 2001-08-17 | Mitsui Eng & Shipbuild Co Ltd | 回転ドラム用計測システム |
JP2001263649A (ja) | 2000-03-17 | 2001-09-26 | Matsushita Electric Ind Co Ltd | 気化装置 |
AT410041B (de) | 2000-04-17 | 2003-01-27 | Voest Alpine Ind Anlagen | Verfahren und einrichtung zur aufnahme von messdaten in einem hüttenwerk |
US6574515B1 (en) | 2000-05-12 | 2003-06-03 | Rosemount Inc. | Two-wire field-mounted process device |
JP2001349763A (ja) | 2000-06-12 | 2001-12-21 | Matsushita Electric Ind Co Ltd | 電源装置 |
JP3553001B2 (ja) | 2000-08-04 | 2004-08-11 | 高圧ガス保安協会 | ガス監視システム |
EP1202145B1 (en) | 2000-10-27 | 2005-02-09 | Invensys Systems, Inc. | Field device with a transmitter and/ or receiver for wireless data communication |
US6747572B2 (en) | 2001-01-30 | 2004-06-08 | Oceana Sensor Technologies, Inc. | Autonomous sensor system for remote sensing and signal transmission |
US6625990B2 (en) | 2001-02-09 | 2003-09-30 | Bsst Llc | Thermoelectric power generation systems |
DE20107112U1 (de) | 2001-04-25 | 2001-07-05 | Abb Patent Gmbh, 68309 Mannheim | Einrichtung zur Energieversorgung von Feldgeräten |
DE10125058B4 (de) | 2001-05-22 | 2014-02-27 | Enocean Gmbh | Thermisch speisbarer Sender und Sensorsystem |
JP2002369554A (ja) | 2001-06-06 | 2002-12-20 | Nec Tokin Corp | 標示装置 |
DE10128447A1 (de) | 2001-06-12 | 2003-01-02 | Abb Patent Gmbh | Elektropneumatischer Stellantrieb |
US6564859B2 (en) * | 2001-06-27 | 2003-05-20 | Intel Corporation | Efficient heat pumping from mobile platforms using on platform assembled heat pipe |
JP2003051894A (ja) | 2001-08-08 | 2003-02-21 | Mitsubishi Electric Corp | プラントの作業管理システム |
EP1293853A1 (de) | 2001-09-12 | 2003-03-19 | ENDRESS + HAUSER WETZER GmbH + Co. KG | Funkmodul für Feldgerät |
US6604650B2 (en) * | 2001-09-28 | 2003-08-12 | Koninklijke Philips Electronics N.V. | Bottle-cap medication reminder and overdose safeguard |
JP2003110156A (ja) | 2001-09-28 | 2003-04-11 | Hitachi Powdered Metals Co Ltd | 熱電変換モジュールおよびそれに用いる接着剤 |
JP4114334B2 (ja) | 2001-10-09 | 2008-07-09 | 株式会社ジェイテクト | 転がり軸受 |
JP3815603B2 (ja) | 2001-10-29 | 2006-08-30 | 横河電機株式会社 | 通信システム |
US6834556B2 (en) | 2001-11-01 | 2004-12-28 | The Johns Hopkins University | Techniques for monitoring health of vessels containing fluids |
JP2003168182A (ja) | 2001-12-04 | 2003-06-13 | Nsk Ltd | ワイヤレスセンサ |
AU2002367135A1 (en) | 2001-12-21 | 2003-07-15 | Bae Systems Plc | Sensor system |
US7002800B2 (en) | 2002-01-25 | 2006-02-21 | Lockheed Martin Corporation | Integrated power and cooling architecture |
EP1500061A4 (en) | 2002-03-06 | 2011-04-27 | Automatika Inc | CONDUIT NETWORK SYSTEM |
US7035773B2 (en) | 2002-03-06 | 2006-04-25 | Fisher-Rosemount Systems, Inc. | Appendable system and devices for data acquisition, analysis and control |
US6839546B2 (en) | 2002-04-22 | 2005-01-04 | Rosemount Inc. | Process transmitter with wireless communication link |
US20040203984A1 (en) | 2002-06-11 | 2004-10-14 | Tai-Her Yang | Wireless information device with its transmission power lever adjustable |
JP2004021877A (ja) | 2002-06-20 | 2004-01-22 | Yokogawa Electric Corp | フィールド機器 |
US6843110B2 (en) | 2002-06-25 | 2005-01-18 | Fluid Components International Llc | Method and apparatus for validating the accuracy of a flowmeter |
EP1547126A2 (en) | 2002-08-05 | 2005-06-29 | The Research Foundation Of State University Of New York | System and method for manufacturing embedded conformal electronics |
US6838859B2 (en) | 2002-08-13 | 2005-01-04 | Reza H. Shah | Device for increasing power of extremely low DC voltage |
US7063537B2 (en) | 2002-08-15 | 2006-06-20 | Smar Research Corporation | Rotatable assemblies and methods of securing such assemblies |
JP2004129442A (ja) | 2002-10-04 | 2004-04-22 | Okano Electric Wire Co Ltd | 発電装置 |
US6910332B2 (en) | 2002-10-15 | 2005-06-28 | Oscar Lee Fellows | Thermoacoustic engine-generator |
US7440735B2 (en) | 2002-10-23 | 2008-10-21 | Rosemount Inc. | Virtual wireless transmitter |
US6981380B2 (en) | 2002-12-20 | 2006-01-03 | Intel Corporation | Thermoelectric cooling for microelectronic packages and dice |
US7150147B2 (en) * | 2002-12-26 | 2006-12-19 | Toyota Jidosha Kabushiki Kaisha | Exhaust system |
JP2004208476A (ja) | 2002-12-26 | 2004-07-22 | Toyota Motor Corp | 排熱発電装置 |
US20040159235A1 (en) | 2003-02-19 | 2004-08-19 | Marganski Paul J. | Low pressure drop canister for fixed bed scrubber applications and method of using same |
AU2003212340A1 (en) | 2003-03-12 | 2004-09-30 | Abb Research Ltd. | Arrangement and method for continuously supplying electric power to a field device in a technical system |
JP2004296961A (ja) | 2003-03-28 | 2004-10-21 | Citizen Watch Co Ltd | 熱電素子とその製造方法 |
US6904476B2 (en) | 2003-04-04 | 2005-06-07 | Rosemount Inc. | Transmitter with dual protocol interface |
US7326851B2 (en) | 2003-04-11 | 2008-02-05 | Basf Aktiengesellschaft | Pb-Ge-Te-compounds for thermoelectric generators or Peltier arrangements |
US6891477B2 (en) | 2003-04-23 | 2005-05-10 | Baker Hughes Incorporated | Apparatus and methods for remote monitoring of flow conduits |
US20040214543A1 (en) | 2003-04-28 | 2004-10-28 | Yasuo Osone | Variable capacitor system, microswitch and transmitter-receiver |
JP2004350479A (ja) | 2003-05-26 | 2004-12-09 | Hitachi Powdered Metals Co Ltd | 熱電変換発電ユニットおよびこの熱電変換発電ユニットを備えるトンネル型炉 |
JP4322049B2 (ja) | 2003-05-26 | 2009-08-26 | 財団法人電力中央研究所 | 熱電変換モジュール |
US7275213B2 (en) | 2003-08-11 | 2007-09-25 | Ricoh Company, Ltd. | Configuring a graphical user interface on a multifunction peripheral |
US20050046595A1 (en) | 2003-08-26 | 2005-03-03 | Mr.John Blyth | Solar powered sign annunciator |
US8481843B2 (en) | 2003-09-12 | 2013-07-09 | Board Of Trustees Operating Michigan State University | Silver-containing p-type semiconductor |
US7508671B2 (en) | 2003-10-10 | 2009-03-24 | Intel Corporation | Computer system having controlled cooling |
JP2005123818A (ja) | 2003-10-15 | 2005-05-12 | Alps Electric Co Ltd | 無線通信装置 |
US7655331B2 (en) | 2003-12-01 | 2010-02-02 | Societe Bic | Fuel cell supply including information storage device and control system |
US8455751B2 (en) | 2003-12-02 | 2013-06-04 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
US20050139250A1 (en) * | 2003-12-02 | 2005-06-30 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
US7330695B2 (en) | 2003-12-12 | 2008-02-12 | Rosemount, Inc. | Bus powered wireless transmitter |
US20050150535A1 (en) | 2004-01-13 | 2005-07-14 | Nanocoolers, Inc. | Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor |
US7234084B2 (en) | 2004-02-18 | 2007-06-19 | Emerson Process Management | System and method for associating a DLPDU received by an interface chip with a data measurement made by an external circuit |
WO2005086331A2 (en) * | 2004-03-02 | 2005-09-15 | Rosemount, Inc. | Process device with improved power generation |
US20050201349A1 (en) | 2004-03-15 | 2005-09-15 | Honeywell International Inc. | Redundant wireless node network with coordinated receiver diversity |
US7515977B2 (en) | 2004-03-30 | 2009-04-07 | Fisher-Rosemount Systems, Inc. | Integrated configuration system for use in a process plant |
US6971274B2 (en) | 2004-04-02 | 2005-12-06 | Sierra Instruments, Inc. | Immersible thermal mass flow meter |
US8538560B2 (en) | 2004-04-29 | 2013-09-17 | Rosemount Inc. | Wireless power and communication unit for process field devices |
US7620409B2 (en) | 2004-06-17 | 2009-11-17 | Honeywell International Inc. | Wireless communication system with channel hopping and redundant connectivity |
US7262693B2 (en) | 2004-06-28 | 2007-08-28 | Rosemount Inc. | Process field device with radio frequency communication |
US8929228B2 (en) | 2004-07-01 | 2015-01-06 | Honeywell International Inc. | Latency controlled redundant routing |
US20060063522A1 (en) | 2004-09-21 | 2006-03-23 | Mcfarland Norman R | Self-powering automated building control components |
KR20060027578A (ko) | 2004-09-23 | 2006-03-28 | 삼성에스디아이 주식회사 | 이차 전지 모듈 온도 제어 시스템 |
US20060077917A1 (en) | 2004-10-07 | 2006-04-13 | Honeywell International Inc. | Architecture and method for enabling use of wireless devices in industrial control |
JP4792851B2 (ja) | 2004-11-01 | 2011-10-12 | 横河電機株式会社 | フィールド機器 |
US7680460B2 (en) | 2005-01-03 | 2010-03-16 | Rosemount Inc. | Wireless process field device diagnostics |
JP2006214350A (ja) | 2005-02-03 | 2006-08-17 | Toyota Motor Corp | 熱電発電装置 |
US9184364B2 (en) | 2005-03-02 | 2015-11-10 | Rosemount Inc. | Pipeline thermoelectric generator assembly |
US20060227729A1 (en) | 2005-04-12 | 2006-10-12 | Honeywell International Inc. | Wireless communication system with collision avoidance protocol |
US7649138B2 (en) | 2005-05-25 | 2010-01-19 | Hi-Z Technology, Inc. | Thermoelectric device with surface conforming heat conductor |
US7848223B2 (en) | 2005-06-03 | 2010-12-07 | Honeywell International Inc. | Redundantly connected wireless sensor networking methods |
US7742394B2 (en) | 2005-06-03 | 2010-06-22 | Honeywell International Inc. | Redundantly connected wireless sensor networking methods |
KR100635405B1 (ko) | 2005-06-10 | 2006-10-19 | 한국과학기술연구원 | 마이크로 발전기 |
US8463319B2 (en) | 2005-06-17 | 2013-06-11 | Honeywell International Inc. | Wireless application installation, configuration and management tool |
CA2613427C (en) | 2005-06-28 | 2014-04-08 | Community Power Corporation | Method and apparatus for automated, modular, biomass power generation |
US7801094B2 (en) | 2005-08-08 | 2010-09-21 | Honeywell International Inc. | Integrated infrastructure supporting multiple wireless devices |
US20070030816A1 (en) | 2005-08-08 | 2007-02-08 | Honeywell International Inc. | Data compression and abnormal situation detection in a wireless sensor network |
KR100744902B1 (ko) | 2006-05-24 | 2007-08-01 | 삼성전기주식회사 | 휴대 무선 조작기 |
US7644633B2 (en) | 2006-12-18 | 2010-01-12 | Rosemount Inc. | Vortex flowmeter with temperature compensation |
-
2006
- 2006-09-28 US US11/529,767 patent/US8188359B2/en active Active
-
2007
- 2007-09-10 CN CN2007800357888A patent/CN101517763B/zh active Active
- 2007-09-10 WO PCT/US2007/019636 patent/WO2008042077A2/en active Application Filing
- 2007-09-10 EP EP07837963.3A patent/EP2076927B1/en not_active Ceased
- 2007-09-10 JP JP2009530357A patent/JP5147848B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145876A (en) * | 1983-08-24 | 1985-04-03 | Shlomo Beitner | DC power generation for telemetry and like equipment from geothermal energy |
GB2320733A (en) * | 1996-12-26 | 1998-07-01 | France Etat | Subsea thermoelectric generator with thermoelectric modules |
Also Published As
Publication number | Publication date |
---|---|
CN101517763A (zh) | 2009-08-26 |
EP2076927B1 (en) | 2015-06-03 |
JP2010505383A (ja) | 2010-02-18 |
JP5147848B2 (ja) | 2013-02-20 |
WO2008042077A3 (en) | 2008-11-20 |
US8188359B2 (en) | 2012-05-29 |
US20080083445A1 (en) | 2008-04-10 |
WO2008042077A2 (en) | 2008-04-10 |
EP2076927A2 (en) | 2009-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101517763B (zh) | 用于现场过程设备的热电发电机组件 | |
CN101517762B (zh) | 管道热电发电机组件 | |
CN102597596B (zh) | 传热装置 | |
EP2592363A1 (en) | Energy conversion device | |
US11906205B2 (en) | Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground | |
CA1082068A (en) | Heat transfer system | |
US6788884B2 (en) | Space heating system | |
US4554966A (en) | Heat-transfer device | |
Vasiliev et al. | Vapordynamic thermosyphon–heat transfer two-phase device for wide applications | |
WO2017055505A1 (en) | Heat exchange system with a joint active fluid motion device for the charging mode and for the discharging mode and method for exchanging heat by using the heat exchange system | |
Haque et al. | Performance Analysis of a Heat Pipe with Stainless Steel Wick | |
CN207050538U (zh) | 具有密封功能的换热装置 | |
CN101726204A (zh) | 热导管 | |
CN101652871A (zh) | 发电系统 | |
EP3311092A1 (en) | Heat exchange system with heat exchange tubes and method for exchanging heat by using the heat exchange system | |
EP4273466A1 (en) | Integration of particulated encapsulated phase change materials in a conventional flat-plate solar collector for the production of domestic hot water | |
Ozeh et al. | Waste Heat Recovery for Powering Mobile Devices Using Thermoelectric Generators and Evaporatively-Cooled Heat Sink | |
US20080142198A1 (en) | Heat Transfer Pipe With Control | |
Cheverda et al. | Experimental study of heat transfer in a heat pipe | |
Lu et al. | Analysis of heat transfer of loop heat pipe used to cool high power LED | |
Bhagwat et al. | Experimental Analysis of a Solar Air Dryer with Thermal Energy Storage Unit (PCM) | |
EP3783277A1 (en) | Thermoelectric generator with no moving parts applied to geothermal energy | |
CN115823922A (zh) | 固体颗粒物蓄放热装置 | |
KR20060025901A (ko) | 온수 자동순환 전기 보일러 장치 | |
Zhang et al. | Evaluation and Study of a Heat Pipe Thermoelectric Generator for Waste Heat Recovery Using Multiple Criteria Decision Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |