CN1015033B - 氧化物超导体 - Google Patents

氧化物超导体

Info

Publication number
CN1015033B
CN1015033B CN88100501A CN88100501A CN1015033B CN 1015033 B CN1015033 B CN 1015033B CN 88100501 A CN88100501 A CN 88100501A CN 88100501 A CN88100501 A CN 88100501A CN 1015033 B CN1015033 B CN 1015033B
Authority
CN
China
Prior art keywords
oxide
superconductor
critical temperature
oxide superconductor
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88100501A
Other languages
English (en)
Other versions
CN88100501A (zh
Inventor
长谷川晴弘
川辺潮
樽谷良倍
深泽德海
会田敏之
高木一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62018392A external-priority patent/JP2585561B2/ja
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN88100501A publication Critical patent/CN88100501A/zh
Priority to CN89103433A priority Critical patent/CN1016020B/zh
Publication of CN1015033B publication Critical patent/CN1015033B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

一种具有高临界温度Tc的改进了的氧化物超导体,包括一种具有类钙钛矿晶体结构的K2NiF4晶体结构的氧化物,其结构由下式表示:
(BaxSrzLa1-x-z)2Cu1-wAgwO4(1-y)
其中,X≥0,Z≥0,0.1<X+Z<0.3,W=0。以及0≤Y<1;或0≤X≤1,0≤Z<1,0<W<1和0≤Y<1,0≤X+Z<1。

Description

本发明涉及一种超导体。具体地说,本发明涉及一种经改进后具备高临界温度(Tc)的氧化物超导体。
在“Z.Physik.B-Condensed Matter64,189-193(1986)”中讨论过具有钙钛矿晶体结构或具有类钙钛矿结构的K2NiF4晶体结构的氧化物超导材料。所述结构即BaxLa5-xCu5O(a-y)(其中x=1或0.75。y>0)。除上述材料之外,在具有钙钛矿晶体结构的氧化物超导材料中,SrTiO3和BaPb1-xBixO3在“物理周报(Physical Review)。Vol.163,No.2,November 10,380-390(1967)”和“应用物理(Appl Phys.)22,205-212(1980)”中分别被讨论过。
因此,曾期望除了这些材料之外,还会存在具有上述晶体结构且表现出超导性质的氧化物,这些材料被认为是能够构成超导器件的有用材料。但是,具有钙钛矿晶体结构的氧化物超导材料的临界温度Tc在BaxLa5-x-Cu5O5(3-y)(其中x=0.75,y>0)的情况下低达35K,而且在超过该温度的温度下,材料不呈现超导性。
类似地,在物理周板(Phys.Rev.Lett),26,408-410(1987)”中也讨论了一种具有高超导临界温度的氧化物超导体,即(Sr,La)2CuO4
另外,已知一种Y-Ba-Cu氧化物系是临界温度Tc超过液 氮温度(77K)的超导体。
所有上述超导体具有利用钙钛矿结构的异构而获得的结构,该结构相当稳定。具体地说,(Sr,La)2CuO4具有K2NiF4结构,而Y-Ba-Cu氧化物系具有较复杂的结构,即缺氧钙钛矿结构。A3B2O7、A4B3O10、A5B4O13和A6B5O16结构被认为是更加复杂的结构。一般来说,材料的晶体结构越复杂,生产也越难。所以,生产上述材料的困难程度按上述材料的顺序增大。这就产生了一个问题,即获得均匀材料的困难程度按上述材料的顺序增大,而且超导临界电流密度按该顺序减小。一般来说,当晶体结构越复杂而且C轴被定义为法线的平面具有更高的二维数(即这些平面间的相互作用减小)时,氧化物超导体(其特征在于具有类似于上述材料的CuO6八面体)的超导临界温度越高。这是因为二维数(two dimensionality)的增大引起a轴缩短和该平面内Cu原子与O原子之间的距离减小。这便引起Cu原子3d轨道和O原子2P轨道间的重迭程度增大,由此导致该平面内载流子导电性的提高。所以,包括有上述材料的超导体具有高超导临界温度。但是,这些超导体具有复杂的晶体结构,这便导致了其生产困难的问题。
一般来讲,在以具有类似于上述材料的CuO6八面体或CuO5五面体为其特征的氧化物超导体中,载流子的数量由A晶格原子的成份比来确定,如在上述材料的情况下由Sr-La或Ba-Y的成分 比来确定。因此,费米表面的电子态密度N(O)也由该成分比确定。根据“Bardeen-Cooper-Schrieffer理论(缩写为“BCS理论”)”,超导临界温度Tc以下式表示:
KBTc=1.14hωD×exp(-1/N(O)/V)
其中,ωD是德拜温度,V是代表电子-光子相互作用大小的参数。因而,为了增高超导临界温度Tc,费米表面的电子态密度N(O)就必须大。由于这个原因,必须通过适当改变A晶格原子而改变载流子数量的方法,使费米表面的电子态密度N(O)达到最大。然而,在上述材料中,能够改变载流子数量的参数只有A晶格原子成份比,即Sr-Lr的成份比或Ba-Y的成份比,这导致出现了参数数目不足以使费米表面的电子态密度N(O)达到最大的问题。
一种复合氧化物具有氟化镍钾(K2NiF4)晶体结构,其成份包括含碱土金属(M)和铜(Cu)离子的镧的倍半氧化物,该倍半氧化物以式(La1-xMx2CuO4表示(其中M是Sr,Ba或Ca)。这是一种属于四方晶系的晶体(空间群:D4n-I4/mmm),并且有包括岩盐结构和钙钛矿结构的复合结构。岩盐结构和钙钛矿结构相互位于其上,形成多层结构。另一方面,一种Y-M-Cu氧化物系(其中M是Sr,Ba和Ca)的复合氧化物具有类似钙钛矿的晶体结构,这种Y-M-Cu氧化物系包括有一种含碱土金属(M)和铜(Cu)离子的稀土元素的倍半氧化物。该稀土元素作为两种结构之间的离子间隔,而铜离子位于氧八面体内。所 以,在C轴方向与垂直于C轴的平面间的电子发射和导电性方面,这种结构带来了不同特征,即引起了各向异性。近年来,已经证明用少量碱土金属(如钡或锶)取代部分镧而制备成的复合氧化物在30至40K或更高的温度下表现出超导性,即该复合氧化物是一种具有高临界温度的超导体。在这种超导体中,其C轴方向和与C轴正交的方向之间存在相差十倍的超导性粘着长度。而且,这种复合氧化物能够含钡和锶作为成份元素(M),这就能够形成通过与被氧化原子复合而减小其表面功函数的单原子层,而这也就使该复合材料适用作电子发射材料。
本发明的第一个目的是提供一种具有高临界温度的氧化物超导体。
本发明的第二个目的是提供一种能用实际方法生产并具有良好再生产性的氧化物超导体。
本发明的第三个目的是提供一种易于通过冷却条件的变温(即升高冷却温度)来处理的氧化物超导体。
本发明的第四个目的是提供一种具有稳定晶体结构并能便利生产的氧化物超导体。
上述目的由包括具有K2NiF4晶体结构的氧化物的氧化物超导体来达到,所以结构类钙钛矿晶体结构并以下式表示:
(BaxSrzLa1-x-z2Cu1-wAgwO4(1-y)
其中x≥0,z≥0,0.1<x+z<0.3,w=0和0≤y<1;
或0≤z<1,0<w<1,0≤y<1.0≤x<1,0≤x+z<1。
BaPb1-xBixO3是一种公知材料,其临界温度Tc是10K。根据Bardeen-Cooper-Schrieffer(缩写为“BCS”)理论,超导材料的临界温度具有以下关系:
Tc=1.14
Figure 88100501_IMG2
Dexp〔-1/N(O)V〕
其中:
Figure 88100501_IMG3
D是德拜温度,N(O)是电子态密度,V是电子-光子相互作用。超导体具有高临界温度的原因在于,由于Bi原子化合价为3和5,所以钙钛矿晶体结构的氧八面体重复地扩张和收缩,这引起光子振动模式和电子之间强烈的相互作用。但因为BaPb1-xBixO3导电电子是包括(Pb,Bi)的6s能带和O的2p能带的sp电子,所以费米表面电子态密度N(O)较小。这是获得高临界温度的一个不利因素。
因此,具有强烈电子-光子相互作用、高电子态密度N(O)和高临界温度的超导体可用以下元素获得:该元素取一种化合价,並且其中当化合价是+2时,导电电子是d电子。
包括氧八面体扩张和收缩的上述光子振动(即临界温度)与ABO3钙钛矿晶体结构的A离子半径和B离子半径的大小有关。图1示出了A离子半径RA及氧离子半径RO之和与B离子半径RB及氧离子半径RO之和之间的关系。图2示出了A离子半径RA及氧离子半径之和与B离子半径RB及氧离子半径RO之和的比和B原子的电离能之间的关系。BaTiO3是绝缘的,SrTiO3、BaPb1-xBixO3和BaxLa5-xCu5O5(3-y)的临界温度TC分别为0.1K、10K和35K,即按上述顺序增大。在考虑到这一事实时,从图1和图2可以看出,临界温度是随着B离子半径RB及氧离子半径RO之和与A离子半径RA及氧离子半径RO之和的比的增大以及B原子的电离能的增加而增高的。
所以,当A原子是Ba和Br,B原子是La,C原子是Cu时,亦即当化合物是(BaXSrzLa1-X-Z)2CuO4(1-y)时,OX≤0.4及C<Z≤0.4恰当。具体地说,当X为0.075而Z为0.005或X是0.005而Z是0.075时,临界温度就高。Sr的离子半径比Ba的离子半径小,这使得材料易于生产。Ba被电离时表现出的有效电荷比Sr的有效电荷大,由此能提供大量导电电子。因此,通过两种元素(即Ba和Sr)的混合来设定X和Z值以满足关系0.1<X+Z<0.3,这就导致实现氧化物超导体具有高临界温度並且易于生产。
另外,正如从图1可看到的,用Ag取代Cu来形成 (BaxSrzLa1-x-z2Cu1-wAgwO4(1-y)
(其中O≤x<1,0≤z<1,0≤x+z<1,0<w<1,0≤y<1),能增大ABO钙钛晶体结构中B离子半径,由此实现高临界温度。
在其特征为具有K2NiF4结构或缺氧钙钛矿结构,或具有与这两种结构相似的结构、且具有CuO6八面体或CuO5五面体的氧化物超导体中,存在有沿c轴分布并且彼此相邻的CuO6八面体在平行于x和y的方向上偏移(a/2,b/2)的地方(其中a和b分别是x和y方向上的晶格常数)。因此,彼此相邻的CuO6八面体结构能够依靠把碱金属插入这些地方(即晶格间)的方法而稳定。这致使实现了能够便利地生产氧化物超导体。此外,由于超导临界电流密度取决于材料的均匀度,所以实现均匀和易于生产的这种材料,又能实现具有高超导临界电流密度的氧化物超导体。
因为卤素和氧的化合价分别为-1和-2,所以用卤素取代氧便引起晶体中当载流子为电子时,载流子数目增大;当载流子为带正电的空穴时,载流子数目减小。以前述的相同方式,通过使取代程度最佳,可以提高超导临界温度Tc。
此外,在晶格间插入卤素起到了如前述在晶格间插入碱金属的相同作用,基于前述的相同理由,这使氧化物超导体的便利生产得以实现。而且,因为超导临界电流密度取决于材料的均匀性,所以实现均匀和便利生产的这种材料,又能实现具有高超导临界电流密度的氧化物超导体。
下面结合附图解释本发明。其中:
图1表示具有ABO3钙钛矿晶体结构的氧化物中,A离子半径及氧离子半径之和与B离子半径之和间的关系;
图2表示具有ABO3钙钛矿晶体结构的氧化物中,B离子半径及氧离子半径之和与A离子半径及氧离子半径之和的比率与B原子的电离能之间的关系;
例Ⅰ
制备Ba0.1Sr0.1La1.8CuO4(1-y)(其中0≤y<1)的工艺过程:
把1.9735克纯度为99%的BaCO3与1.4763克纯度为99%的SrCO3、29.3256克纯度为99.99%的La2O3以及24.1600克纯度为99.3%的Cu(NO32·3H2O混和在一起。把得到的混合物溶解在硝酸中,同时加热该硝酸。把适量的阿摩尼亚水加到如此制得的溶液中,並加入草酸作为沉淀媒介,同时调整溶液的PH值,从而共同沉淀出Ba2+、Sr2+、La3+和Ca2+。用水充分冲洗沉淀物,把得到的浮在上层的(澄清的)液体排出去。将剩下的沉淀物弄干,即可作热处理的原材料用了。原材料干燥后,即在一个大气压的氧气气氛中于1050℃下热处理5个小时,用的是带有电炉的石英管中的铂坩埚,由此得到Ba0.1Sr0.1La1.8CuO4(1-y)。
用与上述同样的方法可以生产除上述成分外还有下列成分的氧化物超导体:
Ba0.02Sr0.1La1.88CuO4(1-y)
Ba0.02Sr0.15La1.83CuO4(1-y)
Ba0.05Sr0.1La1.85CuO4(1-y)
Ba0.075Sr0.1La1.825CuO4(1-y)
例2
制备Ba0.05Sr0.075La1.875Cu0.7Ag0.3O4(1-y)其中0≤y<1)的工艺过程:
把0.9868克纯度为99%的BaCo3与1.1072克纯度为99%的SrCO3、30.5475克纯度为99.99%的La2O3、16.9120克纯度为99.3%的Cu(NO32·3H2O和3.4761克纯度为99.9%的Ag2O混和在一起。把得到的混合物溶解在硝酸中,同时加热该硝酸。把适量的阿摩尼亚水加到如此制得的溶液中。并加入草酸作为沉淀媒介,同时调整溶液的pH值,从而共同沉淀出Ba2+、Sr2+、La3+、Cu2+和Ag+。用水充分冲洗沉淀物,把得到的浮在上层的(澄清的)液体排出去。把剩下的沉淀物弄干作为供热处理用的原材料。使原材料干燥后,在一个大气压的氧气气氛中于1050℃下热处理5小时,用的是带有电炉的石英管中的铂坩埚,由此得到Ba0.05Sr0.075La1.875Cu0.7Ag0.3O4(1-y)

Claims (1)

1、一种氧化物超导体,包括一种具有类钙钛矿晶体结构的K2NiF4晶体结构的氧化物,其结构由下式表示:
(BaXSrZLa1-X-Z)2Cu1-WAgwO4(1-y)
其中X≥0,Z≥0,0.1<x+z<0.3,W=0,0≤Y<1;
或者0≤x<1,0≤z<1,0≤x+z<1,0<W<1,及0≤y<1。
CN88100501A 1987-01-30 1988-01-30 氧化物超导体 Expired CN1015033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN89103433A CN1016020B (zh) 1987-01-30 1989-05-25 氧化物超导体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP18392/87 1987-01-30
JP62018392A JP2585561B2 (ja) 1987-01-30 1987-01-30 酸化物超伝導材料
JP42559/87 1987-02-27
JP4255987 1987-02-27
JP63782/87 1987-03-20
JP6378287 1987-03-20
JP84740/87 1987-04-08
JP8474087 1987-04-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN89103433A Division CN1016020B (zh) 1987-01-30 1989-05-25 氧化物超导体
CN89103432A Division CN1013158B (zh) 1987-01-30 1989-05-25 氧化物超导体单晶的制备方法

Publications (2)

Publication Number Publication Date
CN88100501A CN88100501A (zh) 1988-08-10
CN1015033B true CN1015033B (zh) 1991-12-04

Family

ID=27456950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88100501A Expired CN1015033B (zh) 1987-01-30 1988-01-30 氧化物超导体

Country Status (5)

Country Link
US (1) US4921834A (zh)
EP (1) EP0277749B1 (zh)
KR (1) KR910002310B1 (zh)
CN (1) CN1015033B (zh)
DE (1) DE3854358T2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002311B1 (ko) * 1987-02-27 1991-04-11 가부시기가이샤 히다찌세이사꾸쇼 초전도 디바이스
EP0286372B1 (en) * 1987-04-07 1995-07-12 Fujikura Ltd. Oxide superconductor and manufacturing method thereof
ATE92672T1 (de) * 1987-04-27 1993-08-15 Ovonic Synthetic Materials Parametrisch geaendertes supraleitendes material.
CA1340569C (en) 1987-05-05 1999-06-01 Sungho Jin Superconductive body having improved properties, and apparatus and systems comprising such a body
US5162297A (en) * 1987-06-11 1992-11-10 Kabushiki Kaisha Toshiba Liquid phase epitaxial growth of high temperature superconducting oxide wafer
DE3805954C1 (zh) * 1988-02-25 1989-09-28 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
EP0331360B1 (en) * 1988-02-26 1994-02-02 Hitachi, Ltd. Method of preparing an oxide high-temperature superconducting material
US4990493A (en) * 1988-09-06 1991-02-05 General Electric Company Process of making an oriented polycrystal superconductor
US5401713A (en) * 1989-02-06 1995-03-28 Sumitomo Electric Industries, Ltd. Oxide-type superconducting material
CN1048706C (zh) * 1996-05-21 2000-01-26 浙江大学 单相性Bi2Sr2Ca2Cu3O10+δ高温超导体的分步合成方法
NZ528144A (en) * 2001-03-19 2005-06-24 Energieonderzoek Ct Nederland Compound having a high conductivity for electrons; electrode for an electrochemical cell which comprises this compound, method for preparing an electrode and electrochemical cell
KR100839877B1 (ko) * 2001-06-25 2008-06-26 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 복합 산화물 단결정의 제조방법
CN100356484C (zh) * 2004-10-01 2007-12-19 中国科学技术大学 La2-xSrxCuO4有序纳米线阵列及其制备方法
US8389099B1 (en) 2007-06-01 2013-03-05 Rubicon Technology, Inc. Asymmetrical wafer configurations and method for creating the same
WO2018152210A1 (en) * 2017-02-14 2018-08-23 California Institute Of Technology High temperature superconducting materials
CN107903066A (zh) * 2017-12-01 2018-04-13 西南交通大学 一种铋硫基超导体及其制备方法
CN110922177A (zh) * 2019-12-13 2020-03-27 河北环亚线缆有限公司 一种铁基氧化物超导材料及其制备方法
CN117127260B (zh) * 2023-07-26 2024-07-23 山东大学 一种常压下生长钙钛矿镍氧化合物单晶的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824826A (en) * 1987-09-10 1989-04-25 Iowa State University Research Foundation, Inc. Millimeter size single crystals of superconducting YBa2 Cu3 O.sub.

Also Published As

Publication number Publication date
DE3854358T2 (de) 1996-04-18
EP0277749A2 (en) 1988-08-10
US4921834A (en) 1990-05-01
DE3854358D1 (de) 1995-10-05
KR910002310B1 (ko) 1991-04-11
EP0277749A3 (en) 1991-01-16
CN88100501A (zh) 1988-08-10
EP0277749B1 (en) 1995-08-30
KR880013264A (ko) 1988-11-30

Similar Documents

Publication Publication Date Title
CN1015033B (zh) 氧化物超导体
Takayama-Muromachi High-pressure synthesis of homologous series of high critical temperature (T c) superconductors
CN1006666B (zh) 电超导体的组合物
CN88100514A (zh) 超导器件
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
Kawashima et al. New series of oxide superconductors, BSr2Can− 1CunO2n+ 3 (n= 3∼ 5), prepared at high pressure
CN1151513C (zh) 具有低超导各向异性的掺镁高温超导体及其制造方法
EP0337699A2 (en) Insulating oxide composition used in a superconducting element
JP2975608B2 (ja) 絶縁性組成物
US5348935A (en) Highly oxidized superconductors
JP3165770B2 (ja) 酸化物超電導体の製造方法
CN1041237A (zh) 铋系复合氧化物超导薄膜的成膜方法
JP2859516B2 (ja) 酸化物超電導体およびその製造方法
EP0644600B1 (en) Oxide superconductor and method of manufacturing the same
JP2850310B2 (ja) 超伝導性金属酸化物組成物及びその製造方法
JP2797186B2 (ja) 超電導体層を有する半導体基板
CA1341621C (en) Superconductivity in an oxide compound system without rare earth
JPH08259230A (ja) 酸化物超電導体およびその製造方法
JP2656531B2 (ja) 酸化物超電導体
US6482775B2 (en) Oxide superconductor
JP2666978B2 (ja) 超電導素子
Liang et al. The relation between superconductivity and crystal structure of Tl-Ba-Ca-Cu-O system
JP2781033B2 (ja) 金属酸化物材料
CN1016020B (zh) 氧化物超导体
Raveau et al. Crystal chemistry of superconducting rare-earth cuprates

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee