CN101497999A - 在ald/cvd工艺中用于gst膜的锑前驱体 - Google Patents

在ald/cvd工艺中用于gst膜的锑前驱体 Download PDF

Info

Publication number
CN101497999A
CN101497999A CNA2009101267678A CN200910126767A CN101497999A CN 101497999 A CN101497999 A CN 101497999A CN A2009101267678 A CNA2009101267678 A CN A2009101267678A CN 200910126767 A CN200910126767 A CN 200910126767A CN 101497999 A CN101497999 A CN 101497999A
Authority
CN
China
Prior art keywords
antimony
side chain
cyclic alkyl
alkyl group
straight chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009101267678A
Other languages
English (en)
Other versions
CN101497999B (zh
Inventor
萧满超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versum Materials US LLC
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN101497999A publication Critical patent/CN101497999A/zh
Application granted granted Critical
Publication of CN101497999B publication Critical patent/CN101497999B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/90Antimony compounds
    • C07F9/902Compounds without antimony-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及在ALD/CVD工艺中用于GST膜的锑前驱体。本发明是一种制造锗-锑-碲合金膜的方法,该方法利用了选自原子层沉积和化学气相沉积中的一种工艺,其中甲硅烷锑前驱体被用作为合金膜中锑的来源。新的甲硅烷锑化合物也被公开。

Description

在ALD/CVD工艺中用于GST膜的锑前驱体
交叉引用的相关申请
本专利申请主张享有2008年1月28日申请的美国临时专利申请,序号61/023989的利益。
技术领域
本发明涉及一种制造锗—锑—碲合金膜的方法,该方法使用选自原子层沉积和化学气相沉积的工艺,其中使用甲硅烷锑前驱体作为合金膜中锑的来源。
背景技术
作为一种新兴技术,相变材料引起越来越多兴趣。因为它们可应用于制造新型高度集成的、永久的存储装置:相变随机存取存储器(PRAM)。相变随机存取存储器(PRAM)装置通过在经历晶相和非晶相之间可逆相变时具有明显的不同电阻的材料合成。最通常使用的相变材料是含有14族和15族的硫族化合物组成的三元化合物,如锗—锑—碲化合物,通常的缩写为GST。
在设计PRAM单元时的一个技术障碍是克服GST材料在一定温度下从晶态向非晶态转变的过程中的散热问题,这个过程需要应用高水平的复位电流。通过将GST材料限制在接触插头,可以减少上述过程对复位电流的需求,从而可以大大减少散热。为了在基体上构建GST插头,采用原子层沉积(ALD)工艺,制造具有高保形性和化学成分一致性的膜。
相关的现有技术包括:
sang-WookKim,S.Sujith,BunYeoulLee,Chem.Commun.,2006,4811-4813页。
Stephan Schulz,Martin Nieger,J.Organometallic Chem.,570,1998,275-278页。
Byung Joon Choi,等.Chem Mater.2007,19,pp 4387-4389;Byung Joon Choi,等.J.Electrochem.Soc.,154,pp H318-H324(2007)。
Ranyoung Kim,Hogi Kim,Soongil Yoon,Applied Phys.Letters,89,pp 102-107(2006)。
Junghyun Lee,Sangjoon Choi,Changsoo Lee,Yoonho Kang,Daeil Kim,Applied Surface Science,253(2007)pp 3969-3976。
G.Becker,H.Freudenblum,O.Mundt,M.reti,M.Sachs,Synthetic Methods ofOrganometallic and Inorganic Chemistry,vol.3,H.H.Karsch,New York,1996,p.193。
Sladek,A.,Schmidbaur,H.,Chem.Ber.1995,128,pp 565-567。
美国专利申请:
US 2006/0049447 A1;
US 2006/0039192 A1;
US 2006/0072370 A1;和
US 2006/0172083 A1。
发明内容
本发明是一种制造锗—锑—碲合金膜的方法,该方法利用了原子层沉积和化学气相沉积中的一种工艺,其中使用甲硅烷锑(silylantimony)前驱体作为合金膜中锑的来源。
优选的,本发明是一种制造锗—锑—碲合金膜的方法,该方法利用了选自原子层沉积和化学气相沉积中的工艺,其中使用甲硅烷锑前驱体作为合金膜中锑的来源。其中甲硅烷锑前驱体选自:
Figure A200910126767D00061
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;其中所述锗前驱体是具有以下通式的氨基锗:
Figure A200910126767D00071
其中R1和R2独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团;其中碲前驱体是甲硅烷碲,其选自:
Figure A200910126767D00072
并且R1、R2、R3、R4、R5和R6独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的含有或不含双键的烷基基团,或者芳香基团。
本发明也涉及一种物质组成(化合物),其选自如下的通式结构:
Figure A200910126767D00081
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;如果结构(A)中,R1-9中的一个是苯基,那么在承载苯基的硅原子上的剩余的R1-9不能全是甲基;如果结构(A)中R1-9中的任一个是C1-3或苯基,那么不是所有的R1-9全都相同。
具体实施方式
本发明涉及一类锑前驱体,其在ALD工艺中产生锑层。该锑层与随后在ALD循环中沉积的锗和碲层发生反应,并形成GST三元材料膜,该膜适用于PRAM装置。
GST材料在PRAM装置中通常在温度范围180-300℃下沉积。已发现,在200℃沉积的膜具有最好的化学和结构特性。ALD工艺要求前驱体具有高的化学反应性和反应选择性。目前存在的前驱体,如二烷基碲(dialkyltellium)、三烷基锑(trialkylantimony)、和烷基锗(alkylgermanes),在用于ALD循环中的沉积条件下,不具有要求的反应性。经常的,等离子体被用于促进沉积。
本发明提供甲硅烷锑化合物作为ALD前驱体,它与醇类或水反应生成锑层。该锑层与随后从四氨基锗(tetraaminogermanium)和有机碲(organotellurium)前驱体沉积的锗和碲形成沉积在基体上具有高保形性的GST膜。
本发明涉及一类锑前驱体,其在ALD工艺中产生锑层。该锑层与随后在ALD循环中沉积的锗和碲层发生反应,并形成GST三元材料膜,该膜适于用于PRAM装置。本发明公开了几个甲硅烷锑前驱体具有高反应性和热稳定性,并且该化学作用连同其他化学制品用于ALD工艺以沉积GST膜。
本发明提供甲硅烷锑化合物作为ALD前驱体,它与醇类或水反应生成锑层。该锑层与随后从四氨基锗和碲前驱体沉积的锗和碲形成沉积在基体上具有高保形性的GST膜。
锑前驱体可以包含三硅烷锑(trisilylantimony)、二硅烷甲基锑(disilylalkylantimony)、二硅烷锑(disilylantimony)或者二硅烷氨基锑(disilylaminoantimony),选自:
Figure A200910126767D00091
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;优选如果结构(A)中,R1-9中的一个是芳香基,那么在承载芳香基的硅原子上的剩余的R1-9不能全是甲基。
甲硅烷锑化合物与醇类或水具有高反应性。该反应在低温下产生元素锑:
Figure A200910126767D00101
这些反应可以发生在室温到300℃的温度范围内。
在ALD工艺中,锑前驱体、醇类、锗和碲前驱体,例如(Me2N)4Ge和(Me3Si)2Te(其中“Me”是甲基),通过气体抽吸或直接液体喷射(DLI)以循环方式被引入沉积室。沉积温度优选在100到400℃之间。
ALD反应可以由以下方案说明:
Figure A200910126767D00102
步骤1.四(二甲氨基)锗[Tetrakis(dimethylamino)germane}被引入,在基体表面上形成氨基锗的分子层。
步骤2.六甲基二硅烷碲(Hexamethyldisilyltellurium}与氨基锗层发生反应,形成Te-Ge键,并消除二甲氨基三甲基硅烷(dimethylaminotrimethylsilane)。形成具有甲硅烷基的Te层。
步骤3.甲醇与剩余的甲硅烷基团在碲层上发生反应,形成Te-H键,以及不稳定副产品甲氧三甲基硅烷(methoxytrimethylsilane),其被净化消除。
步骤4.三(三甲基甲硅烷)锑被引入,并在碲层之上形成锑层。
步骤5.甲醇与剩余的甲硅烷基团在锑层上发生反应以形成Sb-H键,以及不稳定副产品甲氧三甲基硅烷(methoxytrimethylsilane),其被净化消除。
步骤6.六甲基二硅烷碲(Hexamethyldisilyltellurium)被再次引入,并形成碲层。
步骤7.甲醇被再次引入以消除碲上的甲硅烷基团。
ALD循环然后完全重复,可能很多次,直到获得理想的膜厚度。下一个循环从步骤1再次开始,等等。
该工艺中的甲硅烷锑化合物选自:
Figure A200910126767D00111
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,含有具有2到10个碳原子的直链、支链、或环状的烷基或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基或链烯基基团,或者芳香基团;优选如果结构(A)中,R1-9中的一个是芳香基,那么在承载芳香基的硅原子上的剩余的R1-9不能全是甲基;更优选,如果结构(A)中R1-9中的任一个是C1-3或苯基,那么不是所有的R1-9全都相同。
该方法中的氨基锗具有通式:
Figure A200910126767D00121
其中R1和R2独立地为1到10个碳原子形成的直链、支链、或环状的烷基基团。
碲前驱体可以包含二甲硅烷碲、甲硅烷烃基碲或甲硅烷氨基碲,选自:
Figure A200910126767D00122
其中R1,R2,R3,R4,R5和R6独立地为氢原子,具有1到10个碳原子含有或不含双键的直链、支链、或环状的烷基基团,或者芳香基团。
该方法中的醇类具有通式:
ROH
其中R是具有1到10个碳原子的直链、支链、或环状的烷基基团。
实施例1 三(三甲基甲硅烷)锑的合成
1.22g(0.01mol)200目的锑粉,0.72g(o.03mol)的氢化锂,和40ml的四氢呋喃(THF)置于100ml烧瓶。伴随搅拌,混合物被回流4小时。所有含锑的黑色粉末消失,土色沉淀物形成。然后,混合物冷却到—20℃;加入3.3g(0.03mol)三甲基氯硅烷。混合物被加热至室温,搅拌4小时后,混合物在惰性气氛下被过滤。溶剂通过蒸馏除去。三(三甲基甲硅烷)锑通过真空蒸馏纯化。
实施例2 三(二甲基甲硅烷)锑的合成
1.22g(0.01mol)200目的锑粉,0.72g(0.03mol)的氢化锂,和40ml的四氢呋喃(THF)置于100ml烧瓶。伴随搅拌,混合物被回流4小时。所有含锑的黑色粉末消失,土色沉淀物形成。然后,混合物冷却到—20℃;加入2.83g(0.03mol)二甲基氯硅烷。混合物被加热至室温,搅拌4小时后,混合物在惰性气氛下被过滤。溶剂通过蒸馏除去。三(二甲基甲硅烷)锑通过真空蒸馏纯化。
实施例3 三(二甲基甲硅烷)锑的合成
3.65g(0.03mol)200目的锑粉,2.07g(0.09mol)的钠,1.15g(0.009mol)的萘和50ml的(THF)置于100ml烧瓶。混合物在室温下搅拌24小时。所有含锑和钠的黑色粉末消失,土色沉淀物形成。然后,混合物冷却到—20℃;加入8.51g(0.09mol)二甲基氯硅烷。混合物被加热至室温,搅拌4小时后,混合物在惰性气氛下被过滤。溶剂通过蒸馏除去。三(二甲基甲硅烷)锑通过真空蒸馏纯化。
实施例4 锑膜的生成
0.05g的三(二甲基甲硅烷)锑置于100ml耐火玻璃烧瓶底部,装满氮气和橡胶隔片。用注射器缓慢添加0.1g的甲醇。亮黑的膜开始沉积在烧瓶的玻璃内壁。几分钟之后,全部的烧瓶内壁包上暗灰色/黑色的锑膜。

Claims (9)

1、一种制造锗—锑—碲合金膜的方法,该方法使用选自原子层沉积和化学气相沉积的工艺,其中使用甲硅烷锑前驱体作为合金膜中锑的来源。
2、权利要求1的方法,其中甲硅烷锑前驱体选自三甲硅烷锑、二甲硅烷锑、烷基二甲硅烷锑、氨基二甲硅烷锑和它们的混合物。
3、权利要求1的方法,其中甲硅烷锑前驱体选自:
Figure A200910126767C00021
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团。
4、权利要求1的方法,其中所述甲硅烷锑前驱体是三(三甲基甲硅烷)锑。
5、权利要求1的方法,其中使用具有如下通式的氨基锗作为锗的来源:
Figure A200910126767C00022
其中R1和R2独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团。
6、权利要求1的方法,其中使用具有如下通式的甲硅烷碲作为碲的来源:
Figure A200910126767C00031
其中R1、R2、R3、R4、R5和R6独立地为氢原子,具有1到10个碳原子的含有或不含双键的直链、支链、或环状的烷基基团,或者芳香基团。
7、权利要求1的方法,其中所述甲硅烷锑前驱体沉积后与具有通式ROH的醇接触,其中R是具有1到10个碳原子的直链、支链、或环状的的烷基基团,或者芳香基团。
8、一种制造锗—锑—碲合金膜的方法,其使用选自原子层沉积和化学气相沉积的工艺,其中甲硅烷锑前驱体被用作所述合金膜的锑的来源,其中所述甲硅烷锑选自:
Figure A200910126767C00032
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;其中所述锗前驱体是具有如下通式的氨基锗:
其中R1和R2独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团;其中所述碲前驱体是甲硅烷碲,其选自:
Figure A200910126767C00041
其中R1、R2、R3、R4、R5和R6独立选自氢原子,具有1到10个碳原子的含有或不含双键的直链、支链、或环状的烷基基团,或者芳香基团。
9、一种具有选自下述通式结构的物质组成:
Figure A200910126767C00042
其中R2-10独立地为氢原子,具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香族基团;R1独立地为氢原子,具有2到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香族基团;R11和R12独立地为具有1到10个碳原子的直链、支链、或环状的烷基基团或链烯基基团,或者芳香基团;如果结构(A)中,R1-9中的一个是苯基,那么在承载苯基的该硅原子上的剩余的R1-9不能全是甲基;如果结构(A)中R1-9中的任一个是C1-3或苯基,那么不是所有的R1-9全都相同。
CN2009101267678A 2008-01-28 2009-02-01 在ald/cvd工艺中用于gst膜的锑前驱体 Expired - Fee Related CN101497999B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2398908P 2008-01-28 2008-01-28
US61/023989 2008-01-28
US12/355,325 US8318252B2 (en) 2008-01-28 2009-01-16 Antimony precursors for GST films in ALD/CVD processes
US12/355325 2009-01-16

Publications (2)

Publication Number Publication Date
CN101497999A true CN101497999A (zh) 2009-08-05
CN101497999B CN101497999B (zh) 2012-08-08

Family

ID=40577856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101267678A Expired - Fee Related CN101497999B (zh) 2008-01-28 2009-02-01 在ald/cvd工艺中用于gst膜的锑前驱体

Country Status (6)

Country Link
US (1) US8318252B2 (zh)
EP (1) EP2083096B1 (zh)
JP (2) JP5350819B2 (zh)
KR (1) KR101068013B1 (zh)
CN (1) CN101497999B (zh)
TW (1) TWI382104B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687243A (zh) * 2009-10-26 2012-09-19 Asm国际公司 用于含va族元素的薄膜ald的前体的合成和使用
CN103590017A (zh) * 2012-08-13 2014-02-19 气体产品与化学公司 在ald/cvd工艺中用于gst薄膜的前体
CN104099578A (zh) * 2013-04-11 2014-10-15 气体产品与化学公司 制备多组分膜的方法
CN104341355A (zh) * 2014-10-22 2015-02-11 江南大学 用于相变存储材料的氨基嘧啶Ge(Ⅱ)前质体及其制备方法
CN106068335A (zh) * 2014-03-04 2016-11-02 皮考逊公司 锗或氧化锗的原子层沉积
US10199234B2 (en) 2015-10-02 2019-02-05 Asm Ip Holding B.V. Methods of forming metal silicides
CN110592554A (zh) * 2013-06-26 2019-12-20 应用材料公司 沉积金属合金膜的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473382A (zh) 2006-05-12 2009-07-01 高级技术材料公司 相变化记忆体材料的低温沉积
CN101495672B (zh) 2006-11-02 2011-12-07 高级技术材料公司 对于金属薄膜的cvd/ald有用的锑及锗复合物
KR101458953B1 (ko) 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
JP5650880B2 (ja) * 2007-10-31 2015-01-07 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 非晶質Ge/Te蒸着方法
US20090215225A1 (en) 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
EP2279285B1 (en) 2008-04-25 2015-02-11 ASM International N.V. Synthesis and use of precursors for ald of tellurium and selenium thin films
US8697486B2 (en) * 2009-04-15 2014-04-15 Micro Technology, Inc. Methods of forming phase change materials and methods of forming phase change memory circuitry
US20110108792A1 (en) * 2009-11-11 2011-05-12 International Business Machines Corporation Single Crystal Phase Change Material
US8148197B2 (en) 2010-07-27 2012-04-03 Micron Technology, Inc. Methods of forming germanium-antimony-tellurium materials and a method of forming a semiconductor device structure including the same
JP6289908B2 (ja) * 2011-08-19 2018-03-07 東京エレクトロン株式会社 Ge−Sb−Te膜の成膜方法、Sb−Te膜の成膜方法及びプログラム
JP5780981B2 (ja) * 2012-03-02 2015-09-16 東京エレクトロン株式会社 ゲルマニウム薄膜の成膜方法
US9929006B2 (en) * 2016-07-20 2018-03-27 Micron Technology, Inc. Silicon chalcogenate precursors, methods of forming the silicon chalcogenate precursors, and related methods of forming silicon nitride and semiconductor structures

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152493A (ja) * 1996-09-30 1998-06-09 Shin Etsu Chem Co Ltd アルキルハロシランの製造方法
EP1421607A2 (en) 2001-02-12 2004-05-26 ASM America, Inc. Improved process for deposition of semiconductor films
KR100642634B1 (ko) 2004-06-29 2006-11-10 삼성전자주식회사 게이트 상전이막 패턴을 갖는 피이. 램들 및 그 형성방법들
KR100655796B1 (ko) 2004-08-17 2006-12-11 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
KR100566699B1 (ko) 2004-08-17 2006-04-03 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
KR100652378B1 (ko) 2004-09-08 2006-12-01 삼성전자주식회사 안티몬 프리커서 및 이를 이용한 상변화 메모리 소자의 제조방법
JP2006124262A (ja) 2004-11-01 2006-05-18 Dainippon Printing Co Ltd InSbナノ粒子
KR100640620B1 (ko) 2004-12-27 2006-11-02 삼성전자주식회사 트윈비트 셀 구조의 nor형 플래쉬 메모리 소자 및 그제조 방법
KR100618879B1 (ko) * 2004-12-27 2006-09-01 삼성전자주식회사 게르마늄 전구체, 이를 이용하여 형성된 gst 박막,상기 박막의 제조 방법 및 상변화 메모리 소자
KR100585175B1 (ko) 2005-01-31 2006-05-30 삼성전자주식회사 화학 기상 증착법에 의한 GeSbTe 박막의 제조방법
KR100688532B1 (ko) 2005-02-14 2007-03-02 삼성전자주식회사 텔루르 전구체, 이를 이용하여 제조된 Te-함유 칼코게나이드(chalcogenide) 박막, 상기 박막의 제조방법 및 상변화 메모리 소자
CN101473382A (zh) 2006-05-12 2009-07-01 高级技术材料公司 相变化记忆体材料的低温沉积
KR100780865B1 (ko) * 2006-07-19 2007-11-30 삼성전자주식회사 상변화막을 포함하는 반도체 소자의 형성 방법
WO2008042981A2 (en) * 2006-10-05 2008-04-10 Asm America, Inc. Ald of metal silicate films
CN101495672B (zh) 2006-11-02 2011-12-07 高级技术材料公司 对于金属薄膜的cvd/ald有用的锑及锗复合物
TWI471449B (zh) * 2007-09-17 2015-02-01 Air Liquide 用於gst膜沈積之碲前驅物
JP5650880B2 (ja) * 2007-10-31 2015-01-07 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 非晶質Ge/Te蒸着方法
US7960205B2 (en) * 2007-11-27 2011-06-14 Air Products And Chemicals, Inc. Tellurium precursors for GST films in an ALD or CVD process
EP2279285B1 (en) 2008-04-25 2015-02-11 ASM International N.V. Synthesis and use of precursors for ald of tellurium and selenium thin films

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687243A (zh) * 2009-10-26 2012-09-19 Asm国际公司 用于含va族元素的薄膜ald的前体的合成和使用
CN102687243B (zh) * 2009-10-26 2016-05-11 Asm国际公司 用于含va族元素的薄膜ald的前体的合成和使用
CN103590017A (zh) * 2012-08-13 2014-02-19 气体产品与化学公司 在ald/cvd工艺中用于gst薄膜的前体
CN103590017B (zh) * 2012-08-13 2016-08-17 气体产品与化学公司 在ald/cvd工艺中用于gst薄膜的前体
CN104099578A (zh) * 2013-04-11 2014-10-15 气体产品与化学公司 制备多组分膜的方法
CN110592554A (zh) * 2013-06-26 2019-12-20 应用材料公司 沉积金属合金膜的方法
CN106068335A (zh) * 2014-03-04 2016-11-02 皮考逊公司 锗或氧化锗的原子层沉积
CN104341355A (zh) * 2014-10-22 2015-02-11 江南大学 用于相变存储材料的氨基嘧啶Ge(Ⅱ)前质体及其制备方法
US10199234B2 (en) 2015-10-02 2019-02-05 Asm Ip Holding B.V. Methods of forming metal silicides

Also Published As

Publication number Publication date
JP2013060663A (ja) 2013-04-04
TWI382104B (zh) 2013-01-11
JP5778648B2 (ja) 2015-09-16
US20090191330A1 (en) 2009-07-30
US8318252B2 (en) 2012-11-27
JP2009215645A (ja) 2009-09-24
EP2083096A1 (en) 2009-07-29
JP5350819B2 (ja) 2013-11-27
EP2083096B1 (en) 2013-01-02
TW200934885A (en) 2009-08-16
KR20090082873A (ko) 2009-07-31
KR101068013B1 (ko) 2011-09-26
CN101497999B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
CN101497999B (zh) 在ald/cvd工艺中用于gst膜的锑前驱体
CN101476112B (zh) 在ald或cvd工艺中用于gst薄膜的碲前体
US8193388B2 (en) Compounds for depositing tellurium-containing films
EP1995236B1 (en) Tellurium (Te) precursors for making phase change memory materials
EP2532767B1 (en) Process for making a ternary metal chalcogenide film,
TW200925315A (en) Tellurium precursors for GST film deposition
US20110262660A1 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
Gao et al. Doping mechanism in transparent, conducting tantalum doped ZnO films deposited using atomic layer deposition
KR102204999B1 (ko) Ald/cvd 공정에서 gst 필름을 위한 전구체
KR20100009093A (ko) 유기 저머늄 화합물을 이용한 저머늄 박막 제조

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170629

Address after: Arizona, USA

Patentee after: Versum Materials US, LLC

Address before: American Pennsylvania

Patentee before: Air Products and Chemicals, Inc.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120808

Termination date: 20220201

CF01 Termination of patent right due to non-payment of annual fee