CN101448972A - 热源 - Google Patents

热源 Download PDF

Info

Publication number
CN101448972A
CN101448972A CNA2007800187675A CN200780018767A CN101448972A CN 101448972 A CN101448972 A CN 101448972A CN A2007800187675 A CNA2007800187675 A CN A2007800187675A CN 200780018767 A CN200780018767 A CN 200780018767A CN 101448972 A CN101448972 A CN 101448972A
Authority
CN
China
Prior art keywords
source
lid
reactor
feeding passage
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800187675A
Other languages
English (en)
Other versions
CN101448972B (zh
Inventor
P·索伊尼宁
S·斯耐克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Sifang Sri Intelligent Technology Co ltd
Original Assignee
Beneq Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beneq Oy filed Critical Beneq Oy
Publication of CN101448972A publication Critical patent/CN101448972A/zh
Application granted granted Critical
Publication of CN101448972B publication Critical patent/CN101448972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种用于汽相淀积设备的、用来将源物质供给到反应器中的热源,该热源(1)包括具有用于源物质的源空间(4)的源容器(2)。在本发明中,源(1)还包括盖(6),该盖(6)包括用来加热盖(6)的第一加热装置(8),盖(6)以这样一种方式可拆卸地安装在源容器(2)中,即由第一加热装置(8)产生的热量通过传导传递到源容器(2)并进一步传递到源空间(4),以加热源物质。

Description

热源
技术领域
本发明涉及一种在用来将源物质进给到反应器中的ALD(原子层淀积)和CVD法(化学汽相淀积)中使用的热源。特别是,本发明按照权利要求1涉及一种用来将源物质进给到反应器中的汽相淀积设备的热源,源包括具有用于源物质的源空间的源容器。
背景技术
当用汽相淀积方法,如ALD和其它CVD方法产生结构时,在将源物质进给到反应器的反应空间之前,必须将它们转化成气体形态,因为在这些方法中,反应发生在与基片的表面紧密相互作用的气相中。对于多种方法来说,在NTP条件下没有理应是气体的适当源物质,所以这样的方法必须利用液体和固体。由于液体和固体与气态物质的对应压力相比具有低汽压,所以它们常常必须被加热,以达到足够的汽压。当借助于所谓的溢流原理使用源时,这样的加热典型地是在反应器的系统压力的近似10%至50%的压力下实现。如果需要,可使温度上升,以使源的压力超过反应器的系统压力,可以说是,借此不要求气体溢流而源可以在其自身的汽压下被使用。为了防止汽化源物质凝结,这些源物质必须以这样一种方式输送到反应器中,即与源物质相接触的所有设备表面都具有与源物质在其中被汽化的源空间相同的温度或比其高的温度。
按照现有技术,热源被集成到反应器腔室的内部,并且通过利用所谓的惰性气体阀系统而设有锁。这种解决方案的问题是,当变更基片时,惰性气体阀系统需要的锁以及源物质在变更基片之前都必须冷却。这表示要停止反应器的运行,要使源物质经受不希望有的温度变化,以及会增大来自较高压力和增加室内空气的污染次数。进一步说,当使用这样一种源时,反应器的系统压力绝不能下降到低于源的汽压,因为在这种情况下,源物质会不受控制地排放到反应器中。而且,由于以上方面,源物质不能在源内保留较长时间。
用来将热源安装在汽相淀积反应器上的另一种现有技术解决方案是利用设有阀的金属罐,固体源物质被放置在罐内,并且具有阀的罐被设置在位于与反应器相邻或与反应器相连接的真空或对流炉中。来自罐的管子设有例如电阻丝,以避免所述凝结现象。这种解决方案提供一种安装固体源的惰性方式,但最高可能工作温度,即近似200℃至250℃的高温要由阀确定,该阀的使用寿命在高温下会显著地缩短。如果将阀设置在炉外面,则必须装设一些额外的管道,并且,在设备中形成冷桥。这样的冷桥比如产生在具有执行器连接的阀中。而且,为此使用的炉子占用大量空间并且昂贵。采用炉子解决方案也很麻烦,因为罐大且重,并且安装和拆卸它们需要工具。设有阀的金属罐也昂贵。
发明内容
本发明的目的因而是提供一种能解决上述问题的热源。本发明的目的是借助于根据权利要求1的特征表述部分的热源来实现,所述热源的特征在于,源还包括盖,该盖包括用来加热盖的第一加热装置,盖以这样一种方式可拆卸地安装在源容器中,即由第一加热装置产生的热量通过传导传递到源容器和进一步传递到源空间,以加热源物质。
本发明的优选实施例公开在从属权利要求中。
本发明基于如下想法:被加热的源的源容器以这样一种方式成形,即包括用于源物质的源空间的源容器设有盖,所述盖可从源容器拆卸。盖在上下文中是指可拆卸地附设到源容器上的任何结构零件。优选地,盖被设置在源容器上,因而封闭源空间。盖还设有第一加热装置,该第一加热装置用于加热盖,使得热量通过传导从盖传递到可拆卸地附装到盖上的源容器,以加热源空间和其中的源物质。盖还设有管道系统和进给通道,该进给通道从盖延伸到反应器,以便将源物质从源空间经盖的管道系统和进给通道输送到反应器中。进给通道设有第二加热装置,该第二加热装置优选地设置在用于源物质的进给通道内。在这种方式中,提供一种在所有条件下都有可能在源空间与反应器之间保持上升的温度梯度的结构。换句话说,本发明的目的是提供一种结构,在该结构中为源空间形成一个可拆卸的、附设到源空间上的盖。所述盖包括用来将源物质进给到反应器中的可加热进给通道。进给通道因而通过盖的管道系统与源容器的源空间进行液体连通,从而借助于盖的加热装置和进给通道的加热装置,在源容器与反应器之间可达到上升的温度梯度。源需要的盖设有供执行器用的表面安装阀。
本发明的方法和配置的优点是,源容器和/或源物质可更换而不用冷却或打开反应器。进一步说,不需要加热源物质的昂贵的炉子,并且便于将源安装在反应器上。此外,结构使冷点的产生达到最低限度,因为本发明的源允许以简单方式在源空间与反应器之间达到上升的温度梯度,这个上升的温度梯度防止源物质凝结。更进一步说,源模块结构能够根据每种特定用途的要求变更源,借此能够将需要数量的、根据本发明的源,例如通过并联或串联方式连接到反应器上。进一步说,借助于为被加热的盖提供的表面安装元件连接到源上的管道系统和阀的温度能以简单和可靠方式保持在凝点以上。
附图说明
现在参照附图,联系优选实施例将更详细地描述本发明,在附图中:
图1示出根据本发明实施例的一种热源的横截面;和
图2示出图1的热源的俯视图。
具体实施方式
参照图1,该图示出根据本发明的一种热源1的实施例的横向剖视图。源1包括源容器2,在该源容器2中,设有提供源物质的源空间4。源容器2由导热良好的材料,如铝制造。因而,源容器2优选地是通过机加工已经加工好源空间4的大块材料,或者源容器2可以通过铸造制造。在根据图1的实施例中,源空间4是圆柱形空间,但它也可以是另一种形状的空间。源空间4还设有由玻璃或其它惰性材料制成的杯式或类似容器,在该容器内可放置源物质。优选地,源空间4的一个壁按照图1是敞开的。在图1中,这个敞开壁是源空间4的上壁。也有可能为这个敞开空间设有可打开的锁或类似阀的结构,借助于该结构或锁,源空间4可被封闭或与周围分离。这样,当将源空间从源上拆下时以及在安装源容器期间源空间可保持封闭,并且当源空间已经安装到位或者在生产过程中要使用源物质时源空间可打开。源容器还可以设有窗或类似结构,当源容器安装在源中时,能够通过窗或类似结构观察源物质。因而,可对源物质的状况和充足性进行光学监视。在源容器上设有盖6,盖6处于源空间4上。盖6和源容器2借助于快速解脱锁扣,优选地如螺栓结构可相互连接,这可以使源容器2能轻易而迅速地从盖6上拆下来。源空间的闭锁装置能以这样一种方式与源容器2的设施和可分离件相连接,即当源容器安装到位时,闭锁装置打开源空间4,并且当从盖6上拆下源容器2时,闭锁装置重新封闭源空间。闭锁装置可以是类似阀结构或类似闸门结构等,闭锁装置的操作可以是自动的,以便将源容器2附装到盖6上和从其上拆下,也可以对闭锁装置分别进行控制。盖6设有用来加热盖6的第一加热装置8(图2)。第一加热装置8可以是例如可更换热盒,如加热管或加热电阻器,在盖6上可以有一个或几个热盒。像源容器2一样,盖6优选地由导热材料,如不锈钢、铝或铝合金、或其它相应材料制造。盖6和源容器2以及在它们之间的连接是以这样一种方式装设,即第一加热装置8产生的热量能通过传导从盖6传递到源容器2。因而,源容器2和盖6彼此贴紧设置,能够实现热量的传导。这意味着,在根据本发明的解决方案中,不必单独加热源空间4,但源空间4被从盖6传导来的热量加热。
盖6设有表面安装装置和/或表面安装阀12,用于连接执行器和进口导管及要安装在源中的其它元件。表面安装装置12设计成耐高温,并且它们的冷桥已减到最低限度。利用表面安装技术可以使表面安装阀和其它表面安装装置与盖6的其余部分保持几乎相同的温度,并且始终保持在比源空间4高的温度下,因为盖6设有第一加热装置8。盖6还设有用来将源物质从源容器2的源空间4进给到反应器4(未示出)中的进给装置。盖6设有管道系统(未示出),当源容器2安装在盖6中时,该管道系统从表面安装件12和接到表面连接件上的导管和执行器开始连接到源容器2的源空间4上。进一步,盖6包括从源空间4连接到进给装置上的管道系统,用来将源物质从源空间输送到进给装置并且从那里进一步输送到反应器中。盖6优选地是整体件,借此通过机加工,如钻孔,或以其他相应方式,对它提供上述管道系统。通过机加工提供的管道系统不需要单独加热,因为借助于为盖6提供的第一加热装置8加热管道系统是可行的。在本文中,反应器指汽相淀积设备的任何反应器,如化学汽相淀积(CVD)、原子层淀积(ALD)或MCVD设备等的反应器。反应器的内部包括由反应器外壁形成的反应空间,或者可选择地是,反应器的内部可以包括形成反应空间的单独反应室,源物质被输送到该反应空间。
盖6还设有进给通道14,源物质沿该进给通道14流入反应器中。在进给通道14周围,按照图1同轴辅助通道20以这样一种方式安装,即在进给通道14与辅助通道20之间留有间隙,沿该间隙可供给惰性气体阀系的氮气流,借此使氮气流在进给通道14与所述辅助通道20之间流动。进给通道14和辅助通道20优选地由玻璃制成,并且具有环形横截面。如果需要,也可绕进给通道14增加两条或更多条这样的辅助通道。进给通道14借助于盖6的管道系统与源容器的源空间4实现液体连通,借此汽化的源物质可从源空间经盖6的管道系统流入进给通道14并且进而流到反应器中。氮气或其它相应气体借助于用表面安装为盖6提供的气体导管22经为盖6提供的管道系统可以被进一步送到在进给通道14与所述辅助通道20之间的空间。进给通道14和辅助通道20沿其部分长度,进一步被在盖6与反应器之间延伸的外壳24包围和支撑。外壳24以及进给通道14和辅助通道20安装在盖6中的凹口中,并且用紧固装置28,如法兰结构紧固到盖6上。在反应器一侧的外壳24的端部又设有用来附装到反应器上的法兰26。进给通道14和辅助通道20从外壳24越过法兰26向外延伸,以便当安装到位时延伸到反应器的反应腔室。
为了在进给通道14中将汽化源物质保持在足够高的温度下以防凝结,在进给通道14中设有第二加热装置16并将该装置16封闭在保护管18内。这些第二加热装置16优选地是电阻器,所述电阻器以这样一种方式设置,即借助调节装置可将电阻器的温度调节到在每种特殊情况下所希望的值。第二加热装置16也可以是除电阻器之外的加热装置。这些第二加热装置16将进给通道14,特别是它的内壁,从而也将在进给通道14内流动的源物质加热到足够高的温度或者保持源物质的温度以防凝结。第二加热装置16优选地在进给通道中延伸得很远,以致反应器的热效应能够保持要求的源物质在进给通道中的温度以防凝结。第二加热装置16安装在进给通道中,并且源物质可在保护管18与进给通道14之间的空间中流动。进给通道14、辅助通道20及保护管18优选地由诸如玻璃之类的惰性材料制造。按照图1,盖6设有一个直通管,该直通管由盖6一侧上的进给通道14的安装点起,穿过盖6延伸到盖的另一边,这样就能使第二加热装置16借助使其穿过从盖的一侧通到进给管道14的输送装置(feedthrough)30而安装在进给通道14内。第二加热装置16借助于法兰结构32或其他相应的装置进一步地能附装于盖6上。由于进给通道14从由第一加热装置8加热的盖6延伸到反应器,所以在源空间4与进给通道之间可达到上升的温度梯度,另外,由于进给通道由第二加热装置16加热,所以在进给通道14与反应器之间或在盖6与反应器之间也达到上升的温度梯度。因而,沿从源空间4到反应器的整个路程都达到上升的温度梯度,或者至少在通向反应器路程上的任何部分中温度都不会降到源空间4的温度以下。
输送装置30和盖6对面的开口可以使依据本发明的两个或更多个源依次串联安装。所述开口分别用于安装进给通道14和将加热装置安装到进给通道内。因此,比如在图1的实施例中示出的源之后,第二源以这样一种方式放置,即,使这个第二源的进给通道在示出的源的进给通道内延伸到反应器,以替代第二加热装置。第二加热装置因而被设置成在图1中那样,但是,当第二加热装置通过第二源的输送装置安装在进给通道内时,第二加热源继续延伸穿过两个源的进给通道。也可以将根据本发明的两个或更多个热源以这样一种方式并联安装,即,使这些源利用同一个延伸到反应器的进给通道。然而,当几个源并联或串联连接时,在所有情况下都需要在源和进给通道中采用这样的温度,即产生的温度梯度在通向反应器的路程中始终逐渐上升。换句话说,比如,当几个源以这样一种方式串联安装时,即,使靠近反应器的源的温度始终高于离反应器较远的源的温度的这种方式安装时这种情况会得以实现。因而,具有不同汽化温度的不同源物质可在不同源中被汽化。因而,具有较高汽化温度的源物质被置放在最靠近反应器的源中。以这种方式,向反应器方向逐步上升的温度梯度要以这样一种方式保证,即汽化源物质在通向反应器的路程中不会在设备的表面上凝结。
按照图1,盖6还可设有过滤器34,当源容器2安装到位时,该过滤器34变成被放置在源空间4的上方。过滤器34的目的是防止粉尘源物质颗粒进入进给通道和进一步进入反应器中。例如,当使用容易形成粉尘的固体源物质时,可将过滤器34安装在源空间4的上部分中,以防止粉尘进入反应器的进给管道系统和穿过该管道系统进到基片的表面上的可能性。这样一种过滤器可以是比如金属丝网、烧结件、或如图1中那样由几块板组装的“迷宫”。后者的运行基于如下想法:为了从源物质的表面行进到进给管道系统中,颗粒必须能够透过具有巨大表面积的曲折结构。该曲折结构中的每块板都具有颗粒必须首先穿过的孔或相应的开口。随后,当气体到达较大空间时,颗粒的速度放慢。因而,颗粒势必附着到这个空间的壁上。当前进到下个空间时,它再次需要通过节流口,以此类推。在实际中,通过迷宫的气流大部分是扩散流,其转移颗粒的能力是不存在的。在脉动期间,主要是“迷宫”上方的空间,如果要求,还有迷宫最上部的空间被排空。形成的开口足够大,以便不造成任何显著的流动阻力,与多种烧结件和丝网解决方案相比,这可以使上部空间在各次脉动之间更迅速地得到填充。相应地,在脉动期间,由负压产生的气流所携带的颗粒和比扩散流携带的颗粒大的颗粒被滤进到结构中。进一步,当采用所谓的加速鼓风状态时,吹入源中的携带气体的粉尘散布效应通过断开流向迷宫的最上部板的气流得以防止。
根据本发明的结构和特别是盖6还可设有安全阀、结晶水排放管道系统、在脉动中要被排空的存储源物质蒸汽的中间空间、及已知的类似特征元件。
图2示出图1的热源的俯视图。按照该图,盖6设有嵌在大块盖内的第一加热装置8。此外,盖6包括用来测量盖和/或安装在盖中的源容器的温度的温度测量装置10。第一加热装置可根据得到的温度测定结果进行调节,以在源容器和源空间内达到适当温度。温度测量装置10也可仅用于观察温度。图2也示出用来在盖6中安装执行器和导管的表面安装装置和表面安装阀12。这些表面安装装置和表面安装阀12优选地被集成到盖6中。定位在外壳24内的源物质进给通道14和围绕的辅助通道20从盖6延伸到图中的右边。前者借助于法兰结构28附装到盖6上。外壳24还包括用来附装到反应器上的法兰26。在与进给通道相对的一侧上设有第二法兰结构32,借助于该第二法兰结构32第二加热装置可附装到盖6上,并且输送装置从该第二法兰结构32起,穿过盖6延伸到进给通道。
尽管在图1和2中和在解释的解决方案中,盖6是安装在源容器上方,但源结构也可成形为,盖6也可安装在源容器的一侧边上或甚至可安装在源容器的下面。借此,源空间在盖6的方向上至少是部分敞开的。源空间例如可以是朝水平方向上的一面敞开,因此盖被安装在这个敞开面上面的源容器的一边上。在本发明中实质的东西是,有可安装在源容器中的盖,该盖的温度高于源容器的温度,并且源物质穿过该盖流入进给通道中,而该进给通道的温度又高于盖的温度。因而,达到向反应器逐步上升的温度梯度,以防止源物质的凝结。
对于本领域的技术人员来说明显的是,随着技术的进步,本发明的基本构想能以多种方式实施。本发明及其实施例因而不限于以上例子,而是在权利要求书的范围内可以变化。

Claims (19)

1.一种设置在用于汽相淀积设备的反应器外部的可加热源,用于将源物质输送到反应器中,所述源(1)包括具有用于源物质的源空间(4)的源容器(2),该源容器(2)能可拆卸地连接到盖(6)上,所述盖(6)具有第一加热装置(8),该第一加热装置用于加热盖(6),使得热量通过传导被传递到源容器(2)并再传递到源空间(4)以加热源物质,其特征在于,盖(6)进一步包括与源空间(4)流体连通的、可加热的进给通道(14),该进给通道(14)以这样方式将源物质从源空间(4)输送到反应器中,即在源容器(2)与反应器之间可达到上升的温度梯度。
2.根据权利要求1所述的热源,其特征在于,第一加热装置(8)包括能可更换地安装在盖(6)中的一个或多个热盒。
3.根据权利要求1所述的热源,其特征在于,第一加热装置(8)包括安装在盖(6)中的一个或多个加热电阻器。
4.根据以上权利要求1至3任一项所述的热源,其特征在于,盖(6)还包括用来测量和调节盖(6)的温度以将源容器(2)和源空间(4)的温度调节到所希望值的温度计(10)。
5.根据以上权利要求1至4任一项所述的热源,其特征在于,盖(6)还包括用来将执行器或进口导管连接到源(1)上的一个或多个表面安装装置和/或表面安装阀(12)。
6.根据以上权利要求1至5任一项所述的热源,其特征在于,盖(6)包括管道系统,通过该管道系统,源物质从源空间(4)可进给到安装在盖(6)中的进给通道(14)并再进给到反应器中。
7.根据权利要求6所述的热源,其特征在于,盖(6)的管道系统的至少部分是通过钻孔或通过另一种机加工方式设置用于盖(6)。
8.根据权利要求6或7所述的热源,其特征在于,进给通道(14)包括用来加热进给通道(14)和在其中流动的物质的第二加热装置(16)。
9.根据以上权利要求6或8任一项所述的热源,其特征在于,进给通道包括用来将源物质输送到反应器中的第一管状通道部分(14),以及在第一通道部分(14)周围安装的、用来输送携带气体或其它处理气体的一个或多个管状辅助通道部分(20)。
10.根据权利要求8所述的热源,其特征在于,第二加热装置(16)以这样一种方式形成细长的,即使第二加热装置可安装在进给通道(14)内。
11.根据权利要求9或10所述的热源,其特征在于,第二加热装置(16)具有设置在其上的保护管(18)。
12.根据以上权利要求8至11中任一项所述的热源,其特征在于,第二加热装置(16)设置成是可以这样一种方式调节的,即借助于第一和第二加热装置(8、16),通过盖(6)和进给通道(14)在源容器(2)与反应器之间可达到上升的温度梯度。
13.根据以上权利要求1至12中任一项所述的热源,其特征在于,源(1)设有用来将源容器(2)附装到盖(6)上和从其上拆下的快速脱扣装置。
14.根据以上权利要求1至13中任一项所述的热源,其特征在于,该热源包括用来串联或并联地连接两个或更多个相应的热源(1)的连接装置。
15.根据以上权利要求1至14中任一项所述的热源,其特征在于,源容器(2)设有用于光学观察源物质的量和状态的窗口或类似透明部分。
16.根据以上权利要求1至15中任一项所述的热源,其特征在于,源容器(2)由铝或导热良好的其它材料制造。
17.根据以上权利要求1至16中任一项所述的热源,其特征在于,盖(6)由铝或不锈钢和铝的合金制造。
18.根据以上权利要求1至17中任一项所述的热源,其特征在于,该热源还包括用来防止颗粒从源空间进入进给通道和进一步进给到反应器中的过滤器(34)。
19.根据权利要求18所述的热源,其特征在于,过滤器(34)包括迷宫结构,气体被布置成流过该迷宫结构。
CN2007800187675A 2006-04-28 2007-04-26 热源 Active CN101448972B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20065275A FI121430B (fi) 2006-04-28 2006-04-28 Kuuma lähde
FI20065275 2006-04-28
PCT/FI2007/050232 WO2007125174A1 (en) 2006-04-28 2007-04-26 Hot source

Publications (2)

Publication Number Publication Date
CN101448972A true CN101448972A (zh) 2009-06-03
CN101448972B CN101448972B (zh) 2011-11-16

Family

ID=36293869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800187675A Active CN101448972B (zh) 2006-04-28 2007-04-26 热源

Country Status (7)

Country Link
US (1) US20090078203A1 (zh)
EP (1) EP2013377A1 (zh)
JP (1) JP5053364B2 (zh)
CN (1) CN101448972B (zh)
FI (1) FI121430B (zh)
RU (1) RU2439196C2 (zh)
WO (1) WO2007125174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044626A (zh) * 2021-12-10 2022-02-15 中国电子科技集团公司第四十六研究所 一种基于fcvd的光纤预制棒稀土汽相掺杂方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065998A1 (en) * 2008-12-18 2011-06-03 Veeco Instruments Inc. Linear deposition source
US9598766B2 (en) 2012-05-27 2017-03-21 Air Products And Chemicals, Inc. Vessel with filter

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047202B2 (ja) * 1976-01-13 1985-10-21 東北大学金属材料研究所長 超硬高純度の配向多結晶質窒化珪素
JPS59156996A (ja) * 1983-02-23 1984-09-06 Koito Mfg Co Ltd 化合物結晶膜の製造方法とその装置
US4854264A (en) * 1986-12-10 1989-08-08 Fuji Seiki Inc. Vacuum evaporating apparatus
US5186120A (en) * 1989-03-22 1993-02-16 Mitsubishi Denki Kabushiki Kaisha Mixture thin film forming apparatus
US5204314A (en) * 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor
JP2000252269A (ja) * 1992-09-21 2000-09-14 Mitsubishi Electric Corp 液体気化装置及び液体気化方法
US6051276A (en) * 1997-03-14 2000-04-18 Alpha Metals, Inc. Internally heated pyrolysis zone
JPH11236673A (ja) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp 化学気相成長装置
US6210485B1 (en) * 1998-07-21 2001-04-03 Applied Materials, Inc. Chemical vapor deposition vaporizer
US6454860B2 (en) * 1998-10-27 2002-09-24 Applied Materials, Inc. Deposition reactor having vaporizing, mixing and cleaning capabilities
US6228175B1 (en) * 1999-09-30 2001-05-08 Kent Ridgeway Apparatus for generating a wet oxygen stream for a semiconductor processing furnace
FI118805B (fi) * 2000-05-15 2008-03-31 Asm Int Menetelmä ja kokoonpano kaasufaasireaktantin syöttämiseksi reaktiokammioon
US20030111014A1 (en) * 2001-12-18 2003-06-19 Donatucci Matthew B. Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds
JP3778851B2 (ja) * 2001-12-25 2006-05-24 Smc株式会社 ヒーター付きポペット弁
US6749906B2 (en) * 2002-04-25 2004-06-15 Eastman Kodak Company Thermal physical vapor deposition apparatus with detachable vapor source(s) and method
US7077388B2 (en) * 2002-07-19 2006-07-18 Asm America, Inc. Bubbler for substrate processing
KR100889758B1 (ko) * 2002-09-03 2009-03-20 삼성모바일디스플레이주식회사 유기박막 형성장치의 가열용기
KR101137901B1 (ko) * 2003-05-16 2012-05-02 에스브이티 어소시에이츠, 인코포레이티드 박막 증착 증발기
KR20050004379A (ko) * 2003-07-02 2005-01-12 삼성전자주식회사 원자층 증착용 가스 공급 장치
US6837939B1 (en) * 2003-07-22 2005-01-04 Eastman Kodak Company Thermal physical vapor deposition source using pellets of organic material for making OLED displays
US20050022743A1 (en) * 2003-07-31 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Evaporation container and vapor deposition apparatus
US7261118B2 (en) * 2003-08-19 2007-08-28 Air Products And Chemicals, Inc. Method and vessel for the delivery of precursor materials
US6924350B2 (en) * 2003-08-26 2005-08-02 General Electric Company Method of separating a polymer from a solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044626A (zh) * 2021-12-10 2022-02-15 中国电子科技集团公司第四十六研究所 一种基于fcvd的光纤预制棒稀土汽相掺杂方法
CN114044626B (zh) * 2021-12-10 2023-05-02 中国电子科技集团公司第四十六研究所 一种基于fcvd的光纤预制棒稀土汽相掺杂方法

Also Published As

Publication number Publication date
WO2007125174A1 (en) 2007-11-08
FI20065275A0 (fi) 2006-04-28
CN101448972B (zh) 2011-11-16
US20090078203A1 (en) 2009-03-26
JP5053364B2 (ja) 2012-10-17
JP2009535502A (ja) 2009-10-01
RU2439196C2 (ru) 2012-01-10
EP2013377A1 (en) 2009-01-14
FI121430B (fi) 2010-11-15
FI20065275A (fi) 2007-10-29
RU2008146103A (ru) 2010-06-10

Similar Documents

Publication Publication Date Title
CN101960564B (zh) 用于安瓿的加热阀歧管
US8297223B2 (en) Method and apparatus for particle filtration and enhancing tool performance in film deposition
US20080057218A1 (en) Method and apparatus to help promote contact of gas with vaporized material
CN101437979A (zh) 具有扩散器板和注入器组件的批处理腔
CN101448972B (zh) 热源
NO843147L (no) Kjemisk paadampingsapparat
CN1405340A (zh) 金属熔液蒸馏装置
US6199599B1 (en) Chemical delivery system having purge system utilizing multiple purge techniques
US8404013B2 (en) Fuel gas conditioning system with cross heat exchanger
US7867312B2 (en) Trap device
JP3375050B2 (ja) 廃硫酸連続精製装置及び精製方法
CN101905126B (zh) 有助于增进气体与汽化材料接触的方法和装置
EP3056588B1 (en) Isothermal warm wall cvd reactor
WO2010092471A2 (en) Method and device for coating planar substrates with chalcogens
US8177888B2 (en) Fuel gas conditioning system
WO1999064780A9 (en) Chemical delivery system having purge system utilizing multiple purge techniques
TW201219104A (en) Process for condensation of chalcogen vapour and apparatus to carry out the process
JP2000319095A (ja) トリクロロシランガス気化供給装置及び方法
CN219079643U (zh) 一种蒸发装置及镀膜设备
CN217612957U (zh) 高熔点化合物蒸馏装置
KR101490438B1 (ko) 증착장비의 기화기
WO2006100431A1 (en) Trap device
JP3862821B2 (ja) 熱交換器
JP2006002174A (ja) 基板処理装置
JPH1137667A (ja) 熱交換器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230509

Address after: Room 205-5-7, 2nd Floor, East Office Building, No. 45 Beijing Road, Qianwan Bonded Port Area, Qingdao, Shandong Province, China (Shandong) Pilot Free Trade Zone (A)

Patentee after: QINGDAO SIFANG SRI INTELLIGENT TECHNOLOGY Co.,Ltd.

Address before: Finland Vantaa

Patentee before: BENEQ OY

TR01 Transfer of patent right