CN101427381B - 含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件 - Google Patents

含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件 Download PDF

Info

Publication number
CN101427381B
CN101427381B CN2007800142797A CN200780014279A CN101427381B CN 101427381 B CN101427381 B CN 101427381B CN 2007800142797 A CN2007800142797 A CN 2007800142797A CN 200780014279 A CN200780014279 A CN 200780014279A CN 101427381 B CN101427381 B CN 101427381B
Authority
CN
China
Prior art keywords
layer
bases
acetenyl
silicyl
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800142797A
Other languages
English (en)
Other versions
CN101427381A (zh
Inventor
朱培旺
丹尼斯·E·沃格尔
李子成
克里斯托弗·P·格拉赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN101427381A publication Critical patent/CN101427381A/zh
Application granted granted Critical
Publication of CN101427381B publication Critical patent/CN101427381B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

描述了包含并苯-噻吩共聚物的电子器件和制造这种电子器件的方法。更具体地讲,所述并苯-噻吩共聚物具有连接的甲硅烷基乙炔基基团。所述共聚物可用于(例如)半导体层中或布置在第一电极和第二电极之间的层中。

Description

含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件
技术领域
描述了包含具有甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件和制造电子器件的方法。
背景技术
传统上,无机材料已在电子器件行业占主导地位。例如,砷化硅和砷化镓已被用作半导体材料,二氧化硅已被用作绝缘体材料,而诸如铝和铜之类的金属已被用作电极材料。然而,近年来,已经有越来越多的研究投入着眼于在电子器件中使用有机材料而不是传统的无机材料。其中一些有益效果是,使用有机材料可以使得能以较低的成本制造电子器件,可以使得能大面积应用,并且可以使得能将柔性电路支承体用于显示器底板和集成电路。
已经考虑了多种有机半导体材料,最常见的是稠合芳环化合物,例如小分子如含并五苯的化合物、含并四苯的化合物、含蒽的化合物、二(并苯基)乙炔化合物以及并苯-噻吩化合物。也已考虑了几种聚合材料,例如区域规则的(regioregular)聚噻吩,其示例性例子是聚(3-烷基噻吩)和具有稠合噻吩单元或二噻吩单元的聚合物。然而,至少一些聚合物趋于经历氧化,这会导致电子器件性能降低。
发明内容
描述了电子器件和制造电子器件的方法。更具体地讲,该电子器件包含具有连接的甲硅烷基乙炔基基团的并苯-噻吩共聚物。该共聚物可用于(例如)半导体层或用于设置在第一电极和第二电极之间的层。
在一个方面,提供了包含化学式I的并苯-噻吩共聚物的电子器件。
Figure G2007800142797D00021
并苯-噻吩共聚物具有连接的甲硅烷基乙炔基基团。在化学式I中,Ac是具有2至5个稠合苯环的并苯基。Ac基团可以任选由选自烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合的取代基取代。各Ra独立地选自氢、烷基、烷氧基、链烯基、芳基、杂芳基、芳烷基、杂芳烷基、杂烷基或羟烷基。Q是化学式II、III、IV或V的二价基团。
Figure G2007800142797D00022
在化学式II至V中的各R1和R2独立地选自氢、烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基或链烯基。下标n是大于或等于4的整数。星号指示与另一个基团连接的位置,该基团是例如另一个化学式-Ac(E)2-Q-重复单元,其中各个E是化学式-C≡C-Si(Ra)3
在另一方面,提供了制造电子器件的方法。该方法包括提供包含化学式I的并苯-噻吩共聚物的层。
本发明的上述概述并非意图描述本发明每个公开的实施例或每种实施方式。随后的具体实施方式和实例更具体地举例说明了这些实施例。
附图说明
考虑到本发明的各种实施例的下面详细描述并结合附图,可更完全地理解本发明,其中:
图1是第一示例性有机薄膜晶体管的示意图。
图2是第二示例性有机薄膜晶体管的示意图。
图3是第三示例性有机薄膜晶体管的示意图。
图4是第四示例性有机薄膜晶体管的示意图。
图5是第五示例性有机薄膜晶体管的示意图。
图6是第六示例性有机薄膜晶体管的示意图。
图7A至7D是多个示例性有机发光二极管的示意图。
图8是示例性光伏电池的示意图。
附图无意于暗示任一层的某一厚度或暗示多个层的某一相对厚度。
虽然本发明可进行多种修改形式和替代形式,但其具体形式已在附图中通过举例的方式示出并且将详细描述。然而,应当理解,本发明不受所述具体实施例的限制。相反地,其目的在于涵盖落入本发明精神和范围内的所有修改形式、等同形式以及替代形式。
具体实施方式
本发明提供含有具有连接的甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件。共聚物可存在于(例如)邻近介电层、导电层或它们的组合的层中。更具体地讲,共聚物可用作电子器件(例如有机薄膜晶体管)中的半导体材料或可以设置在电子器件(例如有机光伏电池或有机电致发光器件)中的两个电极之间。
本发明还提供制造含有具有甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件的方法。该方法包括提供含有具有甲硅烷基乙炔基基团的并苯-噻吩共聚物的层。提供该层通常涉及制备含有溶解在溶剂中的该共聚物的涂层溶液,在表面上由涂层溶液形成溶液层,以及从溶液层除去至少一些溶剂。含有共聚物的层通常在电子器件的基底表面上或在另一层表面上形成。
如本文所用,术语“一”、“一个”和“该”与“至少一种”可互换使用,指一种或多种被描述的要素。
“并苯”是指具有至少2个直线排列的稠合苯环的多环芳香烃基团,如下列化学式所示的,其中m是等于或大于零的整数。
Figure G2007800142797D00041
并苯通常选自萘、蒽、并四苯或并五苯。
术语“并苯-噻吩共聚物”、“具有连接的甲硅烷基乙炔基基团的并苯-噻吩共聚物”以及“具有甲硅烷基乙炔基基团的并苯-噻吩共聚物”可互换使用,指化学式I的共聚物。
“烷基”指作为烷烃的基的一价基团,该烷烃为饱和烃。烷基可以是直链的、支链的、环状或它们的组合,并且通常含有1至30个碳原子。在一些实施例中,烷基含有4至30个碳原子、1至20个碳原子、4至20个碳原子、1至14个碳原子个碳原子、1至10个碳原子、4至10个碳原子、4至8个碳原子、1至8个碳原子、1至6个碳原子或1至4个碳原子。烷基的例子包括(但不限于)甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、正戊基、正己基、环己基、正辛基、正庚基以及乙基己基。
“链烯基”指作为烯烃的基的一价基团,该烯烃是具有至少一个碳-碳双键的烃。链烯基可以是直链的、支链的、环状或它们的组合,并且通常含有2至30个碳原子。在一些实施例中,链烯基含有2至20个碳原子、2至14个碳原子、2至10个碳原子、4至10个碳原子、4至8个碳原子、2至8个碳原子、2至6个碳原子或2至4个碳原子。示例性的链烯基包括乙烯基、丙烯基和丁烯基。
“炔基”指作为炔烃的基的一价基团,该炔烃是含有至少一个碳-碳三键的烃。炔基可以是直链的、支链的、环状或它们的组合,并且通常含有2至30个碳原子。在一些实施例中,炔基含有2至20个碳原子、2至14个碳原子、2至10个碳原子、4至10个碳原子、4至8个碳原子、2至8个碳原子、2至6个碳原子或2至4个碳原子。示例性的炔基包括乙炔基、丙炔基和丁炔基。一些炔基例如乙炔基可进一步由甲硅烷基取代。
“烷氧基”指化学式OR的一价基团,其中R是烷基。例子包括(但不限于):甲氧基、乙氧基、丙氧基和丁氧基。
“芳基”指作为芳族碳环化合物的基的一价基团。芳基可以具有一个芳环,或可以包括连接到或稠合到芳环的最多5个碳环结构。其它环结构可为芳族的、非芳族的或其组合。芳基的例子包括(但不限于):苯基、联苯基、三联苯基、蒽基、萘基、苊基、蒽醌基、菲基、蒽基、芘基、苝基和芴基。
“芳烷基”指芳基取代的烷基。
“卤素”是指卤素基团(即-F、-Cl、-Br或-I)。
“芳烷基”指芳基取代的烷基。
“羟烷基”是指一个或多个羟基取代的烷基。
“杂烷基”是指硫代、氧代、用其中Rb是氢或烷基或芳基的化学式-NRb-基团取代、用其中R为烷基的化学式-SiR2-基团取代的具有一个或多个-CH2-基团的烷基。杂烷基可以是直链的、支链的、环状的或它们的组合,并且可含有最多30个碳原子和最多20个杂原子。在一些实施例中,杂烷基包含最多25个碳原子、最多20个碳原子、最多15个碳原子或最多10个碳原子。硫代烷基和烷氧基是杂烷基的子集。
“杂芳基”指具有5至7元芳环的一价基,所述芳环在环中包括独立选自于S、O、N或它们的组合的一个或多个杂原子。这种杂芳基环可以被连接到或稠合到最多5个环结构上,所述环结构是芳族的、脂族的或其组合。杂芳基的例子包括(但不限于)呋喃基、苯硫基、吡咯基、咪唑基、吡唑基、三唑基、四唑基、噻唑基、噁唑基、异噁唑基、噁二唑基、噻二唑基、异噻唑基、吡啶基、哒嗪基、吡嗪基、嘧啶基、喹啉基、异喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并噁唑基、苯并噻唑基、苯并咪唑基、噌啉基、喹唑啉基、喹噁啉基、酞嗪基、苯并噻二唑基、苯并三嗪基、吩嗪基、菲啶基、吖啶基以及吲唑基等。
“杂芳烷基”指杂芳基取代的烷基。
“甲硅烷基乙炔基”是指化学式-C≡C-Si(Ra)3的一价基团,其中各Ra独立地选自氢、烷基、烷氧基、链烯基、杂烷基、羟烷基、芳基、芳烷基、杂芳基或杂芳烷基。这些基团有时被称作硅烷基乙炔基(silanylethynyl)基团。
“硫代烷基”指化学式-SR的一价基团,其中R是烷基。
提供了含有化学式I的并苯-噻吩共聚物的电子器件。
Figure G2007800142797D00071
并苯-噻吩共聚物具有连接的甲硅烷基乙炔基基团。在化学式I中,Ac是具有2至5个稠合苯环的并苯基。Ac基团可以任选地由选自烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合的取代基取代。各Ra独立地选自氢、烷基、烷氧基、链烯基、芳基、杂芳基、芳烷基、杂芳烷基、杂烷基或羟烷基。二价基团Q具有化学式II、III、IV或V。
Figure G2007800142797D00072
化学式II至V中各个R1和R2独立地选自氢、烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基或链烯基。下标n是大于或等于4的整数。星号表明连接到另一基团的位置,该另一基团是例如化学式-Ac(E)2-Q-的另一重复单元,其中各E的化学式为-C≡C-Si(Ra)3
Ac基团是并苯基。并苯可以具有以直线方式排列的2至5个稠合的芳环结构(即萘、蒽、并四苯或并五苯)。适合的并苯通常选自萘、蒽或并五苯。并苯通常被给出编号序列,其中仅为一个环的成员的各个碳原子被编号。在下列物质的结构中示出了示例性的并苯-二基(即并苯的二价基)的多个位置:亚萘基-2,6-二基,
Figure G2007800142797D00081
蒽-2,6-二基,
Figure G2007800142797D00082
以及并五苯-2,9-二基。
Figure G2007800142797D00083
各个Ac基团具有两个共价连接的化学式-C≡C-Si(Ra)3的甲硅烷基乙炔基基团。当Ac基团衍生自萘时,这两个甲硅烷基乙炔基基团通常连接到同一个芳环上。当Ac基团衍生自蒽或并五苯时,这两个甲硅烷基乙炔基基团均可连接到同一个内芳环或一个甲硅烷基乙炔基基团可连接到各个外芳环。如本文所用,术语“内芳环”是指并苯的稠合到两个其它芳环上的芳环。例如,包含9号和10号位置的环称为基于蒽的Ac基团的内芳环。如本文所用,术语“外芳环”是指并苯的稠合到仅一个芳环的芳环。例如,包含1号、2号、3号和4号位置的环和包含5号、6号、7号和8号位置的环称为基于蒽的Ac基团的外芳环。
在许多实施例中,甲硅烷基乙炔基基团优选连接到Ac基团的内环上。例如,如果Ac基团衍生自蒽,则甲硅烷基乙炔基基团优选连接在9号和10号位置处。用于制备共聚物的并苯前体的稳定性通常可以通过将甲硅烷基乙炔基基团连接到Ac基团的内芳环上加以改善。如果具有多个内芳环,甲硅烷基乙炔基基团连接到最内环(例如在衍生自并五苯的Ac基团的6号和13号位置处),这样可以导致并苯前体具有最大稳定性。如本文所用,稳定性指抗氧化性和/或二聚作用。
各甲硅烷基乙炔基基团具有化学式-C≡C-Si-(Ra)3,其中各Ra独立地为氢、烷基、烷氧基、链烯基、杂烷基、羟烷基、芳基、杂芳基、芳烷基或杂芳烷基。示例性的烷基、烷氧基、链烯基、杂烷基、羟烷基可以是直链的、支链的、环状的或它们的组合,并且通常具有最多10个碳原子、最多8个碳原子、最多6个碳原子或最多4个碳原子。示例性的芳基是苯基,示例性的芳烷基是苯基取代的具有最多10个碳原子的烷基。示例性的杂芳基基团通常具有包含1个或2个杂原子的5元或6元不饱和的杂环,示例性的杂芳烷基是由具有1个或2个杂原子的5元或6元杂芳基取代的具有最多10个碳原子的烷基。
在更具体的例子中,各个Ra是具有最多10个碳原子、最多8个碳原子或最多6个碳原子的烷基。也就是说,甲硅烷基乙炔基基团是三烷基甲硅烷基乙炔基基团。各个烷基通常有至少1个碳原子、至少2个碳原子或至少3个碳原子。例如,在一些化学式I的共聚物中,甲硅烷基乙炔基基团是三异丙基甲硅烷基乙炔基,其中Ra是异丙基。
除了这两个甲硅烷基乙炔基基团外,Ac基团可以任选由选自烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合物的取代基取代。当指Ac取代基时,术语“它们的组合”可以指在Ac基团上的多个取代基或者指进一步由第二取代基取代的第一取代基。至少在一些实施例中,一个或多个取代基的添加可以增加化学式I的共聚物在有机溶剂中的溶解度或可以改善共聚物与多种涂层组合物的相容性。
基团Q可以连接到缺少连接的甲硅烷基乙炔基基团的Ac的任何位置。化学式I的并苯-噻吩共聚物缺少双噻吩或聚噻吩基团。也就是说,任何两个Ac(E)2基团由选自化学式II至V的单个基团的基团Q隔开。共聚物在整个共聚物长度上通常是共轭的。在共聚物中化学式-Ac(E)2-Q-的两个重复单元之间通常没有可以中断共聚物主链上的共轭双键的间隔基团。
在许多实施例中,Q连接到Ac的外芳环上。例如,基团Q可以连接到基于萘或蒽的Ac基团的1、2、3、4、5、6、7或8号位置处,而可以连接到基于并五苯的Ac基团的1、2、3、4、8、9、10或11号位置处。当Q连接到Ac的外芳环上并且Ac基团衍生自蒽或并五苯时,这两个甲硅烷基乙炔基基团通常连接到Ac的内芳环,并且优选连接到同一内芳环上。
在其它实施例中,Q连接到Ac的内芳环上。例如,基团Q可以在基于蒽的Ac基团的9或10号位置处连接,或在基于并五苯的Ac基团的5、6、7、12、13或14号位置处连接。当Q连接到Ac基团的内芳环上时,这两个甲硅烷基乙炔基基团通常连接到Ac基团的外芳环上。例如,一个甲硅烷基乙炔基基团可以位于衍生自蒽或并五苯的Ac基团的每个外芳环上。
除了连接到基团Q和两个甲硅烷基乙炔基基团上外,Ac基团还可以连接到第四基团,例如该共聚物的端基或另一个重复的化学式-Ac(E)2-Q-单元,其中E指甲硅烷基乙炔基基团(即所得的共聚物材料的下标n等于至少5)。如果化学式I中的基团Q连接到Ac基团的内芳环,则第四基团通常连接到同一内芳环上。如果基团Q连接到Ac基团的外芳环上,则第四基团通常连接到相对的外芳环上。也就是说,基团Q和第四基团通常连接到Ac基团的相对的远端,同时两个甲硅烷基乙炔基基团连接到Ac基团的内芳环上。
示例性的Ac(E)2基团包括(但不限于):1,4-二(甲硅烷基乙炔基)萘-2,6-二基、1,4-二(甲硅烷基乙炔基)萘-2,7-二基、9,10-二(甲硅烷基乙炔基)蒽-2,6-二基、9,10-二(甲硅烷基乙炔基)蒽-2,7-二基、2,6-二(甲硅烷基乙炔基)蒽-9,10-二基、2,7-二(甲硅烷基乙炔基)蒽-9,10-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,9-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,10-二基、2,9-二(甲硅烷基乙炔基)并五苯-6,13-二基或2,10-二(甲硅烷基乙炔基)并五苯-6,13-二基。这些基团中的任何基团可以任选具有由烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合取代的Ac基团。在术语“二基”前面的位置号表明Q基团和第四个基团连接到Ac基团处的碳原子。
一些更具体的Ac(E)2基团的实例包括(但不限于):1,4-二(三烷基甲硅烷基乙炔基)萘-2,6-二基、1,4-二(三烷基甲硅烷基乙炔基)萘-2,7-二基、9,10-二(三烷基甲硅烷基乙炔基)蒽-2,6-二基、9,10-二(三烷基甲硅烷基乙炔基)蒽-2,7-二基、2,6-二(三烷基甲硅烷基乙炔基)蒽-9,10-二基、2,7-二(三烷基甲硅烷基乙炔基)蒽-9,10-二基、6,13-二(三烷基甲硅烷基乙炔基)并五苯-2,9-二基、6,13-二(三烷基甲硅烷基乙炔基)并五苯-2,10-二基、2,9-二(三烷基甲硅烷基乙炔基)并五苯-6,13-二基或2,10-二(三烷基甲硅烷基乙炔基)并五苯-6,13-二基。这些基团中的任何基团可以任选具有由烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合取代的Ac基团。在术语“二基”前面的位置号表明Q基团和第四个基团连接到Ac基团处的碳原子。
在一些应用中,例如其中共聚物充当半导体材料的应用中,可能期望选择在线性方向(即沿着共聚物主链方向)上具有伸展的共轭长度的Ac基团。这类共聚物趋于以类似叠堆结构的形式彼此很好地对齐。也就是说,在一些应用中,优选的是如果有内芳环的话,Q基团连接到并苯基的外芳环上,同时两个甲硅烷基乙炔基基团连接到内芳环上。示例性的Ac(E)2基团包括(但不限于):1,4-二(甲硅烷基乙炔基)萘-2,6-二基例如1,4-二(三烷基甲硅烷基乙炔基)萘-2,6-二基、9,10-二(甲硅烷基乙炔基)蒽-2,6-二基例如9,10-二(三烷基甲硅烷基乙炔基)蒽-2,6-二基或6,13-二(甲硅烷基乙炔基)并五苯-2,9-二基例如6,13-二(三烷基甲硅烷基乙炔基)并五苯-2,9-二基。这些基团中的任何基团可以任选具有由烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合来取代的Ac基团。
基团Q选自上述的化学式II至V。这些化学式中的各个基团R1和R2独立地选自氢、烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合。当指基团R1和R2时,术语“它们的组合”指由另一基团进一步取代的第一基团。
在基团Q的一些实施例中,存在至少一个R1基团或R2基团,所述R1基团或R2基团含有至少4个碳原子,例如4至30个碳原子、4至20个碳原子、4至16个碳原子或4至10个碳原子。更具体地讲,存在至少一个R1基团或R2基团,所述R1基团或R2基团选自具有至少4个碳原子的烷基、具有至少4个碳原子的烷氧基、具有至少4个碳原子的硫代烷基、具有至少6个碳原子的芳基、具有至少10个碳原子的芳烷基、具有至少4个碳原子的卤代烷基、具有至少4个碳原子的羟烷基、具有至少4个碳原子的杂烷基、具有至少4个碳原子的链烯基或它们的组合。选择至少一个这样的基团通常可以增加化学式I的共聚物在普通有机溶剂中的溶解度,或者通常可以改善并苯-噻吩共聚物与多种涂层组合物的相容性。
一些示例性共聚物具有相同的R1和R2基团,该R1和R2基团选自具有至少4个碳原子的烷基、具有至少4个碳原子的烷氧基、具有至少4个碳原子的硫代烷基、具有至少6个碳原子的芳基、具有至少10个碳原子的芳烷基、具有至少4个碳原子的卤代烷基、具有至少4个碳原子的羟烷基、具有至少4个碳原子的杂烷基、具有至少4个碳原子的链烯基或它们的组合。
化学式I的共聚物可利用Suzuki偶联反应(例如反应方案A中所示)来制备。
反应方案A
Figure G2007800142797D00131
开始时将具有两个连接的甲硅烷基乙炔基基团的二卤代并苯(即,Ac代表并苯基团,-E代表化学式-C≡C-Si(Ra)3的基团,X代表卤素)与诸如二(频哪醇合)二硼之类的二杂氧戊硼烷(dioxaborolane)反应以形成具有两个二杂氧戊硼烷基团的并苯化合物(如四甲基二杂氧戊硼烷)。然后将所得的并苯化合物与二卤代噻吩化合物(即X-Q-X)反应以形成化学式I的共聚物。第二个反应中卤素基团可以与第一个反应中的卤素基团相同或不同。这两个反应均通常在钯催化剂存在下发生反应,所述的钯催化剂是例如[1,1’-二(二苯膦)二茂铁]二氯化钯和四(三苯基)膦)化钯(0)。作为反应方案A的替代方案,开始将二卤代噻吩化合物与二杂氧戊硼烷反应,然后利用Suzuki偶联反应与具有两个甲硅烷基乙炔基基团的二卤代并苯发生反应。Ito等人的文章(Angew,Chem.,Int.(编辑),42,1159-1162(2003))和其中引用的支持信息中进一步描述了Suzuki偶联反应。
Stille偶联反应也可以用来合成化学式I的共聚物,如反应方案B所示。
反应方案B
Figure G2007800142797D00141
可以将噻吩化合物锂化,然后与三烷基锡酸盐例如氯化三丁基锡反应,形成由两个三烷基锡酸盐基团取代的噻吩化合物。然后所得的噻吩化合物可以在存在钯催化剂的情况下与具有两个连接的甲硅烷基乙炔基基团的二卤代并苯反应。作为反应方案B的替代方案,可以将具有两个连接的甲硅烷基乙炔基基团的并苯锂化,然后与三烷基锡酸盐反应,形成由两个三烷基锡酸盐基团取代的并苯。然后可以将所得的并苯化合物在钯催化剂存在的情况下与二卤代噻吩反应。米勒等人的文章(J.Org.Chem.,60,6813-6819(1995))和凯茨等人的文章(Chem.Res.,34,359-369(2001))中进一步描述了Stille偶联反应。
具有两个甲硅烷基乙炔基基团的二卤代并苯可由二卤代并苯合成,如实施例部分所示或如反应方案C所示。例如,1,4-二(甲硅烷基乙炔基)-2,6-二卤代萘的合成可以始于2,6-二卤代萘,例如2,6-二氯代萘,其可从Apin Chemicals有限公司(Oxfordshire,UK)商购获得。
反应方案C
Figure G2007800142797D00142
Figure G2007800142797D00151
可以将2,6-二卤代萘氧化成2,6-二卤代萘醌。通过形成锂化形式的甲硅烷基乙炔化合物,然后与2,6-二卤代萘醌反应,可以加入甲硅烷基乙炔基基团。多种甲硅烷基乙炔化合物是市售的。例如,(三甲基甲硅烷基)乙炔、(三乙基甲硅烷基)乙炔、(三异丙基甲硅烷基)乙炔和(叔-丁基二甲基甲硅烷基)乙炔可得自GFS Chemicals公司(Columbus,OH)。(二甲基苯基甲硅烷基)乙炔、(甲基二苯基甲硅烷基)乙炔以及(三苯基甲硅烷基)乙炔可得自Aldrich Chemical公司(Milwaukee,WI)。然后所得的二醇产物可以通过与诸如氯化亚锡之类的还原剂反应而转化为相应的芳族化合物。
在2、9号位置或2、10号位置卤素基团的二卤代并五苯可以按照反应方案D所示进行合成。在惰性溶剂中或以卤代苯作为溶剂时,在典型的Friedel-Crafts条件下(如AlCl3,其为一种强路易斯酸),卤代苯和均苯四酸二酐反应在加热时产生两种异构的二(卤代苯甲酰基)邻苯二甲酸A和B。这些异构体可以通过分步重结晶、色谱法或通过溶解度差异进行分离。单个二(卤代苯甲酰基)邻苯二甲酸A和B的进一步反应分别进行,首先使用三氟甲磺酸环化为相应的四酮C和D,随后将所得的C和D用硼氢化钠和氯化亚锡还原为期望的并五苯E和F。下面的R3基团为氢或取代基。
反应方案D
Figure G2007800142797D00161
可以使用类似于反应方案C中所示的方法将所得的二卤代并五苯反应而连接两个甲硅烷基乙炔基基团。氧化化合物E和F将分别产生相应的苯醌G和H。然后,这些化合物转化成具有连接在并五苯的6和13号位置的甲硅烷基乙炔基基团的衍生物。
Figure G2007800142797D00171
化学式IIa的二溴噻吩化合物
Figure G2007800142797D00172
可由相应的噻吩化合物溴化来制备。也就是说,可以将相应的噻吩与溴化剂(例如N-溴代琥珀酰亚胺(NBS))反应。例如,通过使3,4-二卤噻吩与2摩尔含有所需烷基的格氏试剂反应,并随后进行溴化反应可以制备R1和R2等于烷基的化学式IIa的化合物。此方法在Vidal等人的文章(Chem.Eur.J.,6,1663-1673(2000))中进一步描述。
化学式IIIa的二卤代噻吩并[3,2-b]噻吩。
Figure G2007800142797D00181
可由相应的噻吩并[3,2-b]噻吩溴化来制备。一些噻吩并[3,2-b]噻吩可从Maybridge公司(Cornwall,UK)商购获得。3,6-二甲基噻吩并[3,2-b]噻吩可得自Synchem OHG公司(Kassel,Germany),2,5-二溴噻吩并[3,2-b]噻吩可得自Aldrich公司(Milwaukee,WI)。
其它噻吩并[3,2-b]噻吩可按张等人的文章(Macromolecules,37,6306-6315(2004))所描述的进行合成。
化学式IVa的二卤代噻吩并[2,3-b]噻吩
Figure G2007800142797D00182
可通过溴化相应的噻吩并[3,2-b]噻吩来制备。3,4-二甲基噻吩并[2,3-b]噻吩可从Alfa Aesar Johnson Mathey公司(Ward Hill,MA)商购获得。其它取代的噻吩并[2,3-b]噻吩可采用与Comel等人的文章(Journal of Heterocyclic Chemistry,38,1167-1171(2001))中所描述的反应类似的反应来制备。
同样,化学式Va的二卤代乙撑二氧噻吩化合物。
Figure G2007800142797D00191
可通过溴化相应的乙撑二氧噻吩来制备。相应的乙撑二氧噻吩可以(例如)通过将市售的3,4-二甲氧基噻吩与偕二醇如2,3-丁二醇、1,2-丙二醇等在存在酸催化剂(例如对甲苯磺酸)的情况下进行转酯环化缩合反应来制备。然后,可将所得的3,4-二取代噻吩在2和5号位置用N-溴代琥珀酰亚胺或其它合适的溴化剂二溴化。此方法在Nielson等的文章(Macromolecules,38,10379(2005))中进一步描述。
化学式I的共聚物通常具有至少5,000克/摩尔的重均分子量。在一些实施例中,重均分子量为至少7,000克/摩尔、至少8,000克/摩尔、至少10,000克/摩尔、至少12,000克/摩尔或至少15,000克/摩尔。重均分子量可以使用凝胶渗透色谱法进行测定。
如果需要,共聚物材料的纯度可以利用本领域内已知的技术来增加,例如附加的沉淀步骤和索氏提取法(Soxhlet extraction)。
电子器件中含有化学式I的并苯-噻吩共聚物的层通常用溶剂型组合物制备。也就是说,至少一些化学式I的并苯-噻吩共聚物可溶于溶剂。适于化学式I的共聚物溶解的溶剂包括(但不限于)诸如甲苯、苯以及二甲苯之类的芳族溶剂;诸如四氢呋喃和二噁烷之类的醚;诸如甲基异丁基酮和甲基乙基酮之类的酮;诸如氯仿、二氯甲烷、氯苯以及二氯苯之类的氯化了的溶剂;诸如环己烷和庚烷之类的烷烃;以及诸如N,N-二甲基甲酰胺和1-甲基吡咯烷酮之类的酰胺。如本文所用,术语“可溶的”指所述共聚物可溶解于溶剂以提供包含按溶液重量计至少0.05重量%的共聚物的溶液。基于溶液的重量而言,一些共聚物具有至少0.05重量%、至少0.1重量%、至少0.2重量%、至少0.5重量%、至少1重量%、至少2重量%、至少3重量%或至少5重量%的溶解度。
含有并苯-噻吩共聚物和溶剂的组合物可用于提供涂层。可通过将组合物施加到表面(例如施加到电子器件中的基底表面或另一层的表面)来形成涂层。涂层可以利用任何合适的涂敷技术进行施加,例如,喷涂、旋涂、浸涂、刮涂、凹版式涂布、喷墨印刷以及转移印花。通过在环境条件(例如在约20℃至约25℃)下蒸发或通过在高温(例如最多约80℃、最多约100℃、最多约120℃、最多约150℃或最多约200℃的温度)下干燥,可以在施加后将溶剂从涂层移除。
在制备电子器件的一些示例性方法中,方法涉及提供选自介电层、导电层或基底的第一层,和设置邻近该第一层的含有化学式I的并苯-噻吩共聚物的层。制备或提供的具体次序不是必须的;但是,含有并苯-噻吩共聚物的层通常在诸如介电层、导电层或基底之类的另一层的表面上制备。导电层可包括(例如)源极和漏极、阳极或阴极。
如本文所用,术语“被设置”、“设置”、“被沉积”、“沉积”以及“邻近”不排除在所述层之间存在另一层或多层。如本文所用,这些术语表示第一层临近第二层被设置。第一层通常接触第二层,但第三层或多层可设置在第一层和第二层之间。
化学式I的并苯-噻吩共聚物可用作一些电子器件内的半导体材料。也就是说,电子器件可以是包含半导体层的半导体器件,该半导体层包含化学式I的并苯-噻吩共聚物。半导体器件已经由(例如)S.M.Sze进行了描述,Physics of Semiconductor Devices,第2版,John Wiley andSons,New York(1981)。这些器件包括整流器、晶体管(其中有许多类型,包括p-n-p、n-p-n以及薄膜晶体管)、光电导体、电流限制器、热敏电阻器、p-n结、场效应二极管、Schottky二极管等。半导体器件可以包括用于形成电路的元件,例如晶体管、晶体管阵列、二极管、电容器、嵌入式电容器以及电阻器。半导体器件还可以包括执行电子功能的电路阵列。这些阵列或集成电路的例子包括反相器、振荡器、移位寄存器以及逻辑电路。这些半导体器件和阵列的应用包括射频识别器件(RFIDs)、智能卡、显示器底板、传感器、存储器等。
一些半导体器件是如图1至图6示意性示出的有机薄膜晶体管。在图1至图6所示的多种薄膜晶体管中的任何指定的层可包括多层材料。更进一步,任何层可包括单一材料和多种材料。
有机薄膜晶体管100的一个实施例在图1中示意性地示出。有机薄膜晶体管(OTFT)100包括栅电极14、设置在栅电极14上的栅极介电层16、源极22、漏极24以及与源极22和漏极24两者均接触的半导体层20。源极22和漏极24彼此分开(即源极22不接触漏极24),并且被设置与介电层16相邻。源极22和漏极24两者均与半导体层20接触,使得半导体层的一部分被设置在源极和漏极之间。设置在源极和漏极之间的半导体层的部分被称之为通道21。该通道邻近于栅极介电层16。一些半导体器件具有栅极介电层16和半导体层20之间的可选的表面处理层。
可选的基底可被包括在有机薄膜晶体管中。例如,可选的基底12可邻近于栅电极14(如关于OTFT200在图2中示意性示出的),或邻近于半导体层20(如关于OTFT300在图3中示意性示出的)。OTFT300可包括在基底12和半导体层20之间的可选的表面处理层。
有机薄膜晶体管的另一个实施例在图4中示意性地示出。该有机薄膜晶体管400包括栅电极14、设置在栅电极14上的栅极介电层16、半导体层20以及设置在半导体层20上的源极22和漏极24。在该实施例中,半导体层20在栅极介电层16与源极22和漏极24两者之间。源极22和漏极24彼此分开(即源极22不接触漏极24)。源极22和漏极24两者与半导体层接触,使得半导体层的一部分被设置在源极和漏极之间。通道21是设置在源极22和漏极24之间的半导体层的部分。一个或多个可选的表面处理层可以被包括在半导体器件中。例如,可选的表面处理层可以被包括在栅极介电层16和半导体层20之间。
可选的基底可被包括在有机薄膜晶体管中。例如,可选的基底12可与栅电极14接触(如关于OTFT500在图5中示意性示出的)或与半导体层20接触(如关于OTFT600在图6中示意性示出的)。OTFT600可包括在基底12和半导体层20之间的可选的表面处理层。
在对图1至图6所示的半导体器件构造的操作中,可将电压施加到漏极24上。但是,至少理想的是,没有电荷(即电流)流向源极22,除非电压也被施加到栅电极14。也就是说,除非电压被施加到栅电极14,否则半导体层20中的通道21保持非导电状态。一旦将电压施加到栅电极14,通道21就变得导电,并且电荷从源极22通过通道21流动到漏极24。
在制造、测试和/或使用期间,基底12通常支撑OTFT。可选地,基底可为OTFT提供电功能。例如,基底的后部可提供电接触。可用的基底材料包括(但不限于):无机玻璃、陶瓷材料、聚合材料、填充的聚合材料(如纤维增强型聚合材料)、金属、纸张、织造或非织造布、带涂层的或不带涂层的金属箔或它们的组合。
栅电极14可以包括一层或多层导电材料。例如,栅电极可以包括掺杂的硅材料、金属、合金、导电聚合物或它们的组合。适合的金属和合金包括(但不限于):铝、铬、金、银、镍、钯、铂、钽、钛、铟氧化锡(ITO)、氟氧化锡(FTO)、掺锑的氧化锡(ATO)或它们的组合。示例性的导电聚合物包括(但不限于):聚苯胺、聚(3,4-乙撑二氧噻吩)/聚(苯乙烯磺酸)或聚吡咯。在一些有机薄膜晶体管中,相同的材料既可以提供栅电极功能又可以提供基底的支撑功能。例如,掺杂的硅可起到栅电极和基底的功能。
在一些实施例中,栅电极通过用含有导电材料的分散体涂覆基底表面来形成,所述的导电材料是例如导电的纳米颗粒和导电的聚合材料。导电的纳米颗粒包括(但不限于):ITO纳米颗粒、ATO纳米颗粒、银纳米颗粒、金纳米颗粒或碳纳米管。
栅极介电层16被设置在栅电极14上。该栅极介电层16使栅电极14与OTFT器件的其余部分电绝缘。可用于栅电介质的材料包括(例如)无机介电材料、聚合物介电材料或它们的组合。栅电介质可以是单层或多层的适合的介电材料。单层或多层电介质中的各层可包括一种或多种介电材料。
有机薄膜晶体管可包括设置在栅极介电层16和有机半导体层20的至少一部分之间或设置在基底12和有机半导体层20的至少一部分之间的可选的表面处理层。在一些实施例中,可选的表面处理层用作栅极介电层和半导体层之间或基底和半导体层之间的界面。表面处理层可以是如美国专利No.6,433,359B1(Kelley等人)所描述的自组装的单层,或美国专利申请公开出版物2003/0102471A1(Kelley等人)和美国专利No.6,617,609(Kelley等人)所描述的聚合材料。
源极22和漏极24可以是金属、合金、金属化合物、导电金属氧化物、导电陶瓷、导电分散体、导电聚合物,包括例如金、银、镍、铬、钡、铂、钯、铝、钙、钛、铟氧化锡(ITO)、氟氧化锡(FTO)、锑锡氧化物(ATO)、铟锌氧化物(IZO)、聚(3,4-乙撑二氧噻吩)/聚(苯乙烯磺酸)、聚苯胺、其它导电聚合物、它们的合金、它们的组合以及它们的多层。如现有技术已知的,这些材料中的一些材料适合用于n-型半导体材料,其它材料适合用于p-型半导体材料。
图1至图3举例说明的有机薄膜晶体管可通过涉及以如下次序布置多层的方法来制备:栅电极;栅极介电层;具有彼此分开的源极和漏极的层;以及与源极和漏极接触的半导体层。该半导体层包含化学式I的并苯-噻吩。
例如,图1示意性示出的有机薄膜晶体管可通过如下制备:提供栅电极14;邻近于栅电极14沉积栅极介电层16;邻近于栅极介电层16设置源极22和漏极24,使得源极22和漏极24彼此分开;并形成半导体层20,该层沉积在源极22上、漏极24上以及沉积在源极22和漏极24之间的区域21中。半导体层20接触源极22和漏极24两者。设置在源极和漏极之间区域中的半导体层的部分限定通道。
图2示意性示出的有机薄膜晶体管可通过如下制备:提供基底12;在基底12上沉积栅电极14;相邻于栅电极14沉淀栅极介电层16,使得栅电极14设置在基底12和栅极介电层16之间;设置相邻于栅极介电层16的源极22和漏极24,使得所述两个电极彼此分开;以及形成相邻于源极22、漏极24,和相邻于源极22和漏极24之间的区域21中的半导体层20。半导体层20接触源极22和漏极24。设置在源极和漏极之间区域中的半导体层的部分限定通道。
图3示意性示出的有机薄膜晶体管可通过如下制备:提供基底12;相邻于基底12形成半导体层20;设置与基底12相对相邻于半导体层20的源极22和漏极24,使得源极22和漏极24彼此分开;沉淀相邻于源极22、漏极24,和相邻于源极22和漏极24之间的半导体层20的部分的栅极介电层16;以及沉淀相邻于栅极介电层16的栅电极14。源极22和漏极24接触半导体层20。半导体层的部分设置在源极22和漏极24之间。所述半导体层的该部分限定通道。
图4至图6示意性示出的有机薄膜晶体管通过涉及以如下次序布置多层的方法来制备:栅电极;栅极介电层;包含化学式I的并苯-噻吩的半导体层;以及具有彼此分开的源极和漏极的层,其中半导体层接触漏极和源极。在一些实施例中,表面处理层可设置在栅极介电层和半导体层之间。基底可相邻于栅电极或相邻于包含源极和漏极的层来设置。
例如,图4示意性示出的有机薄膜晶体管可通过如下制备:提供栅电极14;沉淀相邻于栅电极14的栅极介电层16;形成相邻于栅极介电层16的半导体层20(即栅极介电层16设置在栅电极14和半导体层20之间);以及设置相邻于半导体层20的源极22和漏极24。源极22和漏极24彼此分开,并且两个电极均与半导体层20接触。半导体层的一部分设置在源极和漏极之间。
图5示意性示出的有机薄膜晶体管可通过如下制备:提供基底12,沉积相邻于基底12的栅电极14,沉积相邻于栅电极14的栅极介电层16,使得栅电极14设置在基底12和栅极介电层16之间;形成相邻于栅极介电层16的半导体层20;以及设置相邻于半导体层20的源极22和漏极24。源极22和漏极24彼此分开,并且两个电极均与半导体层20接触。半导体层20的一部分设置在源极22和漏极24之间。
图6示意性示出的有机薄膜晶体管可通过如下制备:提供基底12;设置相邻于该基底的源极22和漏极24,使得源极22和漏极24彼此分开;形成接触源极22和漏极24的半导体层20;以及沉积与源极22和漏极24相对相邻于半导体层的栅极介电层16;以及沉积相邻于栅极介电层16的栅电极14。半导体层20的一部分设置在源极22和漏极24之间。
化学式I的并苯-噻吩共聚物可用于其它类型的电子器件,例如其中共聚物设置在第一电极(如阳极)和第二电极(如阴极)之间的层中的电子器件。示例性的电子器件包括(但不限于):有机光伏电池和有机电致发光器件例如有机发光二极管。
有机光伏电池和有机电致发光器件包括许多通用部件,例如阳极、阴极以及设置在阳极和阴极之间的材料。然而,这两种类型的器件的操作概念是相反的。在有机电致发光器件中,因为电荷在两个电极之间的传输而发射光。电子被引入到具有低功函数的第一电极(即阴极),并且空穴被引入到具有高功函数的第二电极(即阳极)。在设置在两个电极之间的有机发射元件中,电子和空穴重新结合并且发光。相反地,在光伏电池中,活性层暴露于光产生了两个电极之间的电荷传输。设置在两个电极之间的活性层吸收通过其中一个电极的光。光的吸收引起激子(exiton)(即激发的电子—空穴对)的形成,该激子随后离解成朝相对于电极的方向迁移的电子和空穴。
诸如有机发光二极管之类的有机电致发光(OEL)器件包括设置在两个电极(即阳极和阴极)之间的有机发射元件。有机电致发光器件的有机发光元件通常包括至少一个包含电致发光材料的发光层。其它层也可存在于有机发射元件中,例如空穴传输层、电子传输层、空穴注入层、电子注入层、空穴阻挡层、电子阻挡层、缓冲层等。另外,光致发光材料可存在于有机发射元件的发光层或其它层中,例如将由电致发光材料发射的光的颜色转变成另一种颜色。这些和其它这样的层和材料可被用于改变或调整该分层的OEL器件的电子特性和性能。例如,附加的层可用于获得所需的电流/电压响应、所需的器件效率、所需的颜色、所需的亮度等等。
图7A至图7D示出不同的OEL器件(例如有机发光二极管)的构造。各构造包括基底30、阳极32、阴极34以及发光层36。图7C和图7D的构造还包括空穴传输层38,图7B和图7D的构造包括电子传输层40。设置在两个电极间的层分别传导来自阳极的空穴或来自阴极的电子。并苯-噻吩共聚物可存在于发光层、空穴传输层或它们的组合中。在任何层内,并苯-噻吩共聚物可单独存在或与其它材料结合存在。
在一些有机发射元件中,并苯-噻吩共聚物存在于发光层中。并苯-噻吩共聚物可单独或与一种或多种材料结合用于发光层中。例如,共聚物在发光层内可起到主体材料或掺杂物材料的作用。
如本文所用,术语“掺杂物”指能够被来自主体材料的能量的转移而激发的材料。激发的掺杂物发出光。基于发光层中材料的重量而言,掺杂物的含量通常小于50重量%、小于40重量%、小于20重量%、小于10重量%或小于5重量%。基于发光层中材料的重量而言,掺杂物的含量通常为至少0.1重量%、0.2重量%、0.5重量%或1重量%。
当并苯-噻吩共聚物在发光层中用作掺杂物时,其可以与主体材料(例如电荷转移材料)结合。电荷转移材料通常是空穴转移材料例如二胺衍生物、三芳基胺衍生物或它们的组合。示例性的二胺衍生物包括(但不限于):N,N’-二(3-甲基苯基)-N,N’-二(苯基)联苯胺(TPD)、N,N’-二(2-萘基)-N,N’-二(苯基)联苯胺(β-NPB)以及N,N′-二(1-萘基)-N,N′-二(苯基)联苯胺(NPB)。示例性的三芳基胺衍生物包括(但不限于):4,4′,4”-三(N,N-二苯基氨基)三苯基胺(TDATA)、以及4,4′,4”-三(N-3-甲基苯基-N-苯基氨基)三苯基胺(MTDATA)。还有其它主体材料包括电子转移材料(例如9,10-二(2-萘基)蒽(ADN))和噁二唑化合物(例如1,3-二[5-(4-(1,1-二甲基乙基)苯基)-1,3,4-噁二唑-2-基]苯和2-(联苯-4-基)-5-(4-(1,1-二甲基乙基)苯基)-1,3,4-噁二唑)。
如本文所用,术语“主体”是指能够将能量转移至掺杂物以形成发光的激发掺杂物的材料。基于发光层中的材料重量而言,主体材料的含量通常是至少50重量%、至少60重量%、至少80重量%或至少90重量%。
当发光层含有主体材料和掺杂物时,主体材料的激发状态通常处于比起掺杂物的激发状态更高的能级,使得能量可从主体材料转移至掺杂物。激发的主体材料通常发射波长比激发的掺杂物短的光。例如,发射蓝光的主体材料可将能量转移至发射绿光或红光的掺杂物,并且发射绿光的主体材料可以将能量转移至发射红光的掺杂物但不会将能量转移至发射蓝光的掺杂物。
当并苯-噻吩存在于有机发射元件的发光层中时,其它发光材料可存在于相同的发光层或不同的发光层中。一些发光层具有小分子(SM)发光体、小分子发光体掺杂的聚合物、发光聚合物(LEP)、小分子发光体掺杂的发光聚合物、发光聚合物的共混物或它们的组合。来自有机发射元件的发射光可以处于可见光谱的任何部分,这取决于发光层中的电致发光组合物的组成。
适合的LEP材料通常是共轭的聚合分子或低聚分子,该聚合分子或低聚分子优选具有用于溶液工艺的充分成膜特性。如本文所用,“共轭的聚合物或低聚分子”指沿聚合物主链具有未定域的π-电子体系的聚合物或低聚物。这样的聚合物或低聚物是半导电的,并且可沿聚合或低聚链支持正电荷载体或负电荷载体。
示例性的LEP材料包括聚(苯乙炔)、聚(对-亚苯基)、聚芴、现已知的或以后开发的其它LEP材料以及它们的共聚物或共混物。适合的LEP还可用小分子发光体掺杂、用荧光染料或光致发光材料分散、与活性或非活性材料共混、用活性或非活性材料分散等。适合的LEP材料的例子由Kraft等人,Angew.Chem.Int.Ed.,37,402-428(1998);美国专利No.5,621,131、No.5,708,130、No.5,728,801、No.5,840,217、No.5,869,350;No.5,900,327、No.5,929,194、No.6,132,641和No.6,169,163以及PCT专利申请公开出版物No.99/40655中进一步描述。
LEP材料可以(例如)通过在基底上浇注LEP材料的溶剂溶液并蒸发溶剂来制备聚合物薄膜而形成到发光结构中。作为另外一种选择,LEP材料可通过前体物质的反应在基底上就地形成。形成LEP层的适合方法在美国专利No.5,408,109中有所描述。用LEP材料形成发光结构的其它方法包括(但不限于):激光热形成图案、喷墨印刷、网版印刷、热头印刷、照相平版印刷形成图案、喷雾以及挤压涂布。
适合的SM电致发光材料包括传输电荷、阻断电荷和半导电的有机或有机金属化合物。通常,SM材料可从被真空沉积或从溶液涂布而形成器件中的薄层。在实践中,由于给定的材料一般不具有所需的电荷传输和电致发光特性两者,多层SM材料通常用于制备效率高的有机电致发光器件。
示例性的SM材料包括N,N′-二(3-甲基苯基)-N,N′-二苯基联苯胺(TPD)和金属螯合物例如三(8-羟基喹啉)铝(Alq3)。其它的SM材料在(例如)C.H.Chen等人,MacromolSymp.125,1(1997);日本公开专利申请2000-195673;美国专利No.6,030,715;No.6,150,043和No.6,242,115以及PCT专利申请公开出版物No.WO00/18851(divalent lanthanidemetal complexes)(二价镧系元素金属络合物)、WO00/70655(cyclometallated iridium compounds and others)(环金属化铱化合物等)以及WO98/55561中公开。
阳极32和阴极34的形成通常用以下材料形成:导电材料例如金属、合金、金属化合物、导电金属氧化物、导电陶瓷、导电分散体以及导电聚合物,包括(例如)金、银、镍、铬、钡、铂、钯、铝、钙、钛、铟氧化锡(ITO)、氟氧化锡(FTO)、锑氧化锡(ATO)、铟氧化锌(IZO)、聚(3,4-乙撑二氧噻吩)/聚(苯乙烯磺酸)、聚苯胺、其它导电聚合物、它们的合金、它们的组合以及它们的多层。阳极32和阴极34可以是单层导电材料或它们可包括多层。例如,阳极和阴极可包括铝层和金层、钙层和铝层、铝层和氟化锂层或金属层和导电有机层。
用于有机电致发光器件的代表性阳极是喷涂到透明基底例如塑料或玻璃之上的铟氧化锡(ITO)。适合的基底包括(例如)玻璃、透明塑料例如聚烯烃、聚醚砜、聚碳酸酯、聚酯诸如聚萘二甲酸乙二醇酯(PEN)、多芳基化合物以及聚合物多层薄膜、ITO涂覆的阻挡膜例如可得自3M公司(St.Paul,MN)的塑料薄膜导体、表面处理过的薄膜以及选择的聚酰亚胺。
涂覆基底的阳极材料是导电的,并且可以是在光学上透明的或半透明的。除了ITO外,适合的阳极材料还包括氧化铟、氟氧化锡(FTO)、氧化锌、氧化钒、锌—锡氧化物、金、铂、钯、其它高功函数金属以及它们的组合。
可选地,可用缓冲层涂覆阳极以助于形成平坦的表面以及用以修改阳极的有效功函数。缓冲层通常具有最多5000埃、最多4000埃、最多3000埃、最多1000埃、最多800埃、最多600埃、最多400埃或最多200埃的厚度。缓冲层经常具有至少5埃、至少10埃或至少20埃的厚度。缓冲层可通过蒸汽涂覆或溶液涂覆。
适合的缓冲层可以是离子聚合物例如聚(3,4-氧乙烯基氧噻吩)/聚(苯乙烯磺酸)、聚苯胺翠绿亚胺或酸掺杂的聚吡咯。其它适合的缓冲层包括在美国专利申请No.2004/0004433A1所描述的那些(将其以引用的方式并入本文),包括(a)具有三芳基胺部分的空穴传输材料和(b)电子受体材料。适合的空穴传输材料可以是小分子或聚合材料。示例性的空穴传输材料包括(但不限于):4,4’,4”-三(N,N-二苯氨基)三苯胺(TDATA)、4,4”,4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺(MTDAA)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)以及4,4’,4”-三(N-萘基)-N-苯基氨基)三苯胺(2-TNATA)。可包括在这样的缓冲层中的示例性电子传输材料包括(但不限于):四氰基对苯醌二甲烷(TCNQ)、四氟-四氰基对苯醌二甲烷、四氰乙烯、四氯苯醌、2-(4-(1-甲基乙基)苯基-6-苯基-4H-噻喃-4-亚基)-丙二腈-1,1-二氧化物(dioxyide)(PTYPD)以及2,4,7-三硝基芴。
典型的阴极包括低功函数金属例如铝、钡、钙、钐、镁、银、镁/银合金、锂、氟化锂、镱以及钙/镁合金。阴极可以是单层或多层这些材料。例如,阴极可以包括氟化锂层、铝层以及银层。
空穴传输层38有利于空穴从阳极注入到器件内并有利于它们向重组区域迁移。空穴传输层38可进一步作为电子传送到阳极32的障碍物。在一些实施例中,并苯-噻吩共聚物可用于空穴传输层中。在其它实施例中,空穴传输层38可包括(例如)二胺衍生物,例如N,N′-二(3-甲基苯基)-N,N′-二(苯基)联苯胺(TPD)、N,N’-二(2-萘基)-N,N’-二(苯基)联苯胺(β-NPB)以及N,N′-二(1-萘基)-N,N′-二(苯基)联苯胺(NPB);或三芳基胺衍生物,例如4,4′,4”-三(N,N-二苯基氨基)三苯基胺(TDATA)、4,4′,4”-三(N-3-甲基苯基-N-苯基氨基)三苯基胺(MTDATA)、4,4’,4”-三(N-苯噁嗪基)三苯基胺(TPOTA)以及1,3,5-三(4-二苯基氨基苯基)苯(TDAPB)。
电子传输层40有利于电子从阴极注入到器件内并有利于它们向重组区域迁移。电子传输层40可进一步作为电子传送到阴极34的障碍物。在一些实施例中,电子传输层40可用有机金属化合物例如三(8-羟基喹啉)铝(Alq3)和二苯基合(biphenylato)二(8-羟基喹啉)铝(BAlq)形成。可用于电子传输层260的电子传输材料的其它实例包括1,3-二[5-(4-(1,1-二甲基乙基)苯基)-1,3,4-噁二唑-2-基]苯;2-(二苯基-4-基)-5-(4-(1,1-二甲基乙基)苯基)-1,3,4-噁二唑;9,10-二(2-萘基)蒽(ADN);2-(4-二苯基)-5-(4-叔-丁基苯基)-1,3,4-噁二唑;或3-(4-二苯基)-4-苯基-5-(4-叔-丁基苯基)-1,2,4-三唑(TAZ)。
其它层,例如,含有(例如)卟啉化合物如铜酞菁(CuPc)和锌酞菁的附加空穴注入层;含有(例如)碱性金属氧化物或碱金属盐的电子注入层;含有(例如)分子噁二唑和三唑衍生物例如2-(4-二苯基)-5-(4-叔-丁基苯基)-1,3,4-噁二唑(PBD)、2,9-二甲基-4,7-二苯基-1,10-菲罗啉(phenanthraline)(BCP)、二苯基合二(8-羟基喹啉)铝(BAlq)或3-(4-二苯基)-4-苯基-5-(4-叔-丁基苯基)-1,2,4-三唑(TAZ)的空穴阻挡层;含有(例如)N,N’-二(1-萘基)-N,N’-二(苯基)联苯胺(NPB)或4,4’,4”-三(N-(3-甲基苯基)-N-苯基三氨)三苯基胺(MTDATA)的电子阻挡层等等,也可存在于有机发射元件中。另外,光致发光材料可存在于这些层中,例如,用以将由光致发光材料发射的光的颜色转变成另一种颜色。这些和其它这样的层和材料可用于改变或调整该分层的OEL器件的电子特性和性能,以获得一种或多种特性,例如所需的电流/电压响应、所需的器件效率、所需的颜色、所需的亮度、所需的器件寿命或所需的这些特征的组合。
图8示意性示出了示例性的光伏电池,其是另一种类型的电子器件,可以含有化学式I的并苯-噻吩共聚物。活性层54设置在阳极52和阴极56之间。其中一个电极可以设置邻近于其中一个可选的基底。例如,可以将阳极52相邻于基底50设置。电极中的至少一者是透明或半透明的。如果透明或半透明的电极邻近基底,则基底通常也是透明或半透明的。基底50、阳极52和阴极56可与上面针对有机电致发光器件所描述述的那些相同。电极或基底可包括多层材料。例如,阳极可以包括第一层ITO和第二层导电聚合物,该导电聚合物是例如(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸)。
活性层通常含有半导体材料。化学式I的并苯-噻吩共聚物可存在于活性层中。在许多实施例中,活性层既包括电子供体材料又包括电子受体。在这样的活性层中,并苯-噻吩共聚物用作电子供体材料。示例性的电子受体材料包括(例如)富勒烯衍生物例如[6,6]-苯基-C61-丁酸甲酯(PCBM)、[70]PCBM、单壁纳米碳管(SWNT)、纳米晶体CdSe颗粒或四针状物、聚(2,5,2’,5’-四己基氧基-7,8’-二氰基-二-对-苯乙炔)(CN-PPV)、氰基-聚(2-甲氧基-5-(2-乙基-己基氧基)-1,4-苯乙炔(MEH-CN-PPV)、聚(氧杂-1,4-亚苯基-(1-氰基-1,2-亚乙烯基)-(2-甲氧基-5-(3,7-二甲基辛基氧基)-1,4-亚苯基)-1,2-(2-氰基亚乙烯基)-1,4-亚苯基)(PCNEPV)、3,4,9,10-苝四羧基二-苯并咪唑(PTCBI)以及聚(2,5-二庚基氧基-对-苯乙炔)(HO-PPV)。
前述内容根据发明人预见的实施例描述了本发明,对于这些实施例,可实现的描述是可得的,但是目前尚未预见的本发明的非实质修改形式可代表其等同物。
实施例
所有试剂均购自商业来源,并且除非另有注明,否则使用时不需要进一步纯化。
正-十八烷基三氯硅烷(OTS)和1,1,1,3,3,3-六甲基二硅氮烷(HMDS)从Alfa Aesar公司(Ward Hill,MA)得到。甲苯从钠上馏出。具有100nm的热生长氧化物的大量掺杂的p-型硅晶片(100)(Silicon ValleyMicroelectronics有限公司)被用作基底。
碳酸钠、四(三苯基膦)化钯(0)、氯化亚锡(II)、二(频哪醇合)二硼、2,5-二溴噻吩以及2,5-二溴-3-己基噻吩可从Aldrich公司(Milwaukee,WI)购得;ALIQUAT336(相转移催化剂)、正-丁基锂以及
[1,1’-二(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物从AlfaAesar公司(Ward Hill,MA)获得;以及三异丙基甲硅烷基乙炔从GFSChemicals公司(Columbus,OH)购得。己烷和四氢呋喃(THF)在钠上蒸馏。下列原料通过使用如下公布的工序加以制备:
2,6-二溴蒽醌是如Ito等人(Angew.Chem.Int.(编辑),42,1159-1162(2003))所描述的,用市售的2,6-二氨基蒽醌(Sigma Aldrich)来制备。在升华后,通过从DMF重结晶而将其进一步纯化。
2,5-二溴-3,4-二己基噻吩是如Vidal等人(Chem.Eur.J.,6,1663-1673(2000))所描述的,用市售的3,4-二溴噻吩(Alfa Aesar)来制备。
2,5-二溴-3,4-乙烯二氧噻吩是如Sotzing等人(Chem.Mater.,8,882-889(1996))所描述的,用市售的3,4-乙烯二氧噻吩(EDOT,Bayer,Leverkusen,Germany)来制备。
2,5-二溴-3,6-二壬基噻吩并[3,2-b]噻吩通过用N-溴代琥珀酰亚胺溴化3,6-二壬基噻吩并[3,2-b]噻吩来制备。3,6-二壬基噻吩并[3,2-b]噻吩是在如Zhang等人(J.Macromolecules,37,6306-6315(2004))所描述的多步合成中从3,4-二溴噻吩获得。
前体2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二-[(三异丙基甲硅烷基)乙炔基]蒽根据反应方案1合成,如制备实例1和2所描述的。
反应方案1
Figure G2007800142797D00341
制备实例1-2,6-二溴-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽的合
将三异丙基甲硅烷基乙炔(12.32g,67.5mmol)和干燥己烷(140mL)在干燥氮气层下加至烘箱干燥的圆底烧瓶(1L)中。丁基锂(在己烷中为2.7M,14.5mL,39.2mmol)在干燥氮气下通过注射器逐滴加入到混合物中。将混合物在室温下搅拌2小时。在干燥氮气下将干THF(300mL)和2,6-二溴蒽醌(5.49g,15.0mmol)加入到该无色溶液中。溶液立即变红,并且2,6-二溴蒽醌在数分钟内溶解。将混合物在室温下搅拌过夜,溶液变成暗红色。加入去离子(DI)水(6.0mL),颜色变成淡红色,并且出现白色沉淀。然后加入HCl(18mL,10%)含水溶液中的氯化亚锡(II)(8.088g,42.6mmol)。将混合物加热至60℃2小时,然后冷却至室温。通过旋转蒸发移除溶剂。将DI水(100mL)加入到混合物中,然后用己烷(100mL×3)萃取。用DI水将该己烷溶液洗涤直至中性。将其通过柱层析(硅胶/己烷,Rf=0.7)进行浓缩和纯化。得到淡黄色的固体产物(8.55g,收率:82%)。1H NMR(400MHz,CDCl3),δppm8.797-8.802(d,2H,J=2.0Hz),8.431-8.454(d,2H,J=8.8Hz),7.647-7.674(dd,2H,J=8.8Hz,J=2.0Hz),1.259(s,36H),1.247(s,6H)。
制备实例2-2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2- 基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽的合成
将得自制备实例1的2,6-二溴-9,10-二-[(三异丙基甲硅烷基)乙炔基]蒽(5.225g,7.5mmol)、二(频哪醇合)二硼(4.763g,18.8mmol)、KOAc(2.940g,30.0mmol)以及CHCl3(100mL)在干燥氮气下装到250ml烧瓶中。获得了具有悬浮KOAc的黄色溶液。将悬浮液脱气以除去痕量的氧。然后在干燥氮气下加入[1,1’-二(二苯基膦)二茂铁]二氯化钯(0.205g)。溶液变成橙色。将混合物在70℃下搅拌3天,然后冷却至室温。将其用DI水(100mL×3)进行洗涤并在MgSO4上干燥。通过旋转蒸发除去溶剂。固体残留物通过柱层析(硅胶,CHCl3)进行纯化并从乙酸乙酯重结晶。得到橙色针状晶体产物(3.20g,收率为55%)。1H NMR(400MHz,CDCl3),δppm9.250-9.254(dd,2H,J=0.8Hz,J=0.8Hz),8.579-8.603(dd,2H,J=8.8Hz,J=0.8Hz),7.901-7.926(dd,2H,J=8.8Hz,J=1.2Hz),1.384(s,24H),1.288(s,36H),1.279(s,6H)。
Suzuki偶联反应用于合成制备实例3至7的并苯-噻吩共聚物,如反应方案2所示。
反应方案2
Figure G2007800142797D00361
Br-Q-Br化合物是2,5-二溴-3,4-乙撑二氧噻吩(制备实例3)、2,5-二溴-3-己基噻吩(制备实例4)、2,5-二溴-3,4-二己基噻吩(制备实例5)、2,5-二溴噻吩(制备实例6)以及2,5-二溴-3,6-二壬基噻吩并[3,2-b]噻吩(制备实例7)。
制备实例3-3,4-乙撑二氧-2,5-噻吩/9,10-二[(三异丙基甲硅烷基) 乙炔基]-2,6-蒽交替共聚物的合成
将250mL Schlenk烧瓶装入2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二-[(三异丙基甲硅烷基)乙炔基]蒽(1.552g,2.00mmol)、2,5-二溴-3,4-乙撑二氧噻吩(0.600g,2.00mmol)、碳酸钠(1.060g,10.0mmol)、ALIQUAT336(0.241g)、蒸馏水(10ml)和甲苯(100mL)。将该混合物在氮气下利用希莱克管(Schlenk line)脱气三次以除去氧气。然后,在干燥氮气流下加入四(三苯基膦)化钯(0)(0.025g,0.02mmol)。再次脱气之后,将该混合物在干燥氮气下于90℃搅拌46小时。为了封端该共聚物,加入另外的2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽(0.015g),随后24小时之后加入溴苯(0.5mL)。将该溶液搅拌另外24小时并且冷却至室温。分离该甲苯溶液并用DI水(150mL×3)洗涤。然后,将其过滤以移除痕量的固体杂质。将滤液加入到MeOH(350mL)中,同时用力搅拌。通过过滤收集红色的沉淀,然后用MeOH(通过索克利特(Soxhlet)萃取法)洗涤24小时。得到的红色固体产物(1.39g,收率:约100%)作为产物。分子量=11,000g/mol。1H NMR(400MHz,CDCl3),δppm8.91-9.30(br,2H),8.49-8.91(br,2H),7.75-8.31(br,2H),4.19-4.71(br,4H),1.12-1.15(br,42H)。
制备实例4-3-己基-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔 基]-2,6-蒽交替共聚物的合成
将250mL Schlenk烧瓶装入2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽(1.552g,2.00mmol)、2,5-二溴-3-己基噻吩(0.652g,2.00mmol)、碳酸钠(1.060g,10.0mmol)、ALIQUAT336(0.241g)、蒸馏水(10ml)和甲苯(100mL)。将混合物在干燥氮气下利用希莱克管脱气三次以除去氧气。然后,在干燥氮气流下加入四(三苯基膦)化钯(0)(0.030g,0.02mmol)。再次脱气后,将混合物在干燥氮气下于90℃搅拌48小时。加入另外的2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽(0.015g),将反应物搅拌15小时,随后加入溴苯(80μL(微升))。将反应混合物搅拌另外24小时并冷却至室温。分离红色的甲苯溶液并用DI水(100mL×4)洗涤。然后,将其过滤以除去痕量的固体杂质。浓缩滤液并将其加入到MeOH(300mL),同时用力搅拌。通过过滤收集红色的沉淀,然后用MeOH(通过索克利特萃取法)洗涤24小时。得到红色固体产物(1.24g,收率为88%)。分子量=11,600g/mol。1H NMR(400MHz,CDCl3),δppm8.89-9.06(br,1H),8.78-8.87(br,1H),8.62-8.74(br,2H),7.88-8.01(br,1H),7.74-7.86(br,1H),7.52-7.65(br,1H),2.82-3.03(br,2H),1.69-1.84(br,2H),1.08-1.50(br,48H),0.71-0.90(br,3H)。
制备实例5-3,4-二己基-2,5-噻吩/9,10-二-[(三异丙基甲硅烷基)乙 炔基]-2,6-蒽交替共聚物的合成
将250mL Schlenk烧瓶装入2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二-[(三异丙基甲硅烷基)乙炔基]蒽(3.909g,5.04mmol)、2,5-二溴-3,4-二己基噻吩(2.121g,5.17mmol)、碳酸钠(2.65g,25.0mmol)、ALIQUAT336(1.0g)、蒸馏水(10ml)和甲苯(100mL)。在氮气下使用希莱克管将混合物脱气三次以除去氧气。然后,在干燥氮气流下加入四(三苯基膦)化钯(0)(0.125g,0.10mmol)。再次脱气后,将混合物在干燥氮气下于90℃搅拌72小时。然后,将其冷却至室温。分离红色的甲苯溶液并用DI水洗涤(150mL×3)。然后,将其过滤以除去痕量的固体杂质。滤液加入到MeOH(350mL)中,同时用力搅拌。通过过滤收集红色的沉淀,然后用MeOH(通过索克利特萃取法)洗涤24小时。得到红色的固体产物(3.53g,收率为89%)。分子量=36,300g/mol。1H NMR(400MHz,CDCl3),δppm8.81-8.90(br,2H),8.61-8.76(br,2H),7.71-7.87(br,2H),2.68-3.05(br,4H),1.46-1.63(br,4H),1.09-1.40(br,54H),0.69-0.84(br,6H)。
制备实例6-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,66-蒽 交替共聚物的合成
将Schlenk烧瓶(250mL)装入2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽(0.3888g,0.50mmol)、2,5-二溴噻吩(0.121g,0.50mmol)、碳酸钠(0.265g,2.50mmol)、ALIQUAT336(0.118g)、蒸馏水(3ml)和甲苯(30mL)。将混合物在氮气下用希莱克技术脱气三次以除去氧气。然后,在干燥氮流下加入四(三苯基膦)化钯(0)(0.016g,0.01mmol)。再次脱气后,将混合物在干燥氮气下于90℃搅拌48小时。然后,将其冷却至室温。分离红色的甲苯溶液并用DI水洗涤(150mL×3)。然后,将其过滤以除去痕量的固体杂质。将滤液加入到MeOH(200mL)中,同时用力搅拌。通过过滤收集红色的沉淀,然后用MeOH(通过索克利特萃取法)洗涤24小时。得到红色固体产物(0.28g,收率为91%)。分子量=8,500g/mol。1H NMR(400MHz,CDCl3),δppm8.10-9.00(br,4H),7.50-8.00(br,2H),7.00-7.50(br,2H),0.93-1.96(br,42H)。
制备实例7-3,6-二壬基-2,5-噻吩并[3,2-b]噻吩/9,10-二[(三异丙基 甲硅烷基)乙炔基]-2,6-蒽)交替共聚物的合成
将100mL的Schlenk烧瓶装入2,6-二-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)-9,10-二[(三异丙基甲硅烷基)乙炔基]蒽(0.233g,0.30mmol)、2,5-二溴-3,6-二壬基噻吩并[3,2-b]噻吩(0.165g,0.30mmol)、碳酸钠(0.159g,1.5mmol)、ALIQUAT336(0.096g)、蒸馏水(1.5mL)和甲苯(30mL)。将混合物在干燥氮气下用希莱克技术脱气三次以除去氧气。然后,在干燥氮流下加入四(三苯基膦)化钯(0)(0.009g)。再次脱气后,将混合物在干燥氮气下于90℃搅拌45小时。然后,将其冷却至室温。分离红色的甲苯溶液并用DI水洗涤(100mL×3)。然后,将其过滤以除去痕量的固体杂质。浓缩滤液并加入到MeOH(200mL)中,同时用力搅拌。通过过滤收集红色的沉淀,然后用MeOH(通过索克利特萃取法)洗涤24小时。得到红色固体产物(0.105g,收率为38%)。分子量=13,100g/mol。1H NMR(400MHz,CDCl3),δppm8.78-8.95(br,2H),8.54-8.77(br,2H),7.70-7.97(br,2H),2.58-3.17(br,4H),1.68-2.00(br,4H),1.03-1.50(br,66H),0.68-0.90(br,6H)。
实例1至5-薄膜晶体管
经OTS处理的基底的制备
将硅晶片在异丙醇通过超声清洁30分钟。在干燥氮气流下干燥后,在干燥氮气下于室温将它们浸入正-十八烷基三氯硅烷甲苯溶液(0.1%v/v)20小时。此后,将它们用CHCl3漂洗,在干燥氮气下干燥,并在薄膜沉积之前将它们在干燥氮气下储存。
经HMDS处理的基底的制备
将硅晶片在异丙醇通过超声清洁30分钟。在干燥氮气流下干燥后,在密闭容器中将它们在干燥氮气流下于室温暴露于1,1,1,3,3,3-六甲基二硅氮烷蒸汽20小时。在薄膜沉积之前,将它们在干燥氮气下储存。
薄膜晶体管的制造
将庚烷溶液(大约0.8重量%)中的3,4-乙撑二氧-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物(实例1)、3-己基-2,5-噻吩/9,10-二-[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物(实例2)、3,4-二己基噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物(实例3)和在THF溶液(约0.8重量%)中的2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物(实例4)、3,6-二壬基-2,5-噻吩并[3,2-b]噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物(实例5)分别刮涂在硅晶片、经OTS处理的硅晶片或经HMDS处理的硅晶片上。在空气干燥后,利用热蒸发方法通过聚合物荫罩使金源极/漏极(60nm的厚度)图案化。采用107微米的通道长度(L)和1000微米的通道宽度。
有机薄膜晶体管的特性
在环境条件下利用Hewlett Packard半导体参数分析器(4145A型,可得自Hewlett Packard公司(Palo Alto,CA)),通过扫描从+10V至-40V的栅电压(Vg),同时保持漏电压(Vd)为-40V,对薄膜晶体管进行鉴定。对Id 1/2-Vg轨迹值进行线性拟合使得能提取饱和迁移率和阈电压(Vt)。对Id-Vg轨迹进行线性拟合使得能计算电流开/关比。
对于实例1(3,4-乙撑二氧-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物),薄膜晶体管的半导体层是被刮涂在经HMDS处理过的硅晶片上。电荷迁移率为8×10-6cm2/Vs,开/关比为103。阈值电压(Vt)为-16V,而亚阈值斜率(S)为2.3V/decade。对于实例2(3-己基-2,5-噻吩/9,10-二-[(三异丙基甲硅烷基)乙炔基]-2,6-蒽共聚物),薄膜晶体管的半导体层是被刮涂在经OTS处理过的硅晶片上。电荷迁移率为7×10-6cm2/Vs,开/关电流比为103。Vt和S分别为-8V和1.4V/decade。对于实例3(3,4-二己基-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽共聚物),薄膜晶体管的半导体层是被刮涂在硅晶片(未经处理)上。电荷迁移率为2×10-5cm2/Vs,开/关电流比为103。Vt和S分别为-11V和0.9V/decade。对于实例4(2,5-噻吩/9,10v二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽共聚物),薄膜晶体管的半导体层是被刮涂在经HMDS处理过的硅晶片上。电荷迁移率为2×10-5cm2/Vs,开/关电流比为103。Vt和S分别为-8V和1.5V/decade。对于实例5(3,6-二壬基-2,5-噻吩并[3,2-b]噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽共聚物),薄膜晶体管的半导体层是被刮涂在经HMDS处理过的硅晶片上。电荷迁移率为1×10-5cm2/Vs,开/关电流比为102。Vt和S分别为-22V和1.4V/decade。
实例6至8-光伏电池
薄膜光伏电池的制造
三个薄膜光伏电池制造如下:具有25欧姆/平方的ITO/玻璃基底可从Thin Film Device(薄膜器件,Anaheim,CA)得到,并且依次在皂液、去离子水、丙酮中,然后在异丙醇中通过超声进行清洁。将洁净的基底在氮气流中干燥。
如下通过将一份溶液I和两份溶液II混合在一起来制备导电聚合物涂层溶液。溶液I通过将山梨糖醇加入水中1.3重量%的聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸)(PEDOT-PSS)溶液中来制备。基于溶液的重量而言,山梨糖醇的浓度为3重量%。溶液II含有32重量%的水、3.7重量%的N-甲基-2-吡咯烷酮、0.3重量%的TERGITOL TMN-6以及64重量%的(SOL-IJ-G-SI)溶剂,该溶剂是乙二醇、甘油和乙醇的混合物。以1000转/分钟用50秒将该导电聚合物涂层溶液旋涂到清洁的ITO/玻璃基底的顶部。将所得样本在100℃下预烘干2分钟,并在氮气中于165℃下固化15分钟。涂层厚度为大约100纳米。
对于实例6,制备含有1.6重量%的电子供体半导体3-己基-2,5-噻吩/9,10-二-[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物的溶液。首先将电子供体半导体溶解于氯苯中,通过0.45微米的注射过滤器过滤,然后将其加入电子供体溶液中的1.6重量%的电子受体半导体[6,6]-苯基-C61-丁酸甲酯(PCBM)。然后,将混合的溶液磁力搅拌再多几天。对于实例7和8,溶液以与实例6相同的方法来制备,除了所使用的电子供体半导体不同外。用于实例7的电子供体半导体为3,4-二苯基-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物,用于实例8的电子供体半导体为3,4-乙撑二氧-2,5-噻吩/9,10-二[(三异丙基甲硅烷基)乙炔基]-2,6-蒽交替共聚物。
然后,以800转/分钟的旋转速率用50秒将充分混合的溶液混合物旋涂到PEDOT/PSS涂覆的ITO/玻璃基底的顶部上。然后,将三份样本在热盘上在氮气环境中于110℃的温度下烘焙30分钟,随后在约140℃进一步烘焙1.5小时以形成微尺度、互相贯穿的供体—受体网状物。获得约225纳米的平均涂层厚度。最后,样本装载到由具有2毫米直径的圆孔阵列的荫罩覆盖的真空室中。将钙(20纳米),然后将铝(80纳米)蒸发到活性层上以形成2毫米直径的圆形阴极阵列。
器件性能特性
使用197A型Keithley万用表(Cleveland,OH)来测定光电流。光源是3M9200高射投射仪。3M9200投射灯的功率密度为约40至60mW/cm2。光伏电池离投射灯约2cm的距离进行暴露。首先测量阳极和阴极之间的电阻以确保没有短路发生。实例6的电阻测得为大于1,000兆欧姆(106ohms),实例7的电阻测得为大于30兆欧姆,而实例8的电阻测得为大于20兆欧姆。当暴露于投射灯时,实例6的光电流密度为约8μA/cm2,实例7的光电流密度为2μA/cm2,而实例8的光电流密度为约70μA/cm2

Claims (20)

1.一种电子器件,包含:
a)共聚物层,所述共聚物层包含化学式I的并苯-噻吩共聚物,
Figure FSB00000108837300011
其中
Ac为具有2至5个稠合苯环的并苯基,其中Ac可以任选由选自烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合的取代基取代;
Ra各自独立地选自氢、烷基、烷氧基、链烯基、芳基、杂芳基、芳烷基、杂芳烷基、杂烷基或羟烷基;
Q是化学式II、III、IV或V的二价基团;
R1和R2各自独立地选自氢、烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基或链烯基;以及
n为大于或等于4的整数;和
b)相邻于所述共聚物层的第一层,所述第一层包括导电层或介电层。
2.根据权利要求1所述的电子器件,其中Ac选自萘、蒽、并四苯或并五苯。
3.根据权利要求1所述的电子器件,其中各E等于化学式-C≡C-Si(Ra)3的甲硅烷基乙炔基基团的化学式-Ac(E)2-的二价基团选自:1,4-二(甲硅烷基乙炔基)萘-2,6-二基、1,4-二(甲硅烷基乙炔基)萘-2,7-二基、9,10-二(甲硅烷基乙炔基)蒽-2,6-二基、9,10-二(甲硅烷基乙炔基)蒽-2,7-二基、2,6-二(甲硅烷基乙炔基)蒽-9,10-二基、2,7-二(甲硅烷基乙炔基)蒽-9,10-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,9-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,10-二基、2,9-二(甲硅烷基乙炔基)并五苯-6,13-二基或2,10-二(甲硅烷基乙炔基)并五苯-6,13-二基。
4.根据权利要求3所述的电子器件,其中化学式-Ac(E)2-的二价基团选自:1,4-二(甲硅烷基乙炔基)萘-2,6-二基、9,10-二(甲硅烷基乙炔基)蒽-2,6-二基或6,13-二(甲硅烷基乙炔基)并五苯-2,9-二基。
5.根据权利要求1所述的电子器件,其中化学式I的共聚物存在于半导体层中。
6.根据权利要求5所述的电子器件,其中所述电子器件包括有机薄膜晶体管。
7.根据权利要求1所述的电子器件,其中化学式I的共聚物存在于第一电极和第二电极之间的层中。
8.根据权利要求7的电子器件,其中所述电子器件是光伏电池。
9.根据权利要求7所述的电子器件,其中所述电子器件包括有机电致发光器件,并且化学式I的共聚物存在于所述有机电致发光器件内的空穴传输层中。
10.根据权利要求7所述的电子器件,其中所述电子器件包括有机电致发光器件,并且化学式I的共聚物存在于所述有机电致发光器件内的发光层中。
11.一种制备电子器件的方法,所述方法包括提供含有化学式I的并苯-噻吩共聚物的共聚物层,
其中
Ac为具有2至5个稠合苯环的并苯基,其中Ac可以任选由选自烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基、链烯基或它们的组合的取代基取代;
Ra各自独立地选自氢、烷基、烷氧基、链烯基、芳基、杂芳基、芳烷基、杂芳烷基、杂烷基或羟烷基;
Q是化学式II、III、IV或V的二价基团;
Figure FSB00000108837300032
R1和R2各自独立地选自氢、烷基、烷氧基、硫代烷基、芳基、芳烷基、卤素、卤代烷基、羟烷基、杂烷基或链烯基;以及
n为大于或等于4的整数;和
提供相邻于所述共聚物层的第一层,所述第一层包括导电层或介电层。
12.根据权利要求11所述的方法,其中提供所述共聚物层包括:
制备包含并苯-噻吩共聚物和溶剂的涂层溶液,其中基于所述涂层溶液的重量而言,所述并苯-噻吩共聚物的含量为至少0.05重量%;
由涂层溶液形成溶液层;以及
从所述溶液层移除至少一些所述溶剂。
13.根据权利要求11所述的方法,其中所述电子器件是有机薄膜晶体管,并且所述方法还包括以如下次序布置的多个层:
栅电极;
栅极介电层;
半导体层,该半导体层包括所述共聚物层;以及
包括源极和漏极的层,其中所述源极和漏极彼此分开,其中所述半导体层既接触所述漏极又接触所述源极。
14.根据权利要求11所述的方法,其中所述电子器件是有机薄膜晶体管,并且所述方法还包括以如下次序布置的多个层:
栅电极;
栅极介电层;
包括源极和漏极的层,其中所述源极和所述漏极彼此分开;
既与所述源极接触又与所述漏极接触的半导体层,所述半导体层包括所述共聚物层。
15.根据权利要求11所述的方法,还包括在第一电极和第二电极之间布置所述共聚物层。
16.根据权利要求11所述的方法,其中所述电子器件包括光伏电池,并且所述方法还包括在阳极和阴极之间布置所述共聚物层。
17.根据权利要求11所述的方法,其中所述电子器件包括有机电致发光器件,并且所述方法还包括在阳极和阴极之间布置所述共聚物层。
18.根据权利要求17所述的方法,其中所述有机电致发光器件包括空穴传输层,该空穴传输层包括所述共聚物层。
19.根据权利要求17所述的方法,其中所述有机电致发光器件包括发光层,该发光层包括所述共聚物层。
20.根据权利要求11所述的方法,其中各E等于化学式-C≡C-Si(Ra)3的甲硅烷基乙炔基基团的化学式-Ac(E)2-的二价基团选自:1,4-二(甲硅烷基乙炔基)萘-2,6-二基、1,4-二(甲硅烷基乙炔基)萘-2,7-二基、9,10-二(甲硅烷基乙炔基)蒽-2,6-二基、9,10-二(甲硅烷基乙炔基)蒽-2,7-二基、2,6-二(甲硅烷基乙炔基)蒽-9,10-二基、2,7-二(甲硅烷基乙炔基)蒽-9,10-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,9-二基、6,13-二(甲硅烷基乙炔基)并五苯-2,10-二基、2,9-二(甲硅烷基乙炔基)并五苯-6,13-二基或2,10-二(甲硅烷基乙炔基)并五苯-6,13-二基。
CN2007800142797A 2006-04-21 2007-04-13 含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件 Expired - Fee Related CN101427381B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/379,662 US7495251B2 (en) 2006-04-21 2006-04-21 Electronic devices containing acene-thiophene copolymers with silylethynyl groups
US11/379,662 2006-04-21
PCT/US2007/066622 WO2007124286A1 (en) 2006-04-21 2007-04-13 Electronic devices containing acene-thiophene copolymers with silylethynyl groups

Publications (2)

Publication Number Publication Date
CN101427381A CN101427381A (zh) 2009-05-06
CN101427381B true CN101427381B (zh) 2011-11-30

Family

ID=38619963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800142797A Expired - Fee Related CN101427381B (zh) 2006-04-21 2007-04-13 含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件

Country Status (7)

Country Link
US (1) US7495251B2 (zh)
EP (1) EP2011157B1 (zh)
JP (1) JP5237264B2 (zh)
CN (1) CN101427381B (zh)
AT (1) ATE459104T1 (zh)
DE (1) DE602007004969D1 (zh)
WO (1) WO2007124286A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006125504A1 (en) * 2005-05-21 2006-11-30 Merck Patent Gmbh Oligomeric polyacene and semiconductor formulation
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
US7666968B2 (en) * 2006-04-21 2010-02-23 3M Innovative Properties Company Acene-thiophene copolymers with silethynly groups
KR101314931B1 (ko) * 2006-10-30 2013-10-04 삼성전자주식회사 유기 고분자 반도체, 이의 제조방법 및 이를 이용한 양극성 유기 박막 트랜지스터
US20080142793A1 (en) * 2006-11-10 2008-06-19 Tang Ming L Organic Semiconductors
US9520563B2 (en) * 2007-11-21 2016-12-13 The Board Of Trustees Of The Leland Stanford Junior University Patterning of organic semiconductor materials
CN101926017B (zh) * 2007-12-17 2013-09-25 3M创新有限公司 基于蒽的可溶液加工的有机半导体
KR101622420B1 (ko) * 2008-05-30 2016-05-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 실릴에티닐 펜타센 화합물 및 조성물 및 그의 제조 및 사용 방법
US8232550B2 (en) * 2008-06-11 2012-07-31 3M Innovative Properties Company Mixed solvent systems for deposition of organic semiconductors
US20110079775A1 (en) * 2008-06-19 2011-04-07 Peiwang Zhu Solution Processable Organic Semiconductors
US8154013B2 (en) * 2008-11-19 2012-04-10 Xerox Corporation Organic thin-film transistors
JP2011082396A (ja) * 2009-10-08 2011-04-21 Panasonic Electric Works Co Ltd タンデム型有機太陽電池
US8513466B2 (en) * 2009-11-30 2013-08-20 University Of New Hampshire Class of soluble, photooxidatively resistant acene derivatives
US8822731B2 (en) * 2009-11-30 2014-09-02 University Of New Hampshire Soluble, persistent nonacene derivatives
WO2011068968A2 (en) * 2009-12-02 2011-06-09 University Of South Florida Transparent contacts organic solar panel by spray
US8980677B2 (en) 2009-12-02 2015-03-17 University Of South Florida Transparent contacts organic solar panel by spray
JP5682571B2 (ja) * 2009-12-14 2015-03-11 コニカミノルタ株式会社 有機光電変換素子
KR101626363B1 (ko) * 2009-12-16 2016-06-02 엘지디스플레이 주식회사 안트라세닐계 교호 공중합체, 그 제조 방법 및 이를 이용한 유기 박막 트랜지스터
CN107573484A (zh) * 2009-12-23 2018-01-12 默克专利有限公司 包括聚合粘结剂的组合物
SG190738A1 (en) * 2010-12-06 2013-07-31 Merck Patent Gmbh Non-linear acene derivatives and their use as organic semiconductors
US8398234B2 (en) 2011-05-03 2013-03-19 Kimberly-Clark Worldwide, Inc. Electro-thermal antifog optical devices
JP2013119589A (ja) * 2011-12-07 2013-06-17 Sumitomo Chemical Co Ltd 高分子化合物及び電子素子
WO2014145609A1 (en) 2013-03-15 2014-09-18 University Of South Florida Mask-stack-shift method to fabricate organic solar array by spray
JP6514005B2 (ja) * 2014-04-08 2019-05-15 出光興産株式会社 有機エレクトロルミネッセンス素子及びインク組成物
US10675362B2 (en) * 2016-08-02 2020-06-09 Trustees Of Tufts College Photoluminescent nanoparticles and their uses in detection or quantification of singlet oxygen
JP7306313B2 (ja) * 2020-04-21 2023-07-11 信越化学工業株式会社 (ポリ)チオフェン-(ポリ)シロキサンブロックコポリマー及びその製造方法
CN115558412B (zh) * 2022-10-12 2023-06-09 深圳市华之美科技有限公司 一种聚酰亚胺复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541288A (zh) * 2001-08-09 2004-10-27 ������������ʽ���� 有机半导体元件
US6828582B1 (en) * 2003-09-04 2004-12-07 Hitachi Ltd. Thin film transistor, display device and their production
US6998068B2 (en) * 2003-08-15 2006-02-14 3M Innovative Properties Company Acene-thiophene semiconductors
US7002176B2 (en) * 2002-05-31 2006-02-21 Ricoh Company, Ltd. Vertical organic transistor

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242218A (en) * 1961-03-29 1966-03-22 Du Pont Process for preparing fluorocarbon polyethers
US3322826A (en) * 1962-04-11 1967-05-30 Du Pont Polymerization of hexafluoropropylene epoxide
US3274239A (en) * 1962-08-31 1966-09-20 Du Pont Fluorocarbon ethers
US3293306A (en) * 1963-06-14 1966-12-20 Du Pont Perfluorinated ether alcohols
US3250808A (en) * 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3553179A (en) * 1968-05-06 1971-01-05 Du Pont Acrylate-type esters of perfluoropoly-oxa-alkaneamidoalkyl alcohols and their polymers
US3544537A (en) * 1968-05-31 1970-12-01 Du Pont Poly(perfluoroalkoxy)polyfluoroalkyl acrylate-type esters and their polymers
US3518195A (en) * 1968-06-05 1970-06-30 Du Pont Corrosion-inhibited and stabilized perfluorinated polyether oils
US3810874A (en) * 1969-03-10 1974-05-14 Minnesota Mining & Mfg Polymers prepared from poly(perfluoro-alkylene oxide) compounds
US3864318A (en) * 1970-01-24 1975-02-04 Monteratini Edison S P A Acrylic and methacrylic monomers, polymers and copolymers
US4321404A (en) * 1980-05-20 1982-03-23 Minnesota Mining And Manufacturing Company Compositions for providing abherent coatings
US4818801A (en) * 1982-01-18 1989-04-04 Minnesota Mining And Manufacturing Company Ophthalmic device comprising a polymer of a telechelic perfluoropolyether
US4472480A (en) * 1982-07-02 1984-09-18 Minnesota Mining And Manufacturing Company Low surface energy liner of perfluoropolyether
US4567073A (en) * 1982-07-02 1986-01-28 Minnesota Mining And Manufacturing Company Composite low surface energy liner of perfluoropolyether
US4647413A (en) * 1983-12-27 1987-03-03 Minnesota Mining And Manufacturing Company Perfluoropolyether oligomers and polymers
US4830910A (en) * 1987-11-18 1989-05-16 Minnesota Mining And Manufacturing Company Low adhesion compositions of perfluoropolyethers
US5362919A (en) * 1988-12-02 1994-11-08 Minnesota Mining And Manufacturing Company Direct fluorination process for making perfluorinated organic substances
JPH07694B2 (ja) 1989-02-20 1995-01-11 工業技術院長 有機半導体及びその製造方法
AU632869B2 (en) * 1989-12-14 1993-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon-based coating compositions and articles derived therefrom
FR2664430B1 (fr) * 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
US5331183A (en) * 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
US5488142A (en) * 1993-10-04 1996-01-30 Minnesota Mining And Manufacturing Company Fluorination in tubular reactor system
US5523555A (en) * 1994-09-14 1996-06-04 Cambridge Display Technology Photodetector device having a semiconductive conjugated polymer
US6326640B1 (en) * 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
IT1290462B1 (it) * 1997-04-08 1998-12-03 Ausimont Spa Polimeri idrogenati modificati
US6355365B1 (en) * 1998-05-08 2002-03-12 Japan Chemical Innovation Institute Molecular compound, luminous material using the same, and luminous element
US6359149B1 (en) * 1999-02-23 2002-03-19 The United States Of America As Represented By The Secretary Of The Air Force Bithienylnaphthalene- and bis(3,4-ethylenedioxythienyl)naphthalene-based monomers and polymers
US6291621B1 (en) * 1999-02-23 2001-09-18 The United States Of America As Represented By The Secretary Of The Air Force Bithienylnaphthalene-based monomers and polymers
JP2001151868A (ja) 1999-11-24 2001-06-05 Toyota Central Res & Dev Lab Inc 機能性共重合高分子及びそれを使用した有機電界発光素子、光メモリ、正孔移動素子
US6602395B1 (en) * 2000-04-11 2003-08-05 Innovative Technology Licensing, Llc Patterning of polymer light emitting devices using electrochemical polymerization
US6585914B2 (en) * 2000-07-24 2003-07-01 Northwestern University N-type thiophene semiconductors
WO2002009201A1 (en) * 2000-07-24 2002-01-31 Northwestern University n-TYPE THIOPHENE SEMICONDUCTORS
US6690029B1 (en) * 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
US6433359B1 (en) * 2001-09-06 2002-08-13 3M Innovative Properties Company Surface modifying layers for organic thin film transistors
US20030097010A1 (en) * 2001-09-27 2003-05-22 Vogel Dennis E. Process for preparing pentacene derivatives
KR20040044998A (ko) * 2001-09-27 2004-05-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 치환 펜타센 반도체
US6617609B2 (en) * 2001-11-05 2003-09-09 3M Innovative Properties Company Organic thin film transistor with siloxane polymer interface
US6946676B2 (en) * 2001-11-05 2005-09-20 3M Innovative Properties Company Organic thin film transistor with polymeric interface
US6906534B2 (en) * 2001-11-20 2005-06-14 3M Innovative Properties Company Breathable moisture barrier for an occupant sensing system
US6872801B2 (en) * 2002-01-11 2005-03-29 Xerox Corporation Polythiophenes and devices thereof
US6821348B2 (en) * 2002-02-14 2004-11-23 3M Innovative Properties Company In-line deposition processes for circuit fabrication
US6897164B2 (en) * 2002-02-14 2005-05-24 3M Innovative Properties Company Aperture masks for circuit fabrication
US20030151118A1 (en) * 2002-02-14 2003-08-14 3M Innovative Properties Company Aperture masks for circuit fabrication
WO2003095445A1 (en) 2002-05-07 2003-11-20 Lg Chem, Ltd. New organic compounds for electroluminescence and organic electroluminescent devices using the same
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
EP1539864B1 (en) * 2002-07-18 2006-09-20 Sharp Kabushiki Kaisha Dendritic polymer and electronic device element employing the polymer
US6803262B2 (en) * 2002-10-17 2004-10-12 Xerox Corporation Process using self-organizable polymer
US20040119049A1 (en) * 2002-12-04 2004-06-24 Martin Heeney Mono-, oligo- and poly-bis(thienyl) arylenes and their use as charge transport materials
US7098525B2 (en) * 2003-05-08 2006-08-29 3M Innovative Properties Company Organic polymers, electronic devices, and methods
US20050033263A1 (en) * 2003-08-07 2005-02-10 Medtronic-Minimed, Inc. System and method for restenosis mitigation
US7049629B2 (en) * 2003-08-22 2006-05-23 Xerox Corporation Semiconductor polymers and devices thereof
US8450723B2 (en) * 2003-11-04 2013-05-28 Alcatel Lucent Apparatus having an aromatic dielectric and an aromatic organic semiconductor including an alkyl chain
EP1687830B1 (en) 2003-11-28 2010-07-28 Merck Patent GmbH Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
KR101007787B1 (ko) * 2003-12-08 2011-01-14 삼성전자주식회사 퀴녹살린환을 주쇄에 포함하는 유기박막 트랜지스터용유기반도체 고분자
US7803885B2 (en) * 2004-03-17 2010-09-28 Dow Global Technologies Inc. Pentathienyl-fluorene copolymer
US7355199B2 (en) * 2004-11-02 2008-04-08 E.I. Du Pont De Nemours And Company Substituted anthracenes and electronic devices containing the substituted anthracenes
US7385221B1 (en) * 2005-03-08 2008-06-10 University Of Kentucky Research Foundation Silylethynylated heteroacenes and electronic devices made therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541288A (zh) * 2001-08-09 2004-10-27 ������������ʽ���� 有机半导体元件
US7002176B2 (en) * 2002-05-31 2006-02-21 Ricoh Company, Ltd. Vertical organic transistor
US6998068B2 (en) * 2003-08-15 2006-02-14 3M Innovative Properties Company Acene-thiophene semiconductors
US6828582B1 (en) * 2003-09-04 2004-12-07 Hitachi Ltd. Thin film transistor, display device and their production

Also Published As

Publication number Publication date
EP2011157A1 (en) 2009-01-07
ATE459104T1 (de) 2010-03-15
JP2009534853A (ja) 2009-09-24
JP5237264B2 (ja) 2013-07-17
CN101427381A (zh) 2009-05-06
US7495251B2 (en) 2009-02-24
DE602007004969D1 (de) 2010-04-08
WO2007124286A1 (en) 2007-11-01
US20070249087A1 (en) 2007-10-25
EP2011157A4 (en) 2009-05-06
EP2011157B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
CN101427381B (zh) 含有带甲硅烷基乙炔基基团的并苯-噻吩共聚物的电子器件
Peng et al. Polymer materials for energy and electronic applications
CN101410434B (zh) 含有并苯-噻吩共聚物的电子器件
Yang et al. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole
CN105731372B (zh) 含光活性聚合物的光伏电池
EP2321861B1 (en) Novel photoactive co- polymers
Tsai et al. Synthesis of new indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells
Wang et al. Design and synthesis of copolymers of indacenodithiophene and naphtho [1, 2-c: 5, 6-c] bis (1, 2, 5-thiadiazole) for polymer solar cells
Wu et al. Organic molecules based on dithienyl-2, 1, 3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells
Wang et al. Zinc tetraphenylporphyrin− fluorene branched copolymers: synthesis and light-emitting properties
Tsai et al. Synthesis of a 4, 9-didodecyl angular-shaped naphthodiselenophene building block to achieve high-mobility transistors
CN103189380A (zh) 含硫属元素的芳香族化合物、有机半导体材料和有机电子器件
CN102725331B (zh) 环戊二烯二噻吩-喹喔啉共聚物、其制备方法和应用
CN103108875A (zh) 含氮芳香族化合物、有机半导体材料及有机电子器件
CN105720210B (zh) 掺磷共轭低分子电解质及利用其的有机电子器件
Huang et al. Solution-processable polyphenylphenyl dendron bearing molecules for highly efficient blue light-emitting diodes
CN101479272A (zh) 作为有机半导体的二酮基吡咯并吡咯聚合物
Liu et al. A Dithienyl Benzotriazole‐based Polyfluorene: Synthesis and Applications in Polymer Solar Cells and Red Light‐Emitting Diodes
JP6135668B2 (ja) タンデム型有機光電変換素子およびこれを用いた太陽電池
CN103228698A (zh) 共轭聚合物系统及其应用
Hou et al. A novel tetrathiafulvalene-(TTF-) fused poly (aryleneethynylene) with an acceptor main chain and donor side chains: Intramolecular charge transfer (CT), stacking structure, and photovoltaic property
Lu et al. Conjugated polymers containing sulfonic acid fluorene unit for achieving multiple interfacial modifications in fullerene-free organic solar cells
KR102011872B1 (ko) 낮은 밴드 갭을 갖는 유기 반도체 화합물 및 이를 포함하는 트랜지스터와 전자 소자
Umeyama et al. Thermal conversion of precursor polymer to low bandgap conjugated polymer containing isothianaphthene dimer subunits
KR101838232B1 (ko) 유기반도체 화합물 및 그를 포함하는 유기전자소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111130

Termination date: 20170413

CF01 Termination of patent right due to non-payment of annual fee