CN101416286A - 以多退火步骤形成氮氧化硅栅极介电层的方法 - Google Patents

以多退火步骤形成氮氧化硅栅极介电层的方法 Download PDF

Info

Publication number
CN101416286A
CN101416286A CNA2007800124430A CN200780012443A CN101416286A CN 101416286 A CN101416286 A CN 101416286A CN A2007800124430 A CNA2007800124430 A CN A2007800124430A CN 200780012443 A CN200780012443 A CN 200780012443A CN 101416286 A CN101416286 A CN 101416286A
Authority
CN
China
Prior art keywords
silicon oxynitride
oxynitride film
milli
oxygen
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800124430A
Other languages
English (en)
Other versions
CN101416286B (zh
Inventor
C·S·奥尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN101416286A publication Critical patent/CN101416286A/zh
Application granted granted Critical
Publication of CN101416286B publication Critical patent/CN101416286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

所揭示的为一种在处理室中处理半导体基材的方法,包括利用一种两-步骤退火的工艺来形成氧氮化硅膜层。第一退火步骤包括在分压约1~100毫托耳的氧化气体下将该氧氮化硅膜退火,且第二退火步骤包括在流速约1slm的氧气下将该氧氮化硅膜退火。第一退火步骤是在比第二退火步骤更高温且更高压力下实施。

Description

以多退火步骤形成氮氧化硅栅极介电层的方法
技术领域
本发明实施方案大致是有关形成氧氮化硅膜层的半导体处理。更详细地说,本发明是有关一种用来形成氧氮化硅膜层的方法,其是利用包含等离子氮化以及一种两-步骤退火的工艺来完成。
背景技术
随着集成电路和晶体管的组件几何尺寸日渐缩减,所需用以驱动晶体管栅极的电流也日益升高。已知晶体管的栅极驱动电流会随其栅极电容增加而增加,且栅极电容等于k×A/d,其中k是该栅极介电质(通常是二氧化硅)的介电常数,d是该介电质的厚度,且A是栅极接点面积。因此,降低介电质的厚度与提高栅极介电质的介电常数是两种可用来提高栅极电容与驱动电流的方式。
已有人尝试减少介电质的厚度,例如降低二氧化硅层的厚度到以下。但是,使用厚度低于的二氧化硅介电质经常会造成效能不佳及耐用性降低。举例来说,在掺有硼的电极中,硼原子会从电极渗出穿过薄的二氧化硅介电质而进入其下方的硅基材中。此外,还会出现不乐见的栅极漏电流(即,通道电流(channel current))现象,因而增加栅极的耗电量。薄二氧化硅栅极介电质也较易受到负型通道金氧半导体(negative-channelmetal-oxide semiconductor,NMOS)热载子裂变、以及正型通道金氧半导体(NMOS)负偏压温度不稳(negative bias temperature instability,NBTI)定现象的影响。
将二氧化硅层氮化已是习用以降低二氧化硅介电质厚度到以下的方法。以等离子氮化将氮原子并入至栅极氧化物中。氮化可在电极/氧化物界面中提供高浓度的氮原子。此界面中高浓度的氮原子可防止硼原子渗透进入栅极氧化物中。相反的,该栅极氧化物块材在等离子氮化过程中。仅掺杂有微量的氮原子。块材中低量的氮原子导致膜层具有较原来氧化物膜层厚度为低的等效氧化物层厚度(equivalent oxide thickness,EOT),因而可减少栅极漏电流。较佳是提供一种EOT<
Figure A200780012443D0006101712QIETU
的介电质。
氮化后将氧氮化硅膜层退火可改善通道电子的迁移力,但代价是会造成EOT上升,此可在传统氧氮化硅膜层退火过程中执行尖峰瞬间导电度量测中观察到。相对于在较高EOT厚度下,通道电子的迁移力在较低EOT厚度下的裂变较快。此外,较高的EOT值也会降低传统退火的氧氮化硅膜层的驱动电流,因此,需要一种可使膜层具有欲求的通道电子迁移力、驱动电流和EOT的退火工艺。
发明内容
本发明提供一种用以形成具有欲求的通道电子迁移力和驱动电流的氧氮化硅薄层的制备方法。依据本发明一实施方案,该方法包括以1~100毫托耳的氧化气体(其可为氧气、氧化二氮或氧化氮)将氧氮化硅层退火,和以约1slm的氧气将该氧氮化硅层退火。以1~100毫托耳的氧化气体将氧氮化硅层退火的步骤,是在较以约1slm的氧气将该氧氮化硅层退火的步骤所需的更高温度与更高压力下进行。
附图说明
图1为用以处理半导体基材的群集工具的分解示意图。
图2为用以形成一种氧氮化硅膜层的方法流程图。
图3为以各种处理条件(其是在两步骤处理的两个步骤中均包括有氧气)所形成的膜层的有效氧化物厚度与饱和驱动电流的关系。
主要组件符号说明
100      群集工具               102、104      负载锁定室
106、108       快速热退火或处理室
110            去耦合等离子氮室          112     沉积室
114            冷却室                    116     基材处理工具
118            基材                      200     方法
202、208       步骤                      204     第一步骤
206            第二步骤
具体实施方式
在阅读过以下包括附图及申请专利范围的详细说明后,将可更了解本发明上述特征。但须知,本发明范畴并不仅限于所揭示实施例中。
图1为一群集工具100的示意图,用以依据本发明各种实施方案来处理半导体基材。此群集工具100的实例的一为应用材料公司出品的GATESTACK CENTU RATM群集工具。此群集工具100包括负载锁定室102、104,快速热退火或处理室(rapid thermal anneal or process,RTP)106、108,去耦合等离子氮化(decoupled plasma nitridation,DPN)室110,沉积室112,及冷却室114。此群集工具100也包括一用来传送基材118进出一特定处理室的基材处理工具116。
基材处理工具116位在一与其周围各处理室连通的中央传送室中。欲处理的基材是位在负载锁定室102、104中。沉积室112是一种化学或物理气相沉积室,其可被用来在一半导体基材上形成一膜或一层。
RTP处理室106、108可用来在减压下(例如,约等于或小于10托耳)执行快速热处理。可用的RTP处理室实例包括应用材料公司出品的RADIANCE XETM、RADIANCE XE PLUSTM和RADIANCETM RTP。、
图2为用来形成一退火的氧氮化硅层的方法200的流程图。一开始,先处理一基板以于该基板表面上形成一层氧化硅层。接着,在步骤202中,以一诸如热氮化或等离子氮化的类的氮化工艺来处理该氧化硅层,以形成一层氧氮化硅层。使用等离子氮化工艺来形成氧氮化硅层的方法揭示在2003年6月12日提申的美国专利申请案10/461,143中,其全文在此并入作为参考。
待形成氧氮化硅层后,让该氧氮化硅层经歴一种两-步骤式的退火处理。此退火处理的第一步骤204是在一处理室压约为100毫托耳至800托耳间,约700℃或更高温度下实施约1~120秒。此退火处理的第一步骤204可以在含有一惰性、还原、氧化或上述的混合的气体环境下实施。适合的惰性气体包括氮气、氦气及氩气。适合的还原气体包括氢气。适合的氧化气体包括氧气、氧化二氮、氧化氮及臭氧。上述这些气体的混合气体包括由氮气与氧气组成的混合气体。
氧气流速是以分压表示,至于其它压力则是由流入处理室中的其它气体(例如,氮气)分压来平衡。当提供氧气时,须选择氧气流速使其可提供约1~100毫托耳的氧气分压。如果第一退火步骤是在约1000℃下实施,则此氧气分压较佳是在约1~15毫托耳的氧气间。如果第一退火步骤是在约1050℃下实施,则此氧气分压较佳是在约10~50毫托耳的氧气间。如果第一退火步骤是在约1100℃下实施,则此氧气分压较佳是在约75~200毫托耳间。一般并不乐见在第一退火步骤添加太多的氧气,因为可能会造成过度氧化。
为比较由数种以各流速的氮气与氧气组成的组合在三种不同热退火温度下所形成的膜层性质,而观察并纪录饱和驱动电流(其是为栅极电流密度的函数)。对一使用约10~50毫托耳氧气的工艺来说,当其第一退火步骤是在1050℃下实施时,其最大饱和驱动电流出现在栅极电流密度为100mA/mm2时。
该退火处理的第二步骤206是在约10~100毫托耳的较低压力及约900~1100℃温度下实施。该第二退火步骤206是实施约1~120秒。可控制该第二步骤206使其能增加氧氮化硅层EOT约
Figure A200780012443D0008101809QIETU
。可将氧气及其它氧化气体引入至RTP室。氧化气体包括氧气、氧化二氮、氧化氮及臭氧。在一较佳的该第二退火步骤206中,以可提供约0.5~3.0托耳的氧气分压的速率将氧气流入处理室中约15秒。举例,可使用约1slm的速率来提供此范围的氧气分压。
在第二退火步骤206之后,可在该群集工具的另一处理室内形成一帽盖层于氧氮化硅层表面上(步骤208)。可在该群集工具内执行其它额外的处理或是将基板转移至其另一工具中。
图3为以各种处理条件(包括本发明实施例的处理条件)所形成的膜层的有效氧化物厚度与饱和驱动电流的关系。空心圆圈代表在1000℃下以0.5托耳氧气(每一影化步骤中其余气体部份均为氮气)实施15秒的一步骤退火,实心圆圈则代表在1000℃下以氮气实施15秒的第一退火步骤加上以0.5托耳氧气实施15秒的第二退火步骤。实心三角形代表在1000℃下以氮气实施45秒的第一退火步骤加上以0.5托耳氧气实施15秒的第二退火步骤。至于实心方形则代表在950℃下以氮气实施45秒的第一退火步骤加上以0.5托耳氧气实施15秒的第二退火步骤。依据这些结果,本发明中两步骤的退火处理结果远较一步骤的退火处理来得优异。此外,较佳是在两步骤退火处理的第一步骤同时使用氧气和氮气。但是,须知这是较佳实施例,本发明尚涵盖其它实施方案。
依据本发明实施方案,可观察到以各种工艺条件形成的膜层,其氧气分压为温度的函数。相较于不使用氧气的第一退火步骤于1000℃、1050℃、及1100℃所形成的组件而言,使用氧气在第一退火步骤中所形成的大部份组件比较能被接受。这些结果显示,相较于不在退火期间添加氧气的组件来说,于高温下实施的第一退火步骤期间添加氧气可提供更多无缺陷的组件。
虽然本发明已揭示如上,习知技艺人士应知在不悖离本发明精神范畴下,仍可对本发明技术作多种改良与修饰,这些改良与修饰仍应被视为涵盖在权利要求中。

Claims (20)

1.一种用以处理半导体基材的方法,包含:
形成氧氮化硅膜层;
在分压约1~100毫托耳的氧化气体存在下,将该氧氮化硅膜层退火;及
以分压约0.5~3.0托耳的氧气,将该氧氮化硅膜层退火。
2.如权利要求1所述的方法,其中该形成氧氮化硅膜层的步骤以等离子氮化来实施。
3.如权利要求1所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤是在约700℃或更高温度下实施。
4.如权利要求3所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤是在约1000℃~1100℃间实施。
5.如权利要求1所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤是实施约1~120秒。
6.如权利要求1所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤是在处理室压约100毫托耳至800托耳间实施。
7.如权利要求1所述的方法,其中该氧化气体是选自氧气、氧化二氮、氧化氮及臭氧中。
8.如权利要求1所述的方法,其中该氧化气体为氧气。
9.如权利要求1所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤更包含以一还原气体将该氧氮化硅膜层退火。
10.如权利要求9所述的方法,其中该还原气体是氢气。
11.如权利要求1所述的方法,其中该在分压约1~100毫托耳的氧化气体存在下将该氧氮化硅膜层退火的步骤更包含以一惰性气体将该氧氮化硅膜层退火。
12.如权利要求11所述的方法,其中该惰性气体是选自氮气、氦气及氩气。
13.如权利要求1所述的半导体组件,其中在以氧气将该氧氮化硅膜层退火的步骤中,氧气的流速约为1slm且是在约900℃至约1100℃下实施。
14.如权利要求1所述的方法,其中在以氧气将该氧氮化硅膜层退火的步骤中,氧气的流速约为1slm且是在约10毫托耳至约100托耳的压力下实施。
15.如权利要求1所述的方法,其中该以分压约0.5~3.0托耳的氧气将该氧氮化硅膜层退火的步骤,是实施约1秒至约120秒。
16.一种用以退火一处理室中具有氧氮化硅膜层的半导体基材的方法,包含:
在约1000℃至约1100℃的温度下,将约1~100毫托耳的氧化气体流入该处理室中;
以约1slm流速将约0.5~3托耳的氧气流入该处理室中;
其中该将约1~100毫托耳的氧化气体流入该处理室中的步骤是在较该将约0.5~3托耳的氧气流入该处理室的步骤更高温度与更高处理室压下实施。
17.如权利要求16所述的方法,其中该将约1~100毫托耳的氧化气体流入该处理室中的步骤是在约1000℃的温度下实施。
18.如权利要求16所述的方法,其中该将约1~100毫托耳的氧化气体流入该处理室中的步骤是实施约1秒至约120秒。
19.如权利要求16所述的方法,其中该将约1~100毫托耳的氧化气体流入该处理室中的步骤是在处理室压约100毫托耳至约800托耳下实施。
20.如权利要求16所述的方法,其中该氧化气体是选自氧气、氧化二氮、氧化氮及臭氧中。
CN2007800124430A 2006-04-03 2007-03-30 以多退火步骤形成氮氧化硅栅极介电层的方法 Active CN101416286B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/397,010 US7429540B2 (en) 2003-03-07 2006-04-03 Silicon oxynitride gate dielectric formation using multiple annealing steps
US11/397,010 2006-04-03
PCT/US2007/065650 WO2007118031A2 (en) 2006-04-03 2007-03-30 Silicon oxynitride gate dielectric formation using multiple annealing steps

Publications (2)

Publication Number Publication Date
CN101416286A true CN101416286A (zh) 2009-04-22
CN101416286B CN101416286B (zh) 2012-12-12

Family

ID=38581764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800124430A Active CN101416286B (zh) 2006-04-03 2007-03-30 以多退火步骤形成氮氧化硅栅极介电层的方法

Country Status (6)

Country Link
US (1) US7429540B2 (zh)
JP (1) JP5105627B2 (zh)
KR (1) KR101014938B1 (zh)
CN (1) CN101416286B (zh)
TW (1) TWI375276B (zh)
WO (1) WO2007118031A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446728A (zh) * 2010-09-30 2012-05-09 东京毅力科创株式会社 绝缘膜的改性方法
CN103871955A (zh) * 2014-03-31 2014-06-18 上海华力微电子有限公司 一种栅介质等效氧化层厚度控制方法
CN114765234A (zh) * 2022-03-23 2022-07-19 山西潞安太阳能科技有限责任公司 一种p型晶硅双面电池退火增强背钝化方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7902080B2 (en) * 2006-05-30 2011-03-08 Applied Materials, Inc. Deposition-plasma cure cycle process to enhance film quality of silicon dioxide
US7790634B2 (en) * 2006-05-30 2010-09-07 Applied Materials, Inc Method for depositing and curing low-k films for gapfill and conformal film applications
US7825038B2 (en) * 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US20070277734A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US8232176B2 (en) 2006-06-22 2012-07-31 Applied Materials, Inc. Dielectric deposition and etch back processes for bottom up gapfill
US7902018B2 (en) 2006-09-26 2011-03-08 Applied Materials, Inc. Fluorine plasma treatment of high-k gate stack for defect passivation
US7942965B2 (en) * 2007-03-19 2011-05-17 Applied Materials, Inc. Method of fabricating plasma reactor parts
US7910446B2 (en) * 2007-07-16 2011-03-22 Applied Materials, Inc. Integrated scheme for forming inter-poly dielectrics for non-volatile memory devices
US8008166B2 (en) * 2007-07-26 2011-08-30 Applied Materials, Inc. Method and apparatus for cleaning a substrate surface
US7575986B2 (en) * 2007-08-08 2009-08-18 Applied Materials, Inc. Gate interface relaxation anneal method for wafer processing with post-implant dynamic surface annealing
US7745352B2 (en) * 2007-08-27 2010-06-29 Applied Materials, Inc. Curing methods for silicon dioxide thin films deposited from alkoxysilane precursor with harp II process
US7943531B2 (en) * 2007-10-22 2011-05-17 Applied Materials, Inc. Methods for forming a silicon oxide layer over a substrate
US7803722B2 (en) * 2007-10-22 2010-09-28 Applied Materials, Inc Methods for forming a dielectric layer within trenches
US7867923B2 (en) 2007-10-22 2011-01-11 Applied Materials, Inc. High quality silicon oxide films by remote plasma CVD from disilane precursors
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7638442B2 (en) * 2008-05-09 2009-12-29 Promos Technologies, Inc. Method of forming a silicon nitride layer on a gate oxide film of a semiconductor device and annealing the nitride layer
US8357435B2 (en) 2008-05-09 2013-01-22 Applied Materials, Inc. Flowable dielectric equipment and processes
JP2010021378A (ja) * 2008-07-11 2010-01-28 Tokyo Electron Ltd シリコン酸窒化膜の形成方法および形成装置
KR101410429B1 (ko) * 2008-09-05 2014-07-03 삼성전자주식회사 비휘발성 기억 소자 및 그 형성 방법
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US8741788B2 (en) 2009-08-06 2014-06-03 Applied Materials, Inc. Formation of silicon oxide using non-carbon flowable CVD processes
US7935643B2 (en) * 2009-08-06 2011-05-03 Applied Materials, Inc. Stress management for tensile films
US7989365B2 (en) 2009-08-18 2011-08-02 Applied Materials, Inc. Remote plasma source seasoning
US8449942B2 (en) 2009-11-12 2013-05-28 Applied Materials, Inc. Methods of curing non-carbon flowable CVD films
SG181670A1 (en) 2009-12-30 2012-07-30 Applied Materials Inc Dielectric film growth with radicals produced using flexible nitrogen/hydrogen ratio
US8329262B2 (en) 2010-01-05 2012-12-11 Applied Materials, Inc. Dielectric film formation using inert gas excitation
CN102754193A (zh) 2010-01-06 2012-10-24 应用材料公司 使用氧化物衬垫的可流动电介质
KR101837648B1 (ko) 2010-01-07 2018-04-19 어플라이드 머티어리얼스, 인코포레이티드 라디칼-컴포넌트 cvd를 위한 인­시츄 오존 경화
WO2011109148A2 (en) 2010-03-05 2011-09-09 Applied Materials, Inc. Conformal layers by radical-component cvd
US8236708B2 (en) 2010-03-09 2012-08-07 Applied Materials, Inc. Reduced pattern loading using bis(diethylamino)silane (C8H22N2Si) as silicon precursor
US7994019B1 (en) 2010-04-01 2011-08-09 Applied Materials, Inc. Silicon-ozone CVD with reduced pattern loading using incubation period deposition
US8476142B2 (en) 2010-04-12 2013-07-02 Applied Materials, Inc. Preferential dielectric gapfill
US8524004B2 (en) 2010-06-16 2013-09-03 Applied Materials, Inc. Loadlock batch ozone cure
US8318584B2 (en) 2010-07-30 2012-11-27 Applied Materials, Inc. Oxide-rich liner layer for flowable CVD gapfill
US8450221B2 (en) * 2010-08-04 2013-05-28 Texas Instruments Incorporated Method of forming MOS transistors including SiON gate dielectric with enhanced nitrogen concentration at its sidewalls
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US8664127B2 (en) 2010-10-15 2014-03-04 Applied Materials, Inc. Two silicon-containing precursors for gapfill enhancing dielectric liner
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8450191B2 (en) 2011-01-24 2013-05-28 Applied Materials, Inc. Polysilicon films by HDP-CVD
US8716154B2 (en) 2011-03-04 2014-05-06 Applied Materials, Inc. Reduced pattern loading using silicon oxide multi-layers
US8445078B2 (en) 2011-04-20 2013-05-21 Applied Materials, Inc. Low temperature silicon oxide conversion
KR101858524B1 (ko) 2011-05-26 2018-05-18 삼성전자주식회사 반도체 소자의 제조 방법
US8466073B2 (en) 2011-06-03 2013-06-18 Applied Materials, Inc. Capping layer for reduced outgassing
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8617989B2 (en) 2011-09-26 2013-12-31 Applied Materials, Inc. Liner property improvement
US8551891B2 (en) 2011-10-04 2013-10-08 Applied Materials, Inc. Remote plasma burn-in
KR101929384B1 (ko) 2012-05-24 2018-12-14 삼성전자주식회사 선택적으로 질화처리된 게이트 절연막을 갖는 반도체 장치의 제조 방법
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10633740B2 (en) 2018-03-19 2020-04-28 Applied Materials, Inc. Methods for depositing coatings on aerospace components
EP3784815A4 (en) 2018-04-27 2021-11-03 Applied Materials, Inc. PROTECTION OF COMPONENTS AGAINST CORROSION
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
US11145504B2 (en) 2019-01-14 2021-10-12 Applied Materials, Inc. Method of forming film stacks with reduced defects
WO2020219332A1 (en) 2019-04-26 2020-10-29 Applied Materials, Inc. Methods of protecting aerospace components against corrosion and oxidation
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
EP4175772A1 (en) 2020-07-03 2023-05-10 Applied Materials, Inc. Methods for refurbishing aerospace components

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725560A (en) 1986-09-08 1988-02-16 International Business Machines Corp. Silicon oxynitride storage node dielectric
US6136654A (en) 1996-06-07 2000-10-24 Texas Instruments Incorporated Method of forming thin silicon nitride or silicon oxynitride gate dielectrics
US5939763A (en) * 1996-09-05 1999-08-17 Advanced Micro Devices, Inc. Ultrathin oxynitride structure and process for VLSI applications
JP3641342B2 (ja) 1997-03-07 2005-04-20 Tdk株式会社 半導体装置及び有機elディスプレイ装置
US7115461B2 (en) * 1997-07-24 2006-10-03 Texas Instruments Incorporated High permittivity silicate gate dielectric
US6020243A (en) 1997-07-24 2000-02-01 Texas Instruments Incorporated Zirconium and/or hafnium silicon-oxynitride gate dielectric
US6321134B1 (en) 1997-07-29 2001-11-20 Silicon Genesis Corporation Clustertool system software using plasma immersion ion implantation
US6911371B2 (en) 1997-12-19 2005-06-28 Micron Technology, Inc. Capacitor forming methods with barrier layers to threshold voltage shift inducing material
US6087701A (en) 1997-12-23 2000-07-11 Motorola, Inc. Semiconductor device having a cavity and method of making
KR19990056733A (ko) * 1997-12-29 1999-07-15 김영환 반도체 소자의 게이트 절연막 제조방법
US6162744A (en) * 1998-02-28 2000-12-19 Micron Technology, Inc. Method of forming capacitors having high-K oxygen containing capacitor dielectric layers, method of processing high-K oxygen containing dielectric layers, method of forming a DRAM cell having having high-K oxygen containing capacitor dielectric layers
US6063704A (en) 1999-08-02 2000-05-16 National Semiconductor Corporation Process for incorporating silicon oxynitride DARC layer into formation of silicide polysilicon contact
US6444555B2 (en) 1999-12-07 2002-09-03 Advanced Micro Devices, Inc. Method for establishing ultra-thin gate insulator using anneal in ammonia
KR100502557B1 (ko) 2000-09-18 2005-07-21 동경 엘렉트론 주식회사 게이트 절연체의 성막 방법, 게이트 절연체의 성막 장치및 클러스터 툴
DE60143541D1 (de) * 2000-09-19 2011-01-05 Mattson Tech Inc Verfahren zur ausbildung dielektrischer filme
US6365518B1 (en) 2001-03-26 2002-04-02 Applied Materials, Inc. Method of processing a substrate in a processing chamber
US7125783B2 (en) 2001-04-18 2006-10-24 Integrated Device Technology, Inc. Dielectric anti-reflective coating surface treatment to prevent defect generation in associated wet clean
US6548366B2 (en) 2001-06-20 2003-04-15 Texas Instruments Incorporated Method of two-step annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
US6632747B2 (en) 2001-06-20 2003-10-14 Texas Instruments Incorporated Method of ammonia annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
US20030000645A1 (en) 2001-06-27 2003-01-02 Dornfest Charles N. Apparatus and method for reducing leakage in a capacitor stack
US6642156B2 (en) * 2001-08-01 2003-11-04 International Business Machines Corporation Method for forming heavy nitrogen-doped ultra thin oxynitride gate dielectrics
JP3619795B2 (ja) * 2001-08-31 2005-02-16 株式会社東芝 半導体装置の製造方法
US6821873B2 (en) 2002-01-10 2004-11-23 Texas Instruments Incorporated Anneal sequence for high-κ film property optimization
US20080090425A9 (en) 2002-06-12 2008-04-17 Christopher Olsen Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
EP1512170A2 (en) 2002-06-12 2005-03-09 Applied Materials, Inc. Method for improving nitrogen profile in plasma nitrided gate dielectric layers
US6780720B2 (en) 2002-07-01 2004-08-24 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
US6649538B1 (en) 2002-10-09 2003-11-18 Taiwan Semiconductor Manufacturing Co. Ltd. Method for plasma treating and plasma nitriding gate oxides
JP4895803B2 (ja) 2003-02-04 2012-03-14 アプライド マテリアルズ インコーポレイテッド 誘電体膜及びゲートスタックの形成方法並びに誘電体膜の処理方法
US20050130448A1 (en) * 2003-12-15 2005-06-16 Applied Materials, Inc. Method of forming a silicon oxynitride layer
JP4965849B2 (ja) * 2004-11-04 2012-07-04 東京エレクトロン株式会社 絶縁膜形成方法およびコンピュータ記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446728A (zh) * 2010-09-30 2012-05-09 东京毅力科创株式会社 绝缘膜的改性方法
CN103871955A (zh) * 2014-03-31 2014-06-18 上海华力微电子有限公司 一种栅介质等效氧化层厚度控制方法
CN114765234A (zh) * 2022-03-23 2022-07-19 山西潞安太阳能科技有限责任公司 一种p型晶硅双面电池退火增强背钝化方法
CN114765234B (zh) * 2022-03-23 2024-04-02 山西潞安太阳能科技有限责任公司 一种p型晶硅双面电池退火增强背钝化方法

Also Published As

Publication number Publication date
US20060178018A1 (en) 2006-08-10
CN101416286B (zh) 2012-12-12
US7429540B2 (en) 2008-09-30
TW200802608A (en) 2008-01-01
WO2007118031A3 (en) 2007-12-13
JP2009532915A (ja) 2009-09-10
WO2007118031A2 (en) 2007-10-18
JP5105627B2 (ja) 2012-12-26
TWI375276B (en) 2012-10-21
KR20080113088A (ko) 2008-12-26
KR101014938B1 (ko) 2011-02-15

Similar Documents

Publication Publication Date Title
CN101416286A (zh) 以多退火步骤形成氮氧化硅栅极介电层的方法
CN101208782B (zh) 用于等离子氮化栅极介电层的氮化后二阶段退火的方法
CN1757098B (zh) 利用具有氨的超低压快速热退火调节氧氮化硅的氮分布曲线
Onishi et al. Improvement of surface carrier mobility of HfO/sub 2/MOSFETs by high-temperature forming gas annealing
TW440970B (en) Chemical vapor deposition of silicate high dielectric constant materials
US20040175961A1 (en) Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
US7569502B2 (en) Method of forming a silicon oxynitride layer
US20050282400A1 (en) Method of forming a dielectric film
CN100382332C (zh) 半导体器件及其制造方法
US8748996B2 (en) Semiconductor device including SiON gate dielectric with portions having different nitrogen concentrations
US7001852B2 (en) Method of making a high quality thin dielectric layer
CN100380609C (zh) 半导体基片的uv增强的氧氮化
CN101577225A (zh) 形成氮化硅层于栅极氧化物膜上的制备方法
Tsai et al. The effects of thermal nitridation conditions on the reliability of thin nitrided oxide films
Kang et al. Ultrathin HfO2 (EOT< 0.75 nm) Gate Stack with TaN∕ HfN Electrodes Fabricated Using a High-Temperature Process
CN102543704B (zh) 栅极氧化层的形成方法
Kamiyama et al. Impact of Interface Layer Nitrogen Concentration on HfO2∕ Hf-Silicate/Poly-Si–Based MOSFET Performance
Sah Silicon Nitride, Silicon Dioxide Thin Insulating Films, and Other Emerging Diele [c] trics VIII: Proceedings of the International Symposium
Kamiyama et al. Comparison of the electrical properties of poly-Si/Hf-silicate gate stacks fabricated by ALD employing BDMAS and TDMAS precursors
CN107305842A (zh) 栅介电层的制造方法
Beck Ultrathin oxynitride films for CMOS technology
Chen et al. Nitrogen implantation and in situ HF vapor clean for deep submicrometer n-MOSFETs
JP2007500946A (ja) 自己制限的界面酸化による超極薄酸化物層および酸窒化物層の形成。
TAKIYAMA et al. Influences of Magnesium and Zinc Contaminations on Dielectric Breakdown Strength of MOS Capacitors
TW502320B (en) Method for producing gate dielectric layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: American California

Applicant after: Applied Materials Inc.

Address before: American California

Applicant before: Applied Materials Inc.

C14 Grant of patent or utility model
GR01 Patent grant