CN100380609C - 半导体基片的uv增强的氧氮化 - Google Patents

半导体基片的uv增强的氧氮化 Download PDF

Info

Publication number
CN100380609C
CN100380609C CNB038055767A CN03805576A CN100380609C CN 100380609 C CN100380609 C CN 100380609C CN B038055767 A CNB038055767 A CN B038055767A CN 03805576 A CN03805576 A CN 03805576A CN 100380609 C CN100380609 C CN 100380609C
Authority
CN
China
Prior art keywords
radiation
atmosphere
semiconductor chip
under
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038055767A
Other languages
English (en)
Other versions
CN1656606A (zh
Inventor
S·-P·泰
Y·-Z·胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mattson Technology Inc
Original Assignee
Mattson Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mattson Technology Inc filed Critical Mattson Technology Inc
Publication of CN1656606A publication Critical patent/CN1656606A/zh
Application granted granted Critical
Publication of CN100380609C publication Critical patent/CN100380609C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

当使半导体基片暴露于O2与N2、N2O、H2和NH3中的一种或多种的气氛下时,通过使该基片经受UV辐射而在半导体基片上形成氧氮化物层或氧化层。此后,根据已知的四步栅叠介电处理技术形成氮化硅层。或者,使用三步栅叠法,即在UV氧化后,在NH3中进一步施加UV辐射,随后在惰性环境中进行快速热退火处理。通过使用UV氧化作为四步或三步栅叠法中的第一步,可以获得当量氧化物厚度(EOT)小于16和低至14.2的非常薄的复合介电膜,同时泄漏电流密度显著改善。

Description

半导体基片的UV增强的氧氮化
发明领域
本发明一般涉及形成ULSI用超薄介电膜的方法。当用于由化学汽相沉积(CVD)法在硅半导体基片上形成氧氮化物薄膜时,该方法具有特别的优点。
发明背景
集成电路目前的趋势是当制造金属氧化物半导体(MOS)时使用超薄介电膜。典型地,通过在基本为纯氧的气氛中热氧化半导体硅片来形成栅氧化层(gate oxide layer)。然而,在超大规模集成(ULSI)电路中,金属氧化物半导体场效应半导体管(MOSFET)中的这种栅氧化层显示出不需要的特性,如相对高的缺陷密度和电荷陷获(charge trapping),以及相对低的可靠性和低的抗热载流子效应。为了获得非常薄的、具有所需当量氧化物厚度(equivalentoxide thickness,EOT)的介电膜,以及满足性能规格所需的所有其它质量要求,已对复合氧化物-氮化物介电体进行了实验。虽然氧氮化物中较高的氮含量是有益的,但其也可以使半导体管的迁移率下降。
一旦清洁了半导体基片表面,就对其进行一系列快速热加热处理(RTP)来形成多层栅叠(gate stack)。这些方法通常由以下步骤组成:(1)用一氧化氮(NO)生成氧氮化物层;(2)用快速热化学汽相沉积(RTCVD)法沉积氮化硅(SiNx)层;(3)在氨(NH3)环境中快速热退火该具有SiNx层的基片;和(4)在N2O环境中快速热退火该基片。在四步栅叠介电体生长中,通常认为这4个步骤是标准的。
第一步是最关键的。氧氮化物层生长步骤的目的如下:获得栅叠介电膜的非常薄的EOT;生成具有合适氮含量的氧氮化物层;生成这样的氧氮化物层,该氧氮化物层使施加在其上的氮化硅优质生长;和获得半导体管的高迁移率。
最通常地,用快速热NO或O2氧化来形成氧氮化物膜,其中将该基片在NO或O2气体的气氛中快速加热达控制的、通常很短的时间。当这种快速热NO或O2氧化是四步栅叠介电体生长法中的第一步时,最终在半导体上形成的介电膜的EOT几乎总是大于16埃()。在制造越来越薄栅叠介电体的趋势下,需要更薄的并且具有良好性能的氧氮化物层。不幸的是,当氧氮化物的EOT低于16时,生成的介电膜迅速变差,即漏电流密度显著增加。
已经发现,当氮化物层的物理厚度约为25和更低时,不理想地,发现沉积在二氧化硅层上的CVD氮化硅薄膜的表面粗糙度高(即,均方根(RMS)粗糙度约为10,甚至高达20)。已出版的研究论文表明,直到氮化硅薄膜的物理厚度超过约20才出现氮化物成核岛(nucleation island)的聚集。见H.Resinger和A.Spitzer,“Electrical Breakdown Induced by Silicon Nitride Roughnessin Thin Oxide-Nitride-Oxide Films,”J.Appl.Phys.,第79卷,第3028页(1996);M.Copel等人,“Nucleation of ChemicalVapor Deposited Silicon Nitride on Silicon Dioxide,”Appl.Phys.Lett.,第74卷,第1830页(1999);和Y.Hu等人,“An In-SituReal Time Measurement of the Incubation Time for Si Nucleationon SiO2 in a Rapid Thermal Process,”Appl.Phys.Lett.,第66卷,第700页(1995)。因此,由于在氧化层上生长氮化硅膜看起来是依赖于具有足够的成核位置,所以较薄的氮化物膜具有不能接受的表面粗糙度,而这样的表面粗糙度导致不能接受的栅介电特性。
近年来,一些研究表明,远距离等离子氧化可以改善超薄型氧化物界面。见Lucovsky等人,Appl.Phys.Lett.,第74卷,第2005页(1999)。不幸的是,远距离等离子氧化需要专用的处理设备,且使用起来复杂。因此仍然在寻找形成更多成核位置并降低薄氮化硅膜表面粗糙度的其它方法。此外,也仍然在寻找形成EOT更低且漏电流密度更低的介电膜的其它方法。
发明概述
根据本发明,使用UV氧化作为四步栅叠介电体生长法中的第一步而在半导体基片上形成氧氮化物层。与现有技术快速热NO或O2氧化相比,在我们的方法中,使半导体基片同时暴露于UV辐射与含O2和选自N2、NH3、N2O和H2中一种或多种气体的气态气氛下。优选地,半导体基片是硅。优选地,在约100-150℃的温度(优选为130℃)、约80-120托(优选为100托)的压力下,通过使基片表面暴露于(1)UV辐射(最大功率200瓦特的约50%-100%的功率,优选为70%的功率)和(2)气态气氛下约30-90秒(优选为60秒)而在基片表面上形成氧氮化物层。优选地,以约100-500SCCM(标准立方厘米/分钟)的流量引入O2,以约2,000-3,000SCCM的流量引入N2、NH3、N2O和/或H2,其中O2气体不到气氛中混合物的约20%。最优选地,该气氛由O2和N2气体组成,其中O2气体占气氛中混合物的约2-12%。
根据本发明,在通过UV氧化施加了氧氮化物层之后,进行已知四步栅叠法的其余步骤。通常使用化学汽相沉积将氮化硅层施加到氧氮化物层上。在有NH3气氛的情况下对具有SiNx层的基片退火,然后在有N2O气氛的情况下进行进一步退火。
在另一个优选的实施方案中,使半导体基片表面同时暴露于UV辐射与含O2和选自N2、NH3、N2O和H2中一种或多种气体的气氛下。在形成氧氮化物层之后,使半导体基片暴露于UV辐射和含NH3的气氛下。在约100-200℃(优选为150℃)的温度、约10-200托(优选为100托)的压力下,以约0.2-1.0SLPM(标准升/分钟)的流量引入NH3。在设置为最高功率200瓦特的约50-100%的功率(优选为70%的功率)下,施加UV辐射约2-30秒。然后,在约800-1000℃的温度下,在惰性环境(优选为流量为0.5-2 SLPM的N2)中,使用快速热处理对该基片退火约30-60秒。
已经发现,通过使用UV氧化作为四步(例如图1)栅介电生长法中的第一步,可以获得EOT值低于16埃()和低至14.2的复合介电膜。得到的介电膜的相关漏电流密度也非常低,在1.0E-01A/cm2的数量级。这比从现有技术(图3中的实线)中推断的值低一个数量级以上。
ITRS(International Technology Roadmap for Semiconductor,国际半导体技术线路图)规定要求,对于100纳米技术结点(node),栅介电的EOT应该为10厚,同时漏电流密度低于1.0A/cm2。预计,三步法(例如,图2)将产生质量相同或更好的介电体。因此,本方法提高了在半导体基片表面上形成的介电膜的质量。
附图简述
图1是本发明第一个实施方案的四步栅叠介电体生长法的示意流程图;
图2是本发明另一个实施方案的三步栅叠介电体生长法的示意流程图;和
图3是这样一幅图,该图将(i)当使用UV氧化来施加氧氮化物层时,和(ii)当使用常规的快速热处理来施加氧氮化物层时形成的栅叠介电膜的漏电流密度与当量氧化物厚度(EOT)的关系进行了对比。
优选实施方案详述
图1以示意图的形式描述了本发明的方法。在方法10的一个实施方案中,四步栅叠法的第一步12包括用UV氧化形成氧氮化物。第二步14包括使用快速热化学汽相沉积(CVD)法在该氧氮化物层上沉积氮化硅层。第三步16包括在使该基片暴露于NH3的气氛下时对该半导体基片退火。第四步18包括在使该基片暴露于N2O的气氛下时对该半导体基片进一步退火。
根据本发明,为了使硅表面氧化,将半导体基片(优选为半导体硅片)同时暴露于UV辐射与含O2和选自N2、NH3、N2O和H2中一种或多种气体的气氛下。基于对最终栅叠的椭圆偏振数据和电数据的分析,估计氧氮化物厚度一般为约6。在优选的实施方案中,UV辐射是由具有宽波长(200-1100纳米)输出的外部氙灯发射的。优选地,由这种氙灯发射的光子能量为6.2-1.1eV,该能量高于半导体基片的大多数键能,如:Si-Si=3.1eV;Si-H=3.0eV;Si-Cl=3.9eV;Si-N=4.0eV;Si-O=4.6eV。这些键在UV辐射下可以离解,但它们不应该电离,因为它们的电离电位远远超过10eV。
优选的方法包括以下步骤:
(1)用UV激发的臭氧非必要地干洗半导体基片,优选为半导体硅片的表面来除去有机残余物,然后进行HF-甲醇蒸气处理来除去任何生成的氧化物,然后使用UV激发的氯来除去金属污染物;
(2)使该半导体基片表面暴露于流量为约100-500SCCM的气态O2与流量为约2,000-3,000SCCM的选自N2、NH3、N2O和H2中的一种或多种气体的混合气体下约30-90秒,最优选为60秒。O2气体应该不到该气氛中混合物的20%。最优选地,气体混合物是O2和N2,同时O2占气氛中混合物的约2-12%。优选地,在约80-120托,最优选为100托的压力下,在设置为最高功率200瓦特的约50-100%,最优选为70%的功率下施加UV辐射。该气氛中的温度应该为约100-150℃,最优选为130℃,以便热生长氧氮化物层;
(3)使用化学汽相沉积(CVD)法将氮化硅的膜沉积在氧氮化物层上;
(4)在有NH3气氛的情况下对该基片退火;和
(5)在有N2O气氛的情况下对该基片进一步退火。
图2以示意图的形式描述了根据本发明的另一个方法。在此另一个实施方案20中,栅叠处理的第一步22包括用UV氧化形成氧氮化物。第二步24包括使该半导体基片暴露于UV辐射和NH3的气氛下。第三步26包括在惰性环境,例如N2气体中,使用快速热处理(RTP)对该半导体基片退火.
另一种优选的方法包括以下步骤:
(1)用UV激发的臭氧非必要地干洗半导体基片,优选为半导体硅片的表面来除去有机残余物,然后进行HF-甲醇蒸汽处理来除去任何生成的氧化物,然后使用UV激发的氯来除去金属污染物;
(2)使该半导体基片表面暴露于流量为约100-500SCCM的气态O2与流量为约2,000-3,000SCCM的选自N2、NH3、N2O和H2中的一种或多种气体的混合气体下约30-90秒,最优选为60秒。O2应该不到该气氛中气体混合物的20%。最优选地,该气体混合物是O2和N2,同时O2占该混合物的约5-12%。在设置为最高功率200瓦特的约50-100%,最优选为70%的功率下施加UV辐射。将该气氛维持在约80-120托,最优选为100托的压力和约100-150℃,最优选为130℃的温度下,以便热生长氧氮化物层;
(3)在约10-200托,最优选为00托的压力和约100-200℃,优选为150℃的温度下,使该半导体基片表面暴露于流量为约0.2-1.0SLPM的气态NH3和设置为最高功率200瓦特的约50-100%,最优选为70%的功率下的UV辐射约2-30秒;
(4)在惰性环境,最优选为N2气体中,使用快速热处理(RTP)对该半导体基片退火约30-60秒,其中在约800-1000℃的温度下进行退火。
用此方法在半导体基片上形成的介电膜具有显著提高的质量。获得了EOT值低于16和甚至低至14.2的复合电解质膜。得到的介电膜的相关漏电流密度也非常低,在1.0E-01A/cm2的数量级。已经发现,根据本发明的方法降低了获得的氮化物膜的表面粗糙度,从而提高了这种膜的栅介电特性。
进行实验而将本发明的方法与已知的方法进行比较。这些实验的结果示于下面的表1中。
Figure C0380557600101
Figure C0380557600111
Figure C0380557600121
Figure C0380557600131
根据本发明实施了实施例1、2和3。在实施例1中,在用RCA湿法和HF浸渍处理预清洁半导体基片表面后,引入气态混合物来开始栅叠处理。在150℃的温度、100托的压力下,以1000SCCM的流量引入O2气流。然后,在750℃的温度、1.5托的压力下,使用化学汽相沉积(CVD)法将氮化硅膜在该氧氮化物层上沉积25秒。然后,在NH3气氛中对该基片退火,在900℃的温度、450托的压力下,以5.5slm的流量引入NH3气流30秒。最终,在N2O气氛中对该基片退火;在800℃的温度、450托的压力下,以8slm的流量引入N2O气流30秒。在设置为70%(最高功率200瓦特)的功率下,施加由氙灯发射的UV辐射10秒从而当该表面暴露于O2气氛下时,在该半导体基片表面上热生长氧化层。通过电容测量法(为本领域普通技术人员熟知的C-V测量技术)确定得到的EOT为15.79(平均)。实施例1的其它参数列在表1中。
除了在实施例2和3中引入O2与N2的混合物来生长氧化层之外,与实施例1相似地实施实施例2和3。在实施例2中,在150℃、100托的压力下,以100SCCM O2与5000SCCM N2的流量引入这种混合物。在实施例3中,在150℃、100托的压力下,以200SCCM O2与3200SCCMN2的流量引入这种混合物。实施例3的EOT为14.2,实施例2的EOT为15.37。
图3以图的形式显示了表1中报道的代表性实施例的结果。在图3中,绘制了漏电流密度(单位:A/cm2)/介电膜的EOT(单位:)的关系曲线,其中通过(i)RT-NO氧化和(ii)新的UV氧化方法形成该氧氮化物层。显然,UV氧化作为四步堆叠法中的第一步制造的介电膜的EOT值(低至14.2)和漏电流密度都比使用RT-NO氧化作为该四步堆叠法中的第一步而形成的介电膜低。实验结果也说明,使用新的UV氧化法作为四步栅叠法中第一步形成的介电膜具有优异的均匀性。
本发明的上述描述说明并描述了优选的实施方案。然而,应该理解的是,本发明能够以各种其它组合、改进的形式使用并在其它环境中使用,并且能够在于本文中已经表述的本发明概念的范围内进行改变或改进。该描述不是用于将本发明限制为本文公开的形式。对本领域普通技术人员来说其它实施方案包括在附加的权利要求书范围内是显而易见的。

Claims (17)

1.一种作为栅叠形成法中一个步骤的、在半导体基片表面上形成氧氮化物膜的方法,其包括:
使该半导体基片暴露于含O2和选自N2、NH3和N2O中一种或多种气体以及任选的H2的气氛下;和
当使基片暴露于所述的气氛下时用UV辐射对该基片辐射从而在该基片表面上形成氧氮化物膜。
2.权利要求1的方法,其中该气氛是O2和N2,并且在80-120托的压力和100-150℃的温度下引入这些气体。
3.权利要求1的方法,其中用UV辐射对该半导体基片辐射30-90秒。
4.权利要求1的方法,其中在设置在最高功率200瓦特的50-100%的功率下施加UV辐射。
5.权利要求1的方法,其中该气氛包含O2和NH3的混合物。
6.权利要求1的方法,其中该气氛包含O2和N2O的混合物。
7.权利要求1的方法,其中该气氛包含O2、H2和N2的混合物。
8.权利要求1的方法,然后在氧氮化物膜上形成氮化硅层。
9.权利要求8的方法,然后当使该半导体基片暴露于NH3的气氛下时对其进行退火。
10.权利要求9的方法,然后当使该半导体基片暴露于N2O的气氛下时对其进行退火。
11.一种在栅叠形成法中在半导体基片的表面上形成氧氮化物膜的方法,其包括:
使该半导体基片暴露于含O2和N2的气氛下;
当使该基片暴露于所述的气氛下时用UV辐射对该基片辐射,从而在基片的表面上形成氧氮化物膜;
当使该基片暴露于NH3的气氛下时用UV辐射对该基片辐射;和
在惰性环境中,用快速热退火法对该基片退火。
12.权利要求11的方法,其中在80-120托的压力和100-150℃的温度下引入O2和N2气体。
13.权利要求11的方法,其中在O2和N2的气氛中辐射该半导体基片30-90秒。
14.权利要求11的方法,其中当使该半导体基片暴露于O2和N2气氛下时,在设置为最高功率200瓦特的50-100%的功率下施加UV辐射。
15.权利要求11的方法,其中在10-200托的压力和100-200℃的温度下引入NH3气体。
16.权利要求11的方法,其中当使该半导体基片暴露于NH3气体下时,在设置为最高功率200瓦特的50-100%的功率下施加UV辐射2-30秒。
17.权利要求11的方法,其中在800-1000℃的温度下进行退火30-60秒。
CNB038055767A 2002-01-08 2003-01-08 半导体基片的uv增强的氧氮化 Expired - Fee Related CN100380609C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/041,552 US6706643B2 (en) 2002-01-08 2002-01-08 UV-enhanced oxy-nitridation of semiconductor substrates
US10/041,552 2002-01-08
US10/041552 2002-01-08

Publications (2)

Publication Number Publication Date
CN1656606A CN1656606A (zh) 2005-08-17
CN100380609C true CN100380609C (zh) 2008-04-09

Family

ID=21917115

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038055767A Expired - Fee Related CN100380609C (zh) 2002-01-08 2003-01-08 半导体基片的uv增强的氧氮化

Country Status (4)

Country Link
US (1) US6706643B2 (zh)
JP (1) JP2005539367A (zh)
CN (1) CN100380609C (zh)
WO (1) WO2003058701A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090268A1 (fr) * 2002-04-19 2003-10-30 Tokyo Electron Limited Procede de traitement de substrat et procede de production de dispositifs a semi-conducteurs
JP2004253777A (ja) * 2003-01-31 2004-09-09 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US7045746B2 (en) 2003-11-12 2006-05-16 Mattson Technology, Inc. Shadow-free shutter arrangement and method
KR100534210B1 (ko) * 2004-01-13 2005-12-08 삼성전자주식회사 비휘발성 메모리 셀에서의 절연막 구조의 형성방법
US20060228898A1 (en) * 2005-03-30 2006-10-12 Cory Wajda Method and system for forming a high-k dielectric layer
US7517814B2 (en) * 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
US7501352B2 (en) * 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
US20070065593A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Multi-source method and system for forming an oxide layer
US20070066084A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Method and system for forming a layer with controllable spstial variation
US7635655B2 (en) * 2006-03-30 2009-12-22 Tokyo Electron Limited Method for replacing a nitrous oxide based oxidation process with a nitric oxide based oxidation process for substrate processing
US7601648B2 (en) * 2006-07-31 2009-10-13 Applied Materials, Inc. Method for fabricating an integrated gate dielectric layer for field effect transistors
US8168548B2 (en) * 2006-09-29 2012-05-01 Tokyo Electron Limited UV-assisted dielectric formation for devices with strained germanium-containing layers
KR102364708B1 (ko) * 2017-07-12 2022-02-21 삼성디스플레이 주식회사 표시 장치의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243211A (en) * 1975-10-03 1977-04-05 Hitachi Ltd Attraction type magnetic floating train
US5445999A (en) * 1992-11-13 1995-08-29 Micron Technology, Inc. Advanced technique to improve the bonding arrangement on silicon surfaces to promote uniform nitridation
US5726087A (en) * 1992-04-30 1998-03-10 Motorola, Inc. Method of formation of semiconductor gate dielectric
US6114258A (en) * 1998-10-19 2000-09-05 Applied Materials, Inc. Method of oxidizing a substrate in the presence of nitride and oxynitride films
WO2001045501A2 (en) * 1999-12-21 2001-06-28 Mattson Thermal Products, Inc GROWTH OF ULTRATHIN NITRIDE ON Si(100) BY RAPID THERMAL N2 TREATMENT

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642377A (en) 1979-09-14 1981-04-20 Fujitsu Ltd Ultraviolet ray erasable type rewritable read-only memory
US4509451A (en) 1983-03-29 1985-04-09 Colromm, Inc. Electron beam induced chemical vapor deposition
US4702936A (en) * 1984-09-20 1987-10-27 Applied Materials Japan, Inc. Gas-phase growth process
WO1987000346A1 (en) 1985-07-02 1987-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film
JPH01152631A (ja) 1987-12-09 1989-06-15 Nec Corp S1xOyNz絶縁膜の形成方法
US5643838A (en) * 1988-03-31 1997-07-01 Lucent Technologies Inc. Low temperature deposition of silicon oxides for device fabrication
US5178682A (en) 1988-06-21 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin layer on a semiconductor substrate and apparatus therefor
JP2878538B2 (ja) 1992-12-03 1999-04-05 富士通株式会社 データ処理装置及びデータ処理方法
US5478765A (en) 1994-05-04 1995-12-26 Regents Of The University Of Texas System Method of making an ultra thin dielectric for electronic devices
JP3222404B2 (ja) 1997-06-20 2001-10-29 科学技術振興事業団 半導体基板表面の絶縁膜の形成方法及びその形成装置
US6013553A (en) 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6020024A (en) 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6121130A (en) 1998-11-16 2000-09-19 Chartered Semiconductor Manufacturing Ltd. Laser curing of spin-on dielectric thin films
US6326231B1 (en) 1998-12-08 2001-12-04 Advanced Micro Devices, Inc. Use of silicon oxynitride ARC for metal layers
US20010052323A1 (en) 1999-02-17 2001-12-20 Ellie Yieh Method and apparatus for forming material layers from atomic gasses
US6153504A (en) 1999-08-16 2000-11-28 Advanced Micro Devices, Inc. Method of using a silicon oxynitride ARC for final metal layer
US6451713B1 (en) * 2000-04-17 2002-09-17 Mattson Technology, Inc. UV pretreatment process for ultra-thin oxynitride formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243211A (en) * 1975-10-03 1977-04-05 Hitachi Ltd Attraction type magnetic floating train
US5726087A (en) * 1992-04-30 1998-03-10 Motorola, Inc. Method of formation of semiconductor gate dielectric
US5445999A (en) * 1992-11-13 1995-08-29 Micron Technology, Inc. Advanced technique to improve the bonding arrangement on silicon surfaces to promote uniform nitridation
US6114258A (en) * 1998-10-19 2000-09-05 Applied Materials, Inc. Method of oxidizing a substrate in the presence of nitride and oxynitride films
WO2001045501A2 (en) * 1999-12-21 2001-06-28 Mattson Thermal Products, Inc GROWTH OF ULTRATHIN NITRIDE ON Si(100) BY RAPID THERMAL N2 TREATMENT

Also Published As

Publication number Publication date
WO2003058701A3 (en) 2004-05-13
CN1656606A (zh) 2005-08-17
US6706643B2 (en) 2004-03-16
JP2005539367A (ja) 2005-12-22
WO2003058701A2 (en) 2003-07-17
US20030148628A1 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
CN1331199C (zh) 用于生成四氮化三硅薄膜的超薄氧氮化物的uv预处理方法
CN101208782B (zh) 用于等离子氮化栅极介电层的氮化后二阶段退火的方法
JP4895803B2 (ja) 誘電体膜及びゲートスタックの形成方法並びに誘電体膜の処理方法
US7723242B2 (en) Enhanced thin-film oxidation process
US7429540B2 (en) Silicon oxynitride gate dielectric formation using multiple annealing steps
US7381595B2 (en) High-density plasma oxidation for enhanced gate oxide performance
US7964514B2 (en) Multiple nitrogen plasma treatments for thin SiON dielectrics
US6509283B1 (en) Thermal oxidation method utilizing atomic oxygen to reduce dangling bonds in silicon dioxide grown on silicon
TWI228774B (en) Forming method of insulation film
JP4606737B2 (ja) 基材処理方法および電子デバイス用材料
TWI354332B (zh)
CN100380609C (zh) 半导体基片的uv增强的氧氮化
CN100390945C (zh) 基底绝缘膜的形成方法
JP2007504652A5 (zh)
US7786021B2 (en) High-density plasma multilayer gate oxide
JP2003142483A (ja) 高度に窒素ドープされた超薄オキシ窒化物ゲート誘電体の形成方法
JP4124675B2 (ja) シリコンウェハを低温酸化する方法およびその装置
JP4032889B2 (ja) 絶縁膜の形成方法
Chen et al. Effects of O2-and N2O-plasma treatments on properties of plasma-enhanced-chemical-vapor-deposition tetraethylorthosilicate oxide
JP3533377B2 (ja) 半導体基板表面の酸化膜の形成方法及び半導体装置の製造方法
Lucovsky et al. Low-temperature plasma-assisted oxidation of Si: a new approach for creation of device-quality Si SiO2 interfaces with deposited dielectrics for applications in Si MOSFET technologies
Misra et al. Integrated processing of stacked-gate heterostructures: plasma-assisted low temperature processing combined with rapid thermal high-temperature processing
Chang et al. Characteristics of Large-Area Plasma Enhanced Chemical Vapor Deposited TEOS Oxide with Various Short-Time Plasma Treatments
Wortmana et al. Integrated processing of stacked-gate heterostructures: plasma-assisted low temperature processing combined with rapid thermal high-temperature processing
KR20010021488A (ko) 반도체 소자용 절연막 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20130108