CN101380693A - A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser - Google Patents
A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser Download PDFInfo
- Publication number
- CN101380693A CN101380693A CN 200810152327 CN200810152327A CN101380693A CN 101380693 A CN101380693 A CN 101380693A CN 200810152327 CN200810152327 CN 200810152327 CN 200810152327 A CN200810152327 A CN 200810152327A CN 101380693 A CN101380693 A CN 101380693A
- Authority
- CN
- China
- Prior art keywords
- metal material
- femtosecond laser
- micro
- laser beam
- material surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007769 metal material Substances 0.000 title claims abstract description 72
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims abstract 2
- 238000012545 processing Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 13
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 11
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 claims description 11
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000002679 ablation Methods 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims 2
- 230000001413 cellular effect Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 45
- 230000003595 spectral effect Effects 0.000 abstract description 20
- 239000000956 alloy Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 239000000523 sample Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 9
- 229910001069 Ti alloy Inorganic materials 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000013532 laser treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
一种利用飞秒激光在金属材料表面制备微/纳结构的方法,其制备步骤如下:将金属材料表面进行机械打磨和抛光后,用去离子水超声清洗干净;采用飞秒激光工艺,即在空气环境中,使用10×显微物镜将入射的飞秒激光脉冲垂直聚焦在上述材料表面,焦点处的激光束半径为5微米,并将材料表面沿逆光束方向调整至距离物镜焦平面10~250微米的位置处,即可在金属材料表面诱导产生微/纳结构。本发明的优点是:工艺简单、方便实用且无污染、可在宽光谱范围提高和增强材料的热辐射效率。
A method for preparing a micro/nano structure on the surface of a metal material using a femtosecond laser. The preparation steps are as follows: after the surface of the metal material is mechanically ground and polished, it is cleaned by ultrasonic cleaning with deionized water; In an air environment, use a 10× microscope objective to focus the incident femtosecond laser pulse vertically on the surface of the above material. The radius of the laser beam at the focal point is 5 microns, and adjust the surface of the material to a distance of 10~ from the focal plane of the objective lens along the direction of the reverse beam. At the position of 250 microns, micro/nano structures can be induced on the surface of metal materials. The invention has the advantages of simple process, convenience, practicality and no pollution, and can improve and enhance the thermal radiation efficiency of the material in a wide spectral range.
Description
(一)技术领域 (1) Technical field
本发明涉及在金属材料表面制备微/纳结构的方法,特别是一种利用飞秒激光在金属材料表面制备微/纳结构的方法。The invention relates to a method for preparing a micro/nano structure on the surface of a metal material, in particular to a method for preparing a micro/nano structure on the surface of a metal material by using a femtosecond laser.
(二)背景技术 (2) Background technology
随着当今能源日益紧缺的供应状况,寻求开发新型能源和提高材料能量转换效率已受到世界各国的广泛关注。作为一种重要的可再生能源,热光伏电池凭借其独特的热-电转换性能,已愈来愈受到国内外研究者们的重视。在这项技术中,热源的辐射特性对整个系统具有十分重要的作用。事实上,一个高质量的热辐射体将会极大地提高热光伏系统的热-电转换效率。另外,配备良好的散热装置对于许多光电元件及其产品来说至关重要,例如:固体激光器中的激光晶体通常需要被放置在一个具有较好散热性能的金属冷却套中,使得增益介质拥有一个恒定较低的温度,从而才能保证激光器的正常运转。同样,计算机内芯片(CPU)的散热也是一个非常重要的问题,一个相对低效的散热系统将会严重降低芯片的工作效率。因此,如何发展宽光谱波段内高效率金属热辐射器件已成为现阶段科学研究的一个重要课题。With the increasingly scarce supply of energy today, seeking to develop new energy sources and improve the energy conversion efficiency of materials has attracted widespread attention from all over the world. As an important renewable energy source, thermal photovoltaic cells have attracted more and more attention from researchers at home and abroad due to their unique thermal-to-electrical conversion performance. In this technology, the radiation characteristics of the heat source play a very important role in the whole system. In fact, a high-quality heat radiator will greatly improve the heat-to-electricity conversion efficiency of a thermophotovoltaic system. In addition, a good heat dissipation device is very important for many optoelectronic components and their products. For example, the laser crystal in a solid-state laser usually needs to be placed in a metal cooling jacket with good heat dissipation, so that the gain medium has a A constant lower temperature can ensure the normal operation of the laser. Similarly, the heat dissipation of the chip (CPU) in the computer is also a very important issue, and a relatively inefficient heat dissipation system will seriously reduce the working efficiency of the chip. Therefore, how to develop high-efficiency metal thermal radiation devices in a wide spectral band has become an important topic of scientific research at the present stage.
目前解决这一问题的主要手段之一是通过在金属表面产生微/纳结构,实现其光学特性的增强或改变。已报道利用金属表面微/纳结构来改变其热辐射的文献有:US5079473公开了采用电化学方法和化学汽相淀积(CVD)工艺在钨制薄片上加工出直径200-400纳米、深度2-4微米的一系列小孔,并在1400K高温条件下测得样品表面的亚微米空腔结构对红外辐射具有明显的抑制效应,从而可以有效地提高白炽灯的可见光发光效率。US6433303公开了使用光学掩模板和衍射光学元件将超短脉冲激光或准分子激光分成多光束,然后将其聚焦在金属表面。从而制备获得半球型微腔阵列。另外,德国科学家M.Kreiter等人【Thermally induced emission of light from a metallic diffractiongrating,mediated by surface palsmons,Optics Communication,1999,168:117-122】报道了应用全息术的光刻胶和离子束刻蚀的混合技术在金膜上实现了周期为485纳米的衍射光栅制作。他们在样品被加热至700℃的角辐射测量中发现:对于波长为710纳米的辐射光只有在特定的角度位置处才具有增强的热辐射峰值,并将这一现象归因为样品表面热激发的表面等离子体与辐射光波相互耦合的物理机制。日本研究者H.Sai等人【Thermophotovoltaic generation with selective radiators based on tungstensurface gratings,Applied Physics Letters,2004,85(16):3399-3401】提出了利用电子束曝光技术在单晶钨表面制作出了由矩形微腔构成的周期为1-2微米的二维光栅结构,高温情况下的测试结果表明样品辐射光谱在近红外波段伴随有尖峰状出现,具有明显选择性的光谱增强效应。另外,法国科学家M.Laroche等人【Highly directionalradiation generated by a tungsten thermal source,Optics Letters,2005,30(19):2623-2625】利用光学曝光技术在金属钨的光滑表面刻蚀出周期为3微米,深度约0.125微米的薄层状光栅结构,实验测量获得了该金属微结构在近红外波段的热辐射具有异常的高方向性,这意味着热源平面上的电磁场具有较大的空间相干性。One of the main means to solve this problem is to enhance or change its optical properties by producing micro/nanostructures on the metal surface. It has been reported that the use of metal surface micro/nanostructures to change its heat radiation documents has: US5079473 discloses the use of electrochemical methods and chemical vapor deposition (CVD) processes to process 200-400 nanometers in diameter and 2 in depth on tungsten wafers. -A series of small holes of 4 microns, and the submicron cavity structure on the surface of the sample has an obvious suppression effect on infrared radiation, which can effectively improve the visible light luminous efficiency of incandescent lamps under the high temperature condition of 1400K. US6433303 discloses using an optical mask and a diffractive optical element to split ultrashort pulse laser or excimer laser into multiple beams, and then focus them on a metal surface. In this way, a hemispherical microcavity array is prepared. In addition, German scientist M.Kreiter et al [Thermally induced emission of light from a metallic diffractiongrating, mediated by surface palsmons, Optics Communication, 1999, 168: 117-122] reported the application of holographic photoresist and ion beam etching The hybrid technology of the present invention realizes the fabrication of diffraction gratings with a period of 485 nm on the gold film. They found in the angular radiation measurement that the sample was heated to 700 ° C: for the radiation light with a wavelength of 710 nanometers, there is an enhanced thermal radiation peak only at a specific angular position, and they attributed this phenomenon to the thermal excitation of the sample surface. The physical mechanism of the mutual coupling of surface plasmons and radiated light waves. Japanese researcher H.Sai et al [Thermophotovoltaic generation with selective radiators based on tungsten surface gratings, Applied Physics Letters, 2004, 85(16): 3399-3401] proposed to use electron beam exposure technology to make a The rectangular microcavity is a two-dimensional grating structure with a period of 1-2 microns. The test results under high temperature conditions show that the radiation spectrum of the sample is accompanied by sharp peaks in the near-infrared band, which has an obvious selective spectral enhancement effect. In addition, French scientist M.Laroche et al [Highly directional radiation generated by a tungsten thermal source, Optics Letters, 2005, 30(19): 2623-2625] used optical exposure technology to etch a period of 3 microns on the smooth surface of metal tungsten , a thin layered grating structure with a depth of about 0.125 microns. Experimental measurements have obtained that the thermal radiation of the metal microstructure has an unusually high directivity in the near-infrared band, which means that the electromagnetic field on the heat source plane has greater spatial coherence.
综上所述,这些已有研究报道都是利用金属表面的微/纳结构来实现对其热辐射的方向性、相干性和光谱选择性的控制,其在实验上观测到的热辐射增强现象也都是集中在某一窄带的光谱范围内发生,而在宽光谱范围内的增强热辐射效应目前还未见相关报道。另外,在上述这些研究中,金属表面微/纳结构的加工制作过程主要是依赖于传统曝光技术(lithography)的平面工艺,其缺点是微加工过程必需掩模投影、腐蚀和沉积等一系列繁杂程序,而且材料种类和加工图案具有很大的局限性。In summary, these existing research reports use the micro/nano structure of the metal surface to control the directionality, coherence and spectral selectivity of its thermal radiation, and the thermal radiation enhancement phenomenon observed in experiments They are all concentrated in a narrow spectral range, and the enhanced thermal radiation effect in a wide spectral range has not been reported yet. In addition, in the above-mentioned studies, the fabrication process of micro/nanostructures on the metal surface mainly relies on the planar process of traditional lithography. procedures, and the types of materials and processing patterns have great limitations.
(三)发明内容 (3) Contents of the invention
本发明的目的是针对上述存在的问题,提供一种工艺简单、方便实用且无污染、可在宽光谱范围提高和增强材料热辐射效率的利用飞秒激光在金属材料表面制备微/纳结构的方法。The object of the present invention is to address the above-mentioned problems, to provide a method for preparing micro/nano structures on the surface of metal materials using femtosecond lasers, which is simple in process, convenient and practical, non-polluting, and can improve and enhance the thermal radiation efficiency of materials in a wide spectral range. method.
本发明的技术方案:Technical scheme of the present invention:
一种利用飞秒激光在金属材料表面制备微/纳结构的方法,其特征在于制备步骤如下:A method for preparing a micro/nano structure on the surface of a metal material using a femtosecond laser, characterized in that the preparation steps are as follows:
1)将金属材料表面进行机械打磨和抛光后,用去离子水超声清洗干净,然后在空气环境中将其固定在一个三维精密移动平台上,并通过计算机控制来实现对上述金属材料在空间位置上的移动;1) After the surface of the metal material is mechanically ground and polished, it is ultrasonically cleaned with deionized water, and then fixed on a three-dimensional precision mobile platform in an air environment, and the spatial position of the above metal material is realized by computer control. movement on
2)以飞秒激光束为主光路,以氦氖激光束作为辅助光路,调整氦氖激光与飞秒激光束同向传播,并使两者在光路上能够相互重叠,然后一起经过聚焦镜后垂直到达上述金属材料表面;2) Take the femtosecond laser beam as the main optical path, use the helium-neon laser beam as the auxiliary optical path, adjust the helium-neon laser beam and the femtosecond laser beam to propagate in the same direction, and make the two overlap each other on the optical path, and then pass through the focusing mirror together Reaching the surface of the metal material vertically;
3)关闭或阻挡飞秒激光束,使得此时只有氦氖激光束照射到上述材料表面的某一位置处,然后在沿逆光束方向远离聚焦镜的光路上以45度角放置一个分束器,使得从上述金属材料表面反射并经过聚焦镜回来的激光束与原入射光束进行空间上的分离,并采用光电探测器对其搜集和实时成像;3) Turn off or block the femtosecond laser beam so that only the helium-neon laser beam irradiates a certain position on the surface of the above material at this time, and then place a beam splitter at an angle of 45 degrees on the optical path away from the focusing mirror along the reverse beam direction , so that the laser beam reflected from the surface of the metal material and returned through the focusing mirror is spatially separated from the original incident beam, and is collected and imaged in real time by a photodetector;
4)将上述金属材料在垂直于入射激光束的二维平面内移动,通过观察成像系统中光斑大小的变化,来调整加工平台的水平倾斜程度,使得上述金属材料的整个表面与入射激光束相互垂直;4) Move the above-mentioned metal material in a two-dimensional plane perpendicular to the incident laser beam, and adjust the horizontal inclination of the processing platform by observing the change of the spot size in the imaging system, so that the entire surface of the above-mentioned metal material and the incident laser beam interact with each other vertical;
5)在沿平行于入射光束的方向上调整上述金属材料所处的位置,使得从成像系统中观察到的光斑尺寸最小;5) adjusting the position of the above-mentioned metal material along the direction parallel to the incident light beam, so that the spot size observed from the imaging system is the smallest;
6)关闭或阻挡氦氖激光束,使飞秒激光束直接照射到上述金属材料表面,并通过控制三维加工平台使上述材料沿平行于入射激光束方向向前或向后移动,每移动一个设定的步长后,仅有1-3个飞秒激光脉冲对上述金属材料进行烧蚀;6) Turn off or block the helium-neon laser beam, so that the femtosecond laser beam directly irradiates the surface of the above-mentioned metal material, and by controlling the three-dimensional processing platform to make the above-mentioned material move forward or backward parallel to the direction of the incident laser beam, each time a device is moved After a certain step length, only 1-3 femtosecond laser pulses ablate the above metal materials;
7)用显微镜观测上述金属材料在每次移动后飞秒激光对其表面造成烧蚀的区域尺寸,从中寻找获得最小烧蚀区域所对应的金属材料表面空间位置,即为飞秒激光束经过聚焦镜后的焦点位置,并通过控制三维加工平台将上述金属材料表面移动至这一位置;7) Use a microscope to observe the size of the ablation area of the surface of the above-mentioned metal material after each movement of the femtosecond laser, and find the spatial position of the metal material surface corresponding to the minimum ablation area, which is the femtosecond laser beam after focusing Focus position behind the mirror, and move the surface of the metal material to this position by controlling the three-dimensional processing platform;
8)将位于聚焦镜焦平面上的上述金属材料沿逆光束方向移动一个设定的距离,并使得在整个移动过程中上述金属材料表面与入射激光束能够保持相互垂直;8) moving the above-mentioned metal material on the focal plane of the focusing mirror for a set distance along the direction of the reverse beam, and making the surface of the above-mentioned metal material and the incident laser beam maintain perpendicular to each other during the entire movement process;
9)保持入射的飞秒激光束方向不变,控制加工台使得上述金属材料在垂直于光束方向上的平面内进行二维移动扫描,并通过改变入射激光能量,在上述金属材料表面制备获得不同类型的微/纳结构。9) Keeping the direction of the incident femtosecond laser beam unchanged, control the processing table so that the above-mentioned metal material performs two-dimensional mobile scanning in a plane perpendicular to the beam direction, and by changing the incident laser energy, prepare different laser beams on the surface of the above-mentioned metal material. Types of micro/nanostructures.
所述金属材料为钛-镍合金。The metal material is titanium-nickel alloy.
所述飞秒激光的参数为:脉冲重复频率1千赫兹、脉冲宽度50飞秒、脉冲中心波长800纳米、光束偏振方向为线偏振。The parameters of the femtosecond laser are: a pulse repetition frequency of 1 kilohertz, a pulse width of 50 femtoseconds, a pulse center wavelength of 800 nanometers, and a beam polarization direction of linear polarization.
所述聚焦镜为10×的显微物镜。The focusing lens is a 10× microscope objective lens.
所述金属材料沿平行于光束方向向前或后移动的范围为500微米,移动步长为5-10微米。The range in which the metal material moves forward or backward parallel to the beam direction is 500 microns, and the moving step is 5-10 microns.
所述金属材料沿逆光束方向偏离聚焦镜焦平面的设定距离为10-250微米。The set distance that the metal material deviates from the focal plane of the focusing mirror along the reverse beam direction is 10-250 microns.
所述二维移动扫描过程中相邻激光刻线之间的距离10-50微米、移动扫描速度0.2-2毫米/秒。During the two-dimensional moving scanning process, the distance between adjacent laser scribe lines is 10-50 microns, and the moving scanning speed is 0.2-2 mm/s.
所述入射激光能量在50-300微焦耳范围内进行调节,在金属材料表面诱导产生的微/纳结构有三种类型,包括类珊瑚状的微腔结构、纳米颗粒覆盖的类光栅状亚波长结构以及类蜂窝状的微光栅-纳米孔复合结构。The incident laser energy is adjusted within the range of 50-300 microjoules, and there are three types of micro/nano structures induced on the surface of metal materials, including coral-like microcavity structures and nanoparticle-covered grating-like subwavelength structures And a honeycomb-like micro grating-nano hole composite structure.
本发明的优点是:1)由于飞秒激光脉冲持续时间极短,约为50飞秒,因此即使较小的激光脉冲能量也可具有极高的峰值功率。本发明中单个激光脉冲的峰值功率最高可达4×1010瓦,一方面会造成飞秒激光作用过程中伴随有诸多非线性物理效应,从而使得金属表面能够自组织形成不同形状的微/纳结构;另一方面,超快速的脉冲持续时间将会导致激光作用过程中的材料热传导效应在根本上得到减弱和消除,从而使得激光加工的空间范围可以控制在亚微米或纳米量级。与传统的平面曝光技术工艺比较,本发明所述的飞秒激光工艺更加方便、快捷且无需其他辅助条件,样品表面可自组织形成多种形态的微/纳结构,整个加工制作工程中无污染物产生等诸多优点。2)目前已有文献和专利报道的表面微/纳结构对金属材料热辐射的影响主要集中发生在某一个相对窄的光谱带宽(约400纳米)范围内,热辐射增强效应具有明显的光谱选择性。本发明中所描述的具有表面微/纳结构的材料热辐射效率可在7-16微米宽光谱范围内均得到明显的提高和增强。例如:对于类珊瑚状微腔结构的金属或合金表面,其增强的热辐射效率在7-16微米的宽光谱范围内均可保持90%,如此高的材料热辐射效率可望在热光伏系统,宽带高效率光源和散热装置等方面具有重要的广泛应用。The advantages of the present invention are: 1) Since the duration of the femtosecond laser pulse is extremely short, about 50 femtoseconds, even a small laser pulse energy can have a very high peak power. The peak power of a single laser pulse in the present invention can reach up to 4×10 10 watts. On the one hand, it will cause many nonlinear physical effects in the process of femtosecond laser action, so that the metal surface can self-organize to form micro/nano On the other hand, the ultra-fast pulse duration will fundamentally weaken and eliminate the heat conduction effect of the material during the laser action, so that the spatial range of laser processing can be controlled at the submicron or nanometer level. Compared with the traditional planar exposure technology, the femtosecond laser technology described in the present invention is more convenient, faster and does not require other auxiliary conditions. The surface of the sample can self-organize to form micro/nano structures in various forms, and there is no pollution in the entire processing and manufacturing process. production and many other advantages. 2) The influence of surface micro/nanostructures on the thermal radiation of metal materials reported in literature and patents is mainly concentrated in a relatively narrow spectral bandwidth (about 400 nanometers), and the thermal radiation enhancement effect has obvious spectral selection. sex. The heat radiation efficiency of the material with the surface micro/nano structure described in the present invention can be significantly improved and enhanced in the wide spectral range of 7-16 microns. For example: for the metal or alloy surface of coral-like microcavity structure, its enhanced heat radiation efficiency can maintain 90% in the wide spectral range of 7-16 microns, such a high material heat radiation efficiency is expected to be used in thermo-photovoltaic systems , Broadband high-efficiency light sources and heat dissipation devices have important and extensive applications.
(四)附图说明 (4) Description of drawings
图1为本发明实施例1所制得钛合金材料表面类珊瑚状微腔结构的扫描照片。Figure 1 is a scanning photo of the coral-like microcavity structure on the surface of the titanium alloy material prepared in Example 1 of the present invention.
图2为本发明实施例2所制得钛合金材料表面纳米颗粒覆盖的类光栅状亚波长结构的扫描照片。Fig. 2 is a scanning photo of a grating-like sub-wavelength structure covered by nanoparticles on the surface of the titanium alloy material prepared in Example 2 of the present invention.
图3为本发明实施例3所制得钛合金材料表面类蜂窝状微光栅-纳米孔复合结构的扫描照片。FIG. 3 is a scanning photo of a honeycomb-like micro-grating-nanopore composite structure on the surface of the titanium alloy material prepared in Example 3 of the present invention.
图4为本发明实施例1,2,3所制得样品材料表面微/纳结构区域中钛元素的X-射线光电能谱图。Fig. 4 is an X-ray photoelectric energy spectrum diagram of titanium element in the micro/nano structure region on the surface of the sample material prepared in Examples 1, 2, and 3 of the present invention.
图5为本发明实施例1,2,3所制得样品材料表面微/纳结构区域中镍元素的X射线光电能谱图。Fig. 5 is an X-ray photoelectric energy spectrum diagram of nickel element in the micro/nano structure region on the surface of the sample material prepared in Examples 1, 2, and 3 of the present invention.
图6为本发明实施例1所对应的材料增强热辐射效率光谱图。Fig. 6 is a spectral diagram of material enhanced thermal radiation efficiency corresponding to Example 1 of the present invention.
图7为本发明实施例2所对应的材料增强热辐射效率光谱图。FIG. 7 is a spectral diagram of material-enhanced thermal radiation efficiency corresponding to Example 2 of the present invention.
图8为本发明实施例3所对应的材料增强热辐射效率光谱图。Fig. 8 is a spectral diagram of material-enhanced thermal radiation efficiency corresponding to Example 3 of the present invention.
图9为未经飞秒激光处理的平面钛合金材料所对应的热辐射效率光谱图。Fig. 9 is a spectral diagram of thermal radiation efficiency corresponding to a planar titanium alloy material without femtosecond laser treatment.
(五)具体实施方式 (5) Specific implementation methods
实施例1:Example 1:
1)将10×10×2mm3的钛-镍合金材料用400-800号水砂纸逐级打磨后,用去离子水超声清洗干净,然后将其在空气环境中固定在一个三维精密移动平台上,并通过计算机控制来实现对上述材料在空间位置上的移动;1) The titanium-nickel alloy material of 10×10×2mm 3 was polished step by step with 400-800 water sandpaper, cleaned ultrasonically with deionized water, and then fixed on a three-dimensional precision mobile platform in the air environment , and realize the movement of the above-mentioned materials in the spatial position through computer control;
2)以飞秒激光束为主光路,以氦氖激光束作为辅助光路,调整氦氖激光与飞秒激光束同向传播,并使两者在光路上能够相互重叠,然后一起经过10×的聚焦镜后垂直到达上述金属材料表面,飞秒激光参数为:脉冲重复频率1千赫兹、脉冲宽度50飞秒、脉冲中心波长800纳米、光束偏振方向为线偏振;2) The femtosecond laser beam is used as the main optical path, and the helium-neon laser beam is used as the auxiliary optical path. After the focusing mirror reaches the surface of the metal material vertically, the femtosecond laser parameters are: pulse repetition frequency 1 kHz, pulse width 50 femtoseconds, pulse center wavelength 800 nanometers, beam polarization direction is linear polarization;
3)关闭飞秒激光束,使得此时只有氦氖激光束照射到上述材料表面的某一位置处,然后在沿逆光束方向远离聚焦镜的光路上以45度角放置一个分束器,使得从上述金属材料表面反射并经过聚焦镜回来的激光束与原入射光束进行空间上的分离,并采用光电探测器(CCD)对其搜集和实时成像;3) Turn off the femtosecond laser beam so that only the helium-neon laser beam is irradiated at a certain position on the surface of the above-mentioned material, and then place a beam splitter at an angle of 45 degrees on the optical path away from the focusing mirror along the direction of the reverse beam, so that The laser beam reflected from the surface of the metal material and returned through the focusing mirror is spatially separated from the original incident beam, and is collected and imaged in real time by a photodetector (CCD);
4)将上述金属材料在垂直于入射激光束的二维平面内移动,通过观察成像系统中光斑大小的变化,来调整加工平台的水平倾斜程度,使得上述金属材料的整个表面与入射激光束相互垂直;4) Move the above-mentioned metal material in a two-dimensional plane perpendicular to the incident laser beam, and adjust the horizontal inclination of the processing platform by observing the change of the spot size in the imaging system, so that the entire surface of the above-mentioned metal material and the incident laser beam interact with each other vertical;
5)在沿平行于入射光束的方向上调整上述金属材料所处的位置,使得从成像系统中观察到的光斑尺寸最小;5) adjusting the position of the above-mentioned metal material along the direction parallel to the incident light beam, so that the spot size observed from the imaging system is the smallest;
6)关闭氦氖激光束,使飞秒激光束直接照射到上述金属材料表面,并通过控制三维加工平台使上述材料沿平行于入射激光束方向向前移动500微米,每移动5-10微米后,仅有1-3个飞秒激光脉冲对上述金属材料进行烧蚀;6) Turn off the helium-neon laser beam, make the femtosecond laser beam directly irradiate the surface of the above-mentioned metal material, and control the three-dimensional processing platform to make the above-mentioned material move forward 500 microns along the direction parallel to the incident laser beam, after every 5-10 microns , only 1-3 femtosecond laser pulses ablate the above metal materials;
7)用显微镜观测上述金属材料在每次移动后飞秒激光对其表面造成烧蚀的区域尺寸,从中寻找获得最小烧蚀区域所对应的金属材料表面空间位置,即为飞秒激光束经过聚焦镜后的焦点位置,并通过控制三维加工平台将上述金属材料表面移动至这一位置;7) Use a microscope to observe the size of the ablation area of the surface of the above-mentioned metal material after each movement of the femtosecond laser, and find the spatial position of the metal material surface corresponding to the minimum ablation area, which is the femtosecond laser beam after focusing Focus position behind the mirror, and move the surface of the metal material to this position by controlling the three-dimensional processing platform;
8)将位于聚焦镜焦平面上的上述金属材料沿逆光束方向移动10-250微米,并使得在整个移动过程中上述金属材料表面与入射激光束能够保持相互垂直;8) Moving the above-mentioned metal material on the focal plane of the focusing mirror for 10-250 microns along the direction of the reverse beam, and making the surface of the above-mentioned metal material and the incident laser beam can be kept perpendicular to each other during the entire movement process;
9)保持入射的飞秒激光束方向不变,控制加工台使得上述金属材料在垂直于光束方向上的平面内进行二维移动扫描,设定单脉冲能量为300微焦耳、相邻激光刻线之间的距离10-50微米、移动扫描速度0.2-2毫米/秒,即可在钛-镍合金材料表面诱导产生类珊瑚状的微腔结构的微/纳结构。9) Keep the direction of the incident femtosecond laser beam unchanged, control the processing table so that the above-mentioned metal material performs two-dimensional mobile scanning in the plane perpendicular to the beam direction, set the single pulse energy to 300 microjoules, and the adjacent laser scribe line The distance between them is 10-50 microns, and the moving scanning speed is 0.2-2 mm/s, and the micro/nano structure of the coral-like microcavity structure can be induced on the surface of the titanium-nickel alloy material.
将上述具有微腔结构表面的钛合金材料,通过扫描电子显微镜可观察到样品表面的激光照射区内形成了一种奇特的微细结构,如图1所示。它是由众多尺寸大小不一的圆柱形空腔密集排布而成,这些空腔的开口方向趋向于随机分布,空腔的直径在2-35微米之间变化,深度约为几个微米,微腔的边缘分布着许多形状不规则的细小凸触;进一步的显微观察表明这些凸触实际上是由许多尺寸为纳米量级的固体颗粒集聚而成,这些微腔结构的粗糙内壁及其外围凸触极大地增加了金属样品的表面积,使得其类似于一种多孔结构的吸收体,即为“类珊瑚状的微腔结构”。The above-mentioned titanium alloy material with a microcavity structure surface can be observed through a scanning electron microscope to form a peculiar microstructure in the laser irradiation area of the sample surface, as shown in Figure 1. It is formed by a dense arrangement of many cylindrical cavities of different sizes. The opening directions of these cavities tend to be randomly distributed. The diameter of the cavities varies between 2-35 microns, and the depth is about several microns. There are many irregularly shaped small protrusions distributed on the edge of the microcavity; further microscopic observation shows that these protrusions are actually composed of many solid particles with a size of nanometer scale. The rough inner walls of these microcavity structures and their The peripheral bumps greatly increase the surface area of the metal sample, making it resemble a porous structure absorber, which is a "coral-like microcavity structure".
将上述具有微腔结构表面的钛合金材料,采用X-射线光电能谱仪对这种表面微腔结构的化学组份进行分析,测试结果如图4(b)和图5(b)所示。显然,其主要成分为相应的金属氧化物:二氧化钛和三氧化二镍。图4(a)和图5(a)是未经飞秒激光处理的金属材料的X-射线光电能谱仪测试结果。The above-mentioned titanium alloy material with microcavity structure surface was analyzed by X-ray photoelectric energy spectrometer for the chemical composition of this surface microcavity structure, and the test results are shown in Figure 4(b) and Figure 5(b) . Apparently, its main constituents are the corresponding metal oxides: titanium dioxide and nickel oxide. Figure 4(a) and Figure 5(a) are the X-ray photoelectric spectrometer test results of metal materials that have not been treated by femtosecond laser.
将上述具有微腔结构表面的钛合金材料,放置在红外傅立叶光谱仪中并加热,然后在垂直于金属表面的方向上进行热辐射光谱测量。材料的热辐射效率可由实际测得的辐射光谱线与相同温度下标准黑体热辐射谱线进行比较后获得。图7所示为两种不同温度(T=373K和T=333K,分别由实线和虚线表示)条件下测量获得的热辐射率曲线;另外,我们还对未经激光处理的平面钛-镍合金材料进行了热辐射性能测试,测量结果如图9所示。通过比较分析,我们发现该微腔结构表面的钛-镍合金材料,在7-16微米的光谱范围内,不仅具有高达90%的热辐射率,与未经飞秒激光处理的平面金属材料相比,大约提高了4倍,而且这种增强的热辐射效率几乎不随着波长而发生变化,亦即微腔结构表面的钛-镍合金材料在近红外波段的宽光谱范围内均具有很高的热辐射效率。The above-mentioned titanium alloy material with a microcavity structure surface is placed in an infrared Fourier spectrometer and heated, and then the thermal radiation spectrum is measured in a direction perpendicular to the metal surface. The thermal radiation efficiency of a material can be obtained by comparing the actual measured radiation spectral lines with the standard black body thermal radiation spectral lines at the same temperature. Figure 7 shows the thermal emissivity curves measured under two different temperatures (T=373K and T=333K, represented by solid line and dashed line respectively); The thermal radiation performance test of the alloy material is carried out, and the measurement results are shown in Fig. 9 . Through comparative analysis, we found that the titanium-nickel alloy material on the surface of the microcavity structure not only has a thermal radiation rate as high as 90% in the spectral range of 7-16 microns, which is comparable to that of the planar metal material without femtosecond laser treatment. The ratio is about 4 times higher, and this enhanced thermal radiation efficiency hardly changes with the wavelength, that is, the titanium-nickel alloy material on the surface of the microcavity structure has a high spectral range in the near-infrared band. Thermal Radiation Efficiency.
实施例2:Example 2:
除入射飞秒激光单脉冲能量调节为50微焦耳外,其他技术步骤和工艺条件均与实施例1相同。在这种情况下,实验观察到经飞秒激光照射后的钛合金材料表面自组织产生了周期性的条纹状微结构,其原子力显微照片如图2所示。这种微结构的条纹方向垂直于入射激光的偏振方向和样品扫描方向,条纹的平均间隔为630纳米,条纹高度约150纳米,宽度约290纳米。更为重要的是,在这种亚波长光栅状微条纹上覆盖了大量形状不规则的固体颗粒,它们的几何尺寸分布大约在为几十到两百纳米之间,即可在钛-镍合金材料表面诱导产生纳米颗粒覆盖的类光栅状亚波长结构。Except that the single pulse energy of the incident femtosecond laser is adjusted to 50 microjoules, other technical steps and process conditions are the same as those in Example 1. In this case, it was observed that the surface self-organization of the titanium alloy material after femtosecond laser irradiation produced a periodic stripe-like microstructure, and its atomic force micrograph is shown in Figure 2. The direction of the stripes of this microstructure is perpendicular to the polarization direction of the incident laser light and the scanning direction of the sample, the average interval of the stripes is 630 nanometers, the height of the stripes is about 150 nanometers, and the width is about 290 nanometers. More importantly, a large number of irregularly shaped solid particles are covered on this subwavelength grating-like microstripes, and their geometric size distribution is between tens and two hundred nanometers, which can be obtained in titanium-nickel alloys. A grating-like subwavelength structure covered by nanoparticles is induced on the surface of the material.
通过采用X-射线光电能谱仪的测试与分析,这种亚波长光栅状微结构表面的化学组份也被证实为相应的金属氧化物:二氧化钛和三氧化二镍,测量结果如图4(d)和图5(d)所示。Through the test and analysis of X-ray photoelectric spectrometer, the chemical composition of the surface of this sub-wavelength grating microstructure has also been confirmed to be the corresponding metal oxide: titanium dioxide and nickel oxide, and the measurement results are shown in Figure 4 ( d) and Figure 5(d).
我们对这种光栅状微/纳结构表面的钛-镍合金材料进行了热辐射光谱测量,测量结果如图7所示。当样品温度T=373K时,如实线所示,其在7-16微米波段范围内的热辐射效率随波长的增加由90%逐渐下降到60%;当T=333K时,如虚线所示,随着波长的增加,其热辐射效率由60%逐渐下降到50%。尽管如此,这种微/纳结构金属表面的热辐射效率均比未经飞秒激光处理的平面金属样品提高了大约2-4倍;另外,图7还表明:这种增强的热辐射效率即使在两个非常相近温度情况下也会明显地分离开来,这说明表面具有光栅状微/纳结构表面的材料增强热辐射效率对温度变化具有较强的敏感特性。We measured the thermal radiation spectrum of the titanium-nickel alloy material on the surface of this grating-like micro/nano structure, and the measurement results are shown in Figure 7. When the sample temperature T=373K, as shown by the solid line, its thermal radiation efficiency in the 7-16 micron band range gradually decreases from 90% to 60% with the increase of wavelength; when T=333K, as shown by the dotted line, As the wavelength increases, its thermal radiation efficiency gradually decreases from 60% to 50%. Nevertheless, the thermal radiation efficiency of this micro/nano-structured metal surface is about 2-4 times higher than that of the planar metal sample without femtosecond laser treatment; in addition, Figure 7 also shows that this enhanced thermal radiation efficiency even In the case of two very similar temperatures, they are also clearly separated, which indicates that the material with a grating-like micro/nano-structured surface enhances the thermal radiation efficiency and has a strong sensitivity to temperature changes.
实施例3:Example 3:
除入射飞秒激光脉冲能量调节为150微焦耳外,其他技术步骤和工艺条件均与实施例1相同。在这种情况下,实验观察到经飞秒激光照射后的钛-镍合金材料表面自组织产生了一种由亚波长光栅和纳米孔组成的类蜂窝状复合结构,其扫描电子显微照片如图3所示。与实施例2中的情况相似,这种复合结构中的条纹方向垂直于激光偏振方向和样品扫描方向,但条纹间隔在400-600纳米之间发生变化,每组条纹的长度缩短为约1微米。另外,与实施例1中的微腔情况相比,这种复合式结构中的空腔尺寸明显变小,直径约为500纳米,而且它们在空间上的分布密度也变得较为稀疏,即可在钛-镍合金材料表面诱导产生类蜂窝状的微光栅-纳米孔复合结构。Except that the energy of the incident femtosecond laser pulse is adjusted to 150 microjoules, other technical steps and process conditions are the same as in Example 1. In this case, it was observed that the surface self-organization of the titanium-nickel alloy material after femtosecond laser irradiation produced a honeycomb-like composite structure composed of subwavelength gratings and nanopores, and its scanning electron micrograph is shown in Figure 3 shows. Similar to the case in Example 2, the stripe direction in this composite structure is perpendicular to the laser polarization direction and the sample scanning direction, but the stripe interval varies between 400–600 nm, and the length of each group of stripes is shortened to about 1 μm . In addition, compared with the case of the microcavity in Example 1, the size of the cavities in this composite structure is significantly smaller, with a diameter of about 500 nanometers, and their distribution density in space becomes relatively sparse, that is, A honeycomb-like micro-grating-nanohole composite structure is induced on the surface of a titanium-nickel alloy material.
通过采用X-射线光电能谱仪进行测试,这种类蜂窝状微/纳结构表面的化学组份也被证实为相应的金属氧化物:二氧化钛和三氧化二镍,测量结果如图4(c)和图5(c)所示。By using X-ray photoelectric spectrometer to test, the chemical composition of the honeycomb-like micro/nano structure surface has also been confirmed to be the corresponding metal oxides: titanium dioxide and nickel oxide. The measurement results are shown in Figure 4(c) And shown in Figure 5(c).
我们对这种表面具有类蜂窝状微/纳结构的钛-镍合金材料进行了热辐射光谱测量,测量结果如图8所示。当样品温度T=373K时,如实线所示,其在7-16微米波段范围内的热辐射效率随波长的增加由90%逐渐下降到50%;当T=333K时,如虚线所示,随着波长的增加,其热辐射效率由80%逐渐下降到50%。尽管如此,这种微/纳结构金属表面的热辐射效率均比未经处理的平面金属样品提高了约3-4倍。图8中所示的热辐射效率曲线在近红外光谱测量范围内的下降趋势表明:其对辐射波长仍具有一定的依赖性。另外,这种复合式微/纳结构表面的热辐射效率在光谱测量范围内的长波部分对温度变化不再敏感,这种情况与图9所示未经飞秒激光处理的平面金属样品的热辐射具有相似性。We measured the thermal radiation spectrum of this titanium-nickel alloy material with a honeycomb-like micro/nano structure on the surface, and the measurement results are shown in Figure 8. When the sample temperature T=373K, as shown by the solid line, its thermal radiation efficiency in the range of 7-16 micron wave band gradually decreases from 90% to 50% with the increase of wavelength; when T=333K, as shown by the dotted line, As the wavelength increases, its thermal radiation efficiency gradually decreases from 80% to 50%. Nevertheless, the thermal radiation efficiency of such micro/nanostructured metal surfaces is about 3-4 times higher than that of untreated planar metal samples. The downward trend of the thermal radiation efficiency curve shown in Fig. 8 in the NIR measurement range shows that it still has a certain dependence on the radiation wavelength. In addition, the thermal radiation efficiency of this composite micro/nano-structured surface is no longer sensitive to temperature changes in the long-wave part of the spectral measurement range, which is similar to the thermal radiation of the planar metal sample without femtosecond laser treatment shown in Figure 9. have similarities.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810152327 CN101380693A (en) | 2008-10-14 | 2008-10-14 | A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810152327 CN101380693A (en) | 2008-10-14 | 2008-10-14 | A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101380693A true CN101380693A (en) | 2009-03-11 |
Family
ID=40460841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200810152327 Pending CN101380693A (en) | 2008-10-14 | 2008-10-14 | A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101380693A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102179622A (en) * | 2011-04-08 | 2011-09-14 | 南开大学 | Method for preparing microstructural target by using laser to improve laser propulsion impulse coupling coefficient |
CN102728958A (en) * | 2012-06-20 | 2012-10-17 | 华中科技大学 | Laser separation machining method and device for optical crystal |
CN102922128A (en) * | 2012-11-05 | 2013-02-13 | 天津大学 | Method for rapidly preparing periodic corrugation structure on basis of premodulation laser |
CN103146892A (en) * | 2013-03-07 | 2013-06-12 | 江苏大学 | Femtosecond laser surface pretreatment method for improving bonding state of layer base or film base |
CN103433618A (en) * | 2013-07-25 | 2013-12-11 | 长春理工大学 | Method for controlling size and distribution of metal surface micro-nanostructure |
CN103627883A (en) * | 2013-11-07 | 2014-03-12 | 清华大学 | Method of regulating and controlling light absorption property of metal surface by picosecond pulse laser |
CN103738915A (en) * | 2014-01-03 | 2014-04-23 | 中国科学院上海光学精密机械研究所 | Preparation method for three-dimensional crystal optics echo wall micro-cavity |
CN104209652A (en) * | 2013-05-31 | 2014-12-17 | 中自高科(苏州)光电有限公司 | Method for controlling shape of femtosecond laser induction crystalline silicon surface micro-nano structure |
CN104603714A (en) * | 2012-08-06 | 2015-05-06 | 维克多·A·里瓦斯 | Nanofabricated materials using femtosecond pulsed laser technology for increased surface area and thermal power dissipation |
CN105624763A (en) * | 2016-03-11 | 2016-06-01 | 河北工业大学 | Method for preparing micro-nano composite structure on surface of titanium substrate |
CN106271088A (en) * | 2016-08-25 | 2017-01-04 | 南开大学 | A kind of Fresnel zone plate array making method based on femtosecond laser and application |
CN106425125A (en) * | 2016-09-30 | 2017-02-22 | 广东工业大学 | Ceramic drilling method of composite nanosecond-picosecond-femtosecond laser technology |
CN106501883A (en) * | 2016-10-26 | 2017-03-15 | 北京航空航天大学 | A kind of micro-nano preparation method of high accuracy microlens array structure |
CN107030378A (en) * | 2017-05-18 | 2017-08-11 | 长春理工大学 | A kind of method of femtosecond laser processing metal surface optimization microwave section absorbent properties |
CN107695528A (en) * | 2017-11-13 | 2018-02-16 | 西安交通大学 | It is a kind of to regulate and control the method for preparing large area difference micro nano structure using femtosecond laser |
CN107790887A (en) * | 2017-11-16 | 2018-03-13 | 商丘师范学院 | The femtosecond laser direct write preparation method of two-dimentional rhombus cycle micro-nano metal structure |
CN107999976A (en) * | 2017-12-28 | 2018-05-08 | 上海市激光技术研究所 | One kind has wearability and hydrophobic metal surface micro-structure preparation method |
CN108480653A (en) * | 2018-06-29 | 2018-09-04 | 中国科学院上海光学精密机械研究所 | The device and method of hollow over spherical powder is prepared based on femtosecond laser |
CN109362239A (en) * | 2016-03-23 | 2019-02-19 | 南非大学 | Method for fabricating micro-nano shrinkage structures on YBa2Cu3O7-X superconducting thin films based on femtosecond laser |
CN109620429A (en) * | 2018-12-03 | 2019-04-16 | 北京航空航天大学 | A kind of degradable metal guided tissue regeneration barrier film and preparation method thereof |
US20190262947A1 (en) * | 2018-02-26 | 2019-08-29 | Beihang University | Fabrication of Fluorescence-Raman Dual Enhanced Modal Biometal Substrate |
CN113290320A (en) * | 2021-05-21 | 2021-08-24 | 上海理工大学 | Preparation method of Ag-based film with nonlinear reverse saturable absorption enhancement characteristic |
CN113364394A (en) * | 2021-06-02 | 2021-09-07 | 中北大学 | Thermal photovoltaic device for thermal radiation energy conversion and production line protection section applying same |
CN113601017A (en) * | 2021-06-17 | 2021-11-05 | 河北工业大学 | Low-surface-energy anti-adhesion nickel-titanium wire and processing method thereof |
CN113618246A (en) * | 2021-06-17 | 2021-11-09 | 北京万嘉高科医药科技有限公司 | Endoscopic surgical instrument with easy-to-identify and anti-adhesion functions and processing method thereof |
CN114799497A (en) * | 2021-01-29 | 2022-07-29 | 武汉楚能电子有限公司 | Method and device for dividing micrometer laser beam into nanometer laser beam array and application |
CN114799217A (en) * | 2022-06-28 | 2022-07-29 | 吉林大学 | Method for realizing super-hydrophobicity of surface of NiTi alloy by additive manufacturing based on femtosecond laser processing |
CN115240522A (en) * | 2022-05-31 | 2022-10-25 | 浙江大学 | A method for secondary calibration using femtosecond laser in single-photon interference experiments at room temperature |
CN119115265A (en) * | 2024-11-14 | 2024-12-13 | 西南交通大学 | Method for cutting material plate by laser |
-
2008
- 2008-10-14 CN CN 200810152327 patent/CN101380693A/en active Pending
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102179622B (en) * | 2011-04-08 | 2013-07-10 | 南开大学 | Method for preparing microstructural target by using laser to improve laser propulsion impulse coupling coefficient |
CN102179622A (en) * | 2011-04-08 | 2011-09-14 | 南开大学 | Method for preparing microstructural target by using laser to improve laser propulsion impulse coupling coefficient |
CN102728958A (en) * | 2012-06-20 | 2012-10-17 | 华中科技大学 | Laser separation machining method and device for optical crystal |
CN102728958B (en) * | 2012-06-20 | 2014-11-12 | 华中科技大学 | Laser separation machining method and device for optical crystal |
CN104603714A (en) * | 2012-08-06 | 2015-05-06 | 维克多·A·里瓦斯 | Nanofabricated materials using femtosecond pulsed laser technology for increased surface area and thermal power dissipation |
CN102922128A (en) * | 2012-11-05 | 2013-02-13 | 天津大学 | Method for rapidly preparing periodic corrugation structure on basis of premodulation laser |
CN103146892A (en) * | 2013-03-07 | 2013-06-12 | 江苏大学 | Femtosecond laser surface pretreatment method for improving bonding state of layer base or film base |
CN103146892B (en) * | 2013-03-07 | 2014-04-09 | 江苏大学 | Femtosecond laser surface pretreatment method for improving bonding state of layer base or film base |
CN104209652A (en) * | 2013-05-31 | 2014-12-17 | 中自高科(苏州)光电有限公司 | Method for controlling shape of femtosecond laser induction crystalline silicon surface micro-nano structure |
CN104209652B (en) * | 2013-05-31 | 2016-05-04 | 中自高科(苏州)光电有限公司 | A kind of method of controlling femtosecond laser induction crystal silicon surface micro-nano structure form |
CN103433618A (en) * | 2013-07-25 | 2013-12-11 | 长春理工大学 | Method for controlling size and distribution of metal surface micro-nanostructure |
CN103627883B (en) * | 2013-11-07 | 2015-04-22 | 清华大学 | Method of regulating and controlling light absorption property of metal surface by picosecond pulse laser |
CN103627883A (en) * | 2013-11-07 | 2014-03-12 | 清华大学 | Method of regulating and controlling light absorption property of metal surface by picosecond pulse laser |
CN103738915A (en) * | 2014-01-03 | 2014-04-23 | 中国科学院上海光学精密机械研究所 | Preparation method for three-dimensional crystal optics echo wall micro-cavity |
CN103738915B (en) * | 2014-01-03 | 2015-10-28 | 中国科学院上海光学精密机械研究所 | The preparation method of three-dimensional crystal optics Echo Wall microcavity |
CN105624763A (en) * | 2016-03-11 | 2016-06-01 | 河北工业大学 | Method for preparing micro-nano composite structure on surface of titanium substrate |
CN109362239A (en) * | 2016-03-23 | 2019-02-19 | 南非大学 | Method for fabricating micro-nano shrinkage structures on YBa2Cu3O7-X superconducting thin films based on femtosecond laser |
CN109362239B (en) * | 2016-03-23 | 2022-10-21 | 南非大学 | Method for preparing micro-nano shrinkage structure on superconducting film based on femtosecond laser |
CN106271088A (en) * | 2016-08-25 | 2017-01-04 | 南开大学 | A kind of Fresnel zone plate array making method based on femtosecond laser and application |
CN106425125A (en) * | 2016-09-30 | 2017-02-22 | 广东工业大学 | Ceramic drilling method of composite nanosecond-picosecond-femtosecond laser technology |
CN106501883A (en) * | 2016-10-26 | 2017-03-15 | 北京航空航天大学 | A kind of micro-nano preparation method of high accuracy microlens array structure |
CN107030378A (en) * | 2017-05-18 | 2017-08-11 | 长春理工大学 | A kind of method of femtosecond laser processing metal surface optimization microwave section absorbent properties |
CN107695528A (en) * | 2017-11-13 | 2018-02-16 | 西安交通大学 | It is a kind of to regulate and control the method for preparing large area difference micro nano structure using femtosecond laser |
CN107695528B (en) * | 2017-11-13 | 2019-03-12 | 西安交通大学 | A method of regulating and controlling preparation large area difference micro nano structure using femtosecond laser |
CN107790887A (en) * | 2017-11-16 | 2018-03-13 | 商丘师范学院 | The femtosecond laser direct write preparation method of two-dimentional rhombus cycle micro-nano metal structure |
CN107999976A (en) * | 2017-12-28 | 2018-05-08 | 上海市激光技术研究所 | One kind has wearability and hydrophobic metal surface micro-structure preparation method |
US20190262947A1 (en) * | 2018-02-26 | 2019-08-29 | Beihang University | Fabrication of Fluorescence-Raman Dual Enhanced Modal Biometal Substrate |
CN108480653A (en) * | 2018-06-29 | 2018-09-04 | 中国科学院上海光学精密机械研究所 | The device and method of hollow over spherical powder is prepared based on femtosecond laser |
CN109620429A (en) * | 2018-12-03 | 2019-04-16 | 北京航空航天大学 | A kind of degradable metal guided tissue regeneration barrier film and preparation method thereof |
CN114799497A (en) * | 2021-01-29 | 2022-07-29 | 武汉楚能电子有限公司 | Method and device for dividing micrometer laser beam into nanometer laser beam array and application |
CN113290320A (en) * | 2021-05-21 | 2021-08-24 | 上海理工大学 | Preparation method of Ag-based film with nonlinear reverse saturable absorption enhancement characteristic |
CN113364394B (en) * | 2021-06-02 | 2023-01-03 | 中北大学 | Production line protection section applied to thermophotovoltaic device for thermal radiation energy conversion |
CN113364394A (en) * | 2021-06-02 | 2021-09-07 | 中北大学 | Thermal photovoltaic device for thermal radiation energy conversion and production line protection section applying same |
CN113601017A (en) * | 2021-06-17 | 2021-11-05 | 河北工业大学 | Low-surface-energy anti-adhesion nickel-titanium wire and processing method thereof |
CN113618246A (en) * | 2021-06-17 | 2021-11-09 | 北京万嘉高科医药科技有限公司 | Endoscopic surgical instrument with easy-to-identify and anti-adhesion functions and processing method thereof |
CN113618246B (en) * | 2021-06-17 | 2023-12-19 | 北京万嘉高科医药科技有限公司 | Endoscopic surgical instrument with easy-to-recognize and anti-adhesion functions and processing method thereof |
CN113601017B (en) * | 2021-06-17 | 2023-10-03 | 河北工业大学 | Nickel-titanium wire with low surface energy and anti-adhesion performance and processing method thereof |
CN115240522A (en) * | 2022-05-31 | 2022-10-25 | 浙江大学 | A method for secondary calibration using femtosecond laser in single-photon interference experiments at room temperature |
CN115240522B (en) * | 2022-05-31 | 2023-12-01 | 浙江大学 | Method of secondary calibration using femtosecond laser in single photon interference experiment at room temperature |
CN114799217B (en) * | 2022-06-28 | 2022-09-06 | 吉林大学 | Method for realizing super-hydrophobicity of surface of NiTi alloy by additive manufacturing based on femtosecond laser processing |
CN114799217A (en) * | 2022-06-28 | 2022-07-29 | 吉林大学 | Method for realizing super-hydrophobicity of surface of NiTi alloy by additive manufacturing based on femtosecond laser processing |
CN119115265A (en) * | 2024-11-14 | 2024-12-13 | 西南交通大学 | Method for cutting material plate by laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101380693A (en) | A method for preparing micro/nano structures on the surface of metal materials using femtosecond laser | |
CN103862171B (en) | Dual wavelength femtosecond laser prepares the method for two-dimension periodic metallic particles array structure | |
CN108015410B (en) | A method for preparing crystalline nanostructures based on femtosecond laser-induced amorphous GemSbnTek thin films | |
CN105108342A (en) | Method for preparing two-dimensional metallic photonic crystal structure in large area through femtosecond laser direct writing | |
CN102285635B (en) | System and method for manufacturing metal micro-nano structure by using laser | |
CN105499792A (en) | Femtosecond laser-controlled silicon surface nanopillar preparation method based on dual-wavelength electronic dynamic control | |
CN107132210B (en) | A kind of substrate manufacturing method of the surface-enhanced Raman based on dynamic control | |
CN106735925B (en) | A kind of femtosecond laser direct write preparation method of two dimension sub-micron butterfly metal micro structure | |
CN107790887A (en) | The femtosecond laser direct write preparation method of two-dimentional rhombus cycle micro-nano metal structure | |
Lin et al. | Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption | |
US20160298875A1 (en) | Surface structure for solar heat absorbers and method for the production thereof | |
CN108213718A (en) | A kind of femtosecond laser regulates and controls GemSbnTekCrystalline state nanostructured geometric shape method | |
Pan et al. | Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams | |
CN113113289A (en) | Method for preparing silicon controlled nanowire by using femtosecond laser with remote/near field cooperative shaping | |
CN105149781A (en) | Single-point nano-welding method based on photothermal effect | |
Ning et al. | Femtosecond laser-induced anisotropic structure and nonlinear optical response of yttria-stabilized zirconia single crystals with different planes | |
Theppakuttai et al. | Nanoscale surface modification of glass using a 1064 nm pulsed laser | |
CN102922128B (en) | Method for rapidly preparing periodic corrugation structure on basis of premodulation laser | |
CN113200512B (en) | Small-gap metal nano cavity structure, preparation method and equipment | |
CN118305448A (en) | Method for efficiently processing zinc sulfide surface microstructure array by ultraviolet femtosecond laser | |
CN106129183B (en) | One kind improves gallium arsenide solar cell photoelectric transformation efficiency method | |
CN212217453U (en) | A processing device for nanopore arrays on the surface of brittle materials | |
Malik et al. | Studies on Femtosecond Laser Textured Broadband Anti-reflective Hierarchical a-SiNx: H Thin Films for Photovoltaic Applications | |
CN111168233A (en) | Method for inducing periodic structure on surface of optical glass by picosecond laser | |
Wang et al. | Femtosecond laser direct ablating micro/nanostructures and micropatterns on CH3NH3 PbI3 single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090311 |