CN101378016A - 利用准分子激光退火制作SiGe或Ge量子点的方法 - Google Patents

利用准分子激光退火制作SiGe或Ge量子点的方法 Download PDF

Info

Publication number
CN101378016A
CN101378016A CNA2007101210736A CN200710121073A CN101378016A CN 101378016 A CN101378016 A CN 101378016A CN A2007101210736 A CNA2007101210736 A CN A2007101210736A CN 200710121073 A CN200710121073 A CN 200710121073A CN 101378016 A CN101378016 A CN 101378016A
Authority
CN
China
Prior art keywords
sige
quantum dot
substrate
annealing
epitaxial loayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101210736A
Other languages
English (en)
Other versions
CN101378016B (zh
Inventor
韩根全
曾玉刚
余金中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2007101210736A priority Critical patent/CN101378016B/zh
Publication of CN101378016A publication Critical patent/CN101378016A/zh
Application granted granted Critical
Publication of CN101378016B publication Critical patent/CN101378016B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,量子点制作步骤如下:步骤1:取一衬底;步骤2:在衬底上生长SiGe或者Ge的外延层;步骤3:用激光对外延层进行退火处理,在外延层上得到SiGe或Ge量子点。

Description

利用准分子激光退火制作SiGe或Ge量子点的方法
技术领域
本发明属于半导体技术领域,尤其涉及一种利用激光退火制作纳米量级的半导体量子点的方法。
背景技术
自从1990年Eaglesham和Cerullo首次用TEM证实无位错的Ge岛以来,这种通过三维生长方式得到的纳米尺寸的岛状结构,因其尺寸上具有令人惊奇的均匀性,可以被用来制作对载流子三维限制的量子点,被人成为自组织量子点,并逐渐成为研究热点。Ge或SiGe量子点因其结构上的三维特性,而在光学和电学上表现出特有性质,利用这些性质制作新的功能器件能在微电子和光电子应用中发挥重要作用。诸如,量子点对载流子三维限制有助于提高激子的束缚能,提高SiGe/Si结构的发光效率;由于Ge/Si的II型带边结构可用Ge量子点实现在“轨道”上只限制空穴的“人工原子”;小尺寸的Ge量子点将具有库仑阻塞效应,可用来制作单电子晶体管。
目前得到的Ge或者SiGe量子点的方法主要是利用S-K(Stranski-Krastanow)模式外延生长量子点。根据论文Spencer et al.,Physics Review Letters,Vol.95,p206101,2005和其中的相关文献分析,用这种方法得到SiGe量子点直径很难小于30nm,从而很难真正实现三维量子限制。根据论文Liao et al.,Phyiscs Review B,Vol.60,p15605,1999中给出的形成量子点的S—K模型。生长在Si或者SiGe衬底上的SiGe或者Ge的外延层,当外延层厚度超过临界厚度的时候,将通过产生量子点来释放应力。在量子点的形成长大过程中表面原子和衬底中的原子都向量子点扩散,在生长过程或者热退火过程中这两种扩散都是不可避免的,所以利用S—K模式得到SiGe或者Ge量子点直径都大于30nm。
论文Applied Physics Letters.,Vol.57,p1502,1990报道的Si原子的体扩散系数小于10-21m2s-1,而论文Physics Review Letters,Vol.95,p206101,2005报道表面原子的扩散系数远大于10-12m2s-1。每个激光脉冲辐照引起的高温过程只有几十纳秒,而准分子激光的脉冲频率最大不超过几十赫兹,退火激光脉冲照射后外延层在几十纳秒后恢复到室温,整个退火过程中没有温度的积累。所以在一个脉冲过程中扩散不能发生,整个过程扩散也就不能发生。体扩散的扩散系数太小,在几十纳秒的时间内不能发生扩散,所以从衬底向量子点的体扩散被禁止,而表面扩散可以发生。量子点的产生完全是由于表面的扩散造成的,得到的量子点比用S—K模式外延生长的SiGe或者Ge量子点小的多。
发明内容
本发明解决的技术问题是,用脉冲宽度只有几十纳秒的准分子激光退火Si或者SiGe衬底上生长的含有压应力的SiGe或者Ge的外延层,由于激光退火使得应力外延层产生了瞬时的高温,外延层将通过产生量子点来释放应力。
为解决上述技术问题,本发明提供一种利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,量子点制作步骤如下:
步骤1:取一衬底;
步骤2:在衬底上生长SiGe或者Ge的外延层;
步骤3:用激光对外延层进行退火处理,在外延层上得到SiGe或Ge量子点。
其中所述生长外延层所用衬底是Si衬底或是SiGe赝衬底或SOI衬底。
其中所述外延层为压应力层。
其中所述的退火外延层所用的激光是准分子激光。
其中退火所用的激光束是均匀的平面光斑或是将光束聚成窄的线光斑或者点光斑进行线扫描或者点扫描。
附图说明
为了进一步说明本发明的效果,下面结合附图和实例对本发明作进一步的详细说明,其中:
图1是本发明的流程图;
图2是波长为193纳米的ArF准分子激光单脉冲功率随时间分布图;
图3是单个激光脉冲辐照到SiGe外延层表面上引起的温度过程图;
图4是单个激光脉冲辐照到SiGe外延层表面上引起的温度过程图。
具体实施方式
请参阅图1所示,本发明一种利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,量子点制作步骤如下:
步骤1:取一衬底(步骤S10),所述衬底是Si衬底或是SiGe赝衬底;
步骤2:在衬底上生长SiGe或者Ge的外延层(步骤S20),所述外延层为压应力层;
步骤3:用激光对外延层进行退火处理,在外延层上得到SiGe或Ge量子点(步骤S30),所述的退火外延层所用的激光是准分子激光,所述退火所用的激光束是均匀的平面光斑或是将光束聚成窄的线光斑或者点光斑进行线扫描或者点扫描。
实施例1
本实例用波长为193纳米的ArF准分子激光退火在Si衬底上生长的SiGe的外延层得到了直径为15~20纳米的SiGe量子点;图2为193纳米的ArF准分子激光单脉冲功率随时间分布图。其步骤如下(结合参阅图1):
步骤1:取一衬底(步骤S10)
步骤2:用超高真空化学淀积系统在Si衬底上生长一层SiGe外延层(步骤S20)。
步骤3:用波长为193纳米的ArF准分子激光退火上述SiGe外延层(步骤S30)。激光器的脉冲半高宽度为20纳秒,如图3所示。激光脉冲在SiGe外延层表面引起的温度持续时间大约为50纳秒,如图4所示。用匀质器将激光束变成平面方形光斑。光斑能量密度小于SiGe层的破坏阈值。本次实验是在氖气的保护下进行的,以防止SiGe被氧化和污染。实验验证即使没有保护气体,由于高温过程非常短,基本不会发生表面被氧化的现象。但是如果环境比较脏,需要在保护气体中进行激光退火。
退火之后在SiGe外延层上得到了密度为1.8×1011cm-2的SiGe量子点,量子点的直径为15~20nm。
实施例2
本实例用波长为193纳米的ArF准分子激光退火在Si衬底上生长的Ge的外延层得到了直径为20~25纳米的SiGe量子点;图2为193纳米的ArF准分子激光单脉冲功率随时间分布图。其步骤如下(结合参阅图1):
步骤1:取一衬底(步骤S10)
步骤2:用超高真空化学淀积系统在Si衬底上生长一层Ge外延层(步骤S20)。
步骤3:用波长为193纳米的ArF准分子激光退火上述Ge外延层。激光器的脉冲半高宽度为20纳秒,如图1所示。激光脉冲在Ge外延层表面引起的温度持续时间大约为50纳秒,如图4所示。用匀质器将激光束变成平面方形光斑。光斑能量密度小于Ge层的破坏阈值。本次实验是在氖气的保护下进行的,以防止Ge被氧化和污染。实验验证即使没有保护气体,由于高温过程非常短,基本不会发生表面被氧化的现象。但是如果环境比较脏,需要在保护气体中进行激光退火。
退火之后在Ge外延层上得到了密度为6×1010cm-2的Ge量子点,量子点的直径为20~25nm。

Claims (5)

1.一种利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,量子点制作步骤如下:
步骤1:取一衬底;
步骤2:在衬底上生长SiGe或者Ge的外延层;
步骤3:用激光对外延层进行退火处理,在外延层上得到SiGe或Ge量子点。
2.根据权利要求1所述的利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,其中所述生长外延层所用衬底是Si衬底或是SiGe赝衬底或SOI衬底。
3.根据权利要求1所述的利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,其中所述外延层为压应力层。
4.根据权利要求1所述的利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,其中所述的退火外延层所用的激光是准分子激光。
5.根据权利要求1或4所述的利用准分子激光退火制作SiGe或Ge量子点的方法,其特征在于,其中退火所用的激光束是均匀的平面光斑或是将光束聚成窄的线光斑或者点光斑进行线扫描或者点扫描。
CN2007101210736A 2007-08-29 2007-08-29 利用准分子激光退火制作SiGe或Ge量子点的方法 Expired - Fee Related CN101378016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101210736A CN101378016B (zh) 2007-08-29 2007-08-29 利用准分子激光退火制作SiGe或Ge量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101210736A CN101378016B (zh) 2007-08-29 2007-08-29 利用准分子激光退火制作SiGe或Ge量子点的方法

Publications (2)

Publication Number Publication Date
CN101378016A true CN101378016A (zh) 2009-03-04
CN101378016B CN101378016B (zh) 2010-12-08

Family

ID=40421485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101210736A Expired - Fee Related CN101378016B (zh) 2007-08-29 2007-08-29 利用准分子激光退火制作SiGe或Ge量子点的方法

Country Status (1)

Country Link
CN (1) CN101378016B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201491A (zh) * 2011-03-29 2011-09-28 浙江大学 一种生长有序硅基锗量子点的方法
CN103132077A (zh) * 2013-03-08 2013-06-05 厦门大学 基于SiGe量子点模板刻蚀技术制备锗硅纳米柱的方法
WO2016008288A1 (zh) * 2014-07-14 2016-01-21 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN108022979A (zh) * 2017-11-30 2018-05-11 西安科锐盛创新科技有限公司 Nmos器件及其制备方法及计算机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142467A (zh) * 2018-07-23 2019-01-04 杭州电子科技大学 一种高敏感度no2气体传感器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275301C (zh) * 2002-11-12 2006-09-13 统宝光电股份有限公司 利用准分子激光退火工艺制作多晶硅薄膜的方法
CN1438168A (zh) * 2003-03-25 2003-08-27 南京大学 激光诱导制备尺寸可控高密度纳米硅量子点列阵

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201491A (zh) * 2011-03-29 2011-09-28 浙江大学 一种生长有序硅基锗量子点的方法
CN103132077A (zh) * 2013-03-08 2013-06-05 厦门大学 基于SiGe量子点模板刻蚀技术制备锗硅纳米柱的方法
WO2016008288A1 (zh) * 2014-07-14 2016-01-21 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN108022979A (zh) * 2017-11-30 2018-05-11 西安科锐盛创新科技有限公司 Nmos器件及其制备方法及计算机

Also Published As

Publication number Publication date
CN101378016B (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
CN101910050B (zh) 相异材料上的纳米线生长
CN101378016B (zh) 利用准分子激光退火制作SiGe或Ge量子点的方法
CN103367121B (zh) 外延结构体的制备方法
CN102420277B (zh) 一种制备高密度氮化镓量子点有源层结构的方法
CN106480498B (zh) 一种纳米图形衬底侧向外延硅基量子点激光器材料及其制备方法
Huang et al. InAs nanowires grown by metal–organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning
CN101145590A (zh) 一种量子点材料结构及其生长方法
CN102719888B (zh) 具有纳米微结构基板的制备方法
CN102214748A (zh) 一种氮化镓基垂直结构led外延结构及制造方法
Dias et al. Directed self-assembly of InAs quantum dots on nano-oxide templates
CN103194793B (zh) 一种低密度InAs量子点的分子束外延生长方法
Warren et al. Selective area growth of GaAs on Si patterned using nanoimprint lithography
CN102723264B (zh) 具有纳米微结构基板的制备方法
CN101404246A (zh) 一种大尺寸InGaSb量子点的外延生长方法
Zubialevich et al. Thermal stability of crystallographic planes of GaN nanocolumns and their overgrowth by metal organic vapor phase epitaxy
Hanna et al. MOCVD growth and optical characterization of strain-induced quantum dots with InP island stressors
Lu et al. Role of strain-induced microscale compositional pulling on optical properties of high Al content AlGaN quantum wells for deep-ultraviolet LED
CN104157759A (zh) 高密度高均匀InGaN量子点结构及生长方法
CN102051169B (zh) 一种多层全硅发光材料及其制备方法
US10431455B2 (en) Femtosecond laser-induced formation of single crystal patterned semiconductor surface
Dubowski et al. Laser-induced selective area band-gap tuning in Si/Si 1− x Ge x microstructures
Kapsa et al. STM and FIB nano-structuration of surfaces to localise InAs/InP (0 0 1) quantum dots
CN100468802C (zh) 砷化铟和砷化镓的纳米结构及其制作方法
CN114743864B (zh) 一种有序半导体量子点制备方法及装置
Bosch et al. Etching of the SiGa x N y Passivation Layer for Full Emissive Lateral Facet Coverage in InGaN/GaN Core–Shell Nanowires by MOVPE

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101208

Termination date: 20110829