WO2016008288A1 - 基于应变型异质结量子点的太阳能电池装置及其制备方法 - Google Patents

基于应变型异质结量子点的太阳能电池装置及其制备方法 Download PDF

Info

Publication number
WO2016008288A1
WO2016008288A1 PCT/CN2015/070818 CN2015070818W WO2016008288A1 WO 2016008288 A1 WO2016008288 A1 WO 2016008288A1 CN 2015070818 W CN2015070818 W CN 2015070818W WO 2016008288 A1 WO2016008288 A1 WO 2016008288A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon
quantum dot
solar cell
film layer
Prior art date
Application number
PCT/CN2015/070818
Other languages
English (en)
French (fr)
Inventor
汪超
许洪华
李凯
吴峻恒
王春宁
Original Assignee
国家电网公司
江苏省电力公司
江苏省电力公司南京供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 江苏省电力公司, 江苏省电力公司南京供电公司 filed Critical 国家电网公司
Publication of WO2016008288A1 publication Critical patent/WO2016008288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a solar cell, in particular to a solar cell device based on strain-type heterojunction quantum dots, and relates to a preparation method thereof, and belongs to the field of solar cell materials.
  • Solar energy is an inexhaustible and renewable energy source on the earth.
  • the efficient use of solar energy is one of the core topics of research and industry, including solar cells based on photoelectric conversion effects. Devices and applications.
  • Quantum dot solar cell technology is a new generation of technology for current solar cell research.
  • Semiconductor quantum dot-based solar cells have the following characteristics: the size of quantum dots is on several nanometer scales, often referred to as “artificial atoms", the energy band structure is subjected to three-dimensional quantum size effects, the energy levels are discontinuous, and the scale of quantum dots is directly Determine the characteristics of the energy level; the electron motion space in the quantum dot is limited to the wavelength of De Broglie. In the three-dimensional potential well, the electrons are quantized in all directions; the resonant tunneling effect of the quantum dot solar cell can improve the photocurrent carrying current.
  • quantum dot solar cell has a collision ionization effect, a high energy photon can excite the presence of two or several hot electrons; a stacked solar cell embedded in a dense quantum dot array An intermediate zone can be created that regulates the size and shape of the quantum dots and directly matches the energy level of the solar cell to the solar spectrum as much as possible.
  • Theory and practice show that quantum dot solar cells have the advantages of high conversion efficiency.
  • the quantum dots of germanium materials and silicon materials are non-toxic, resource-rich, and fully compatible with the current mature microelectronic process systems. The technical research on Ge quantum dots and Si quantum dots has become a hot and difficult point.
  • a silicon quantum dot solar cell with heterostructures is formed by using a silicon nitride film containing Si quantum dots and an amorphous silicon film, and a preparation method is explained; 201210195987.8 a multi-junction is designed by using a Ge quantum dot layer and a Si quantum dot layer staggered.
  • Solar cell with heterogeneous sub-point array and preparation method For the Ge crystal material and the Si crystal material, due to the difference in lattice constant, a strain effect is inevitably introduced in the corresponding solar device. However, the strain effect and its effective use in solar cells have not been reported in the above-mentioned patent documents and related documents which are currently known.
  • the object of the present invention is to provide a solar cell device based on strain-type heterojunction quantum dots, and to provide a preparation method thereof, by using the outer Si thin film layer thickness modulation, in view of the deficiencies of the above prior art.
  • the basic technical scheme of the solar cell device based on strain-type heterojunction quantum dots of the present invention comprises: at least two layers of Ge/Si quantum dot structure layers grown on a doped silicon-based substrate;
  • the Si quantum dot structure layer is composed of a Si thin film layer containing Ge quantum dots having a diameter of 2-7 nm, the innermost Si thin film layer has a thickness of 2-4 nm, and the outer Si thin film layer has a thickness ranging from two in the upper layer thickness range.
  • the end points are respectively increased by 2 nm; the outermost quantum dot structure layer is covered by the SiO 2 cover film layer filled with the quantum dot gap to form a quantum dot array filled film multilayer structure; the cover film layer is grown with a thickness of 10-20 nm.
  • the method for preparing a solar cell device based on strain-type heterojunction quantum dots comprises the following steps:
  • Step 1 using a vacuum chemical vapor deposition method, introducing a decane gas on the cleaned doped silicon-based substrate, and growing a Ge thin film layer on the silicon-based substrate;
  • Step 2 Control the thickness of the Ge film layer at 2-7 nm and in-situ annealing
  • Step 3 Passing silane gas on the silicon-based substrate on which the Ge film layer is grown, and growing the Si film layer on the Ge film layer;
  • Step 4 The thickness of the innermost Si film layer grown for the first time is controlled at 2-4 nm, and then increases layer by layer, and the Si film layer is in-situ annealed after formation;
  • Step 5 Cooling and growing into a Ge/Si quantum dot structure layer composed of a Si thin film layer containing 2-7 nm Ge quantum dots;
  • Step 6 Repeat steps 3 and 4 according to the predetermined number of layers required, and the thickness of the Si film layer outside the innermost layer is increased by 2 nm at the ends of the upper layer thickness range;
  • Step 7 After the predetermined number of layers is reached, silane and oxygen are introduced, and a layer of SiO 2 covering film filled with quantum dot gap is grown by oxidation to a thickness of 2-4 nm to form a quantum dot array filled film multilayer structure;
  • Step 8 Epitaxially grow a silicon-doped layer as a protective film by introducing silicon tetrachloride and hydrogen, the thickness is controlled at 10-20 nm, and the doping type is opposite to that of the silicon-based substrate type (if the silicon-based substrate is n-type, Then the silicon doped layer is p-type);
  • Step 9 The electrodes are grown on the outer surfaces of the silicon doped layer and the silicon based substrate, respectively.
  • Theoretical analysis shows that since the Ge quantum dot arrays are covered by Si crystal films of different thicknesses, and the thickness of the Si film is gradually thickened from the inside to the outside (bottom-up), the adjacent Ge/Si quantum dot structure layer lattice There are differences in the constants that result in a strain distribution at the interface of their materials. For Ge quantum dots of the same size, the thicker the Si thin film layer, the greater the strain distribution produced; conversely, the resulting strain distribution is small. The strain causes the lattice constant of the internal quantum dots to become smaller, the wave function between adjacent atoms to become larger, and the wave function interaction between adjacent atoms becomes stronger. As a result, the originally degenerate energy level is enhanced.
  • the interaction is such that the spacing between the new energy levels becomes larger, that is, the forbidden band width becomes larger; conversely, the forbidden band width becomes smaller. Therefore, the difference in the size of the strain distribution causes a change in the forbidden band width of the corresponding quantum dot.
  • the Ge quantum dot array of the present invention is covered by Si crystal films of different thicknesses, and the thickness of the Si film is gradually thickened from the inside to the outside, which can further effectively broaden the spectral response range of the solar cell to sunlight, and improve the solar spectrum.
  • the degree of matching thereby improving the photoelectric conversion efficiency of the solar cell.
  • the invention is based on the difference in lattice constant between the Ge quantum dots and the Si thin film layer, and utilizes the difference in the thickness of the Si thin film layer to cause the change in the strain in the Ge quantum dots to regulate the performance of the solar cell.
  • the Ge quantum dot and the Si thin film layer are used to construct a heterostructured stacked solar cell device, and the principle mechanism is completely different from the above existing patents.
  • a further refinement of the invention is that the doping type of the silicon doped layer is opposite to the doping type of the silicon based substrate.
  • the distance between the outer diameter surfaces of two adjacent quantum dots is controlled within 4 nm.
  • the Si thin film layer has four layers, and the thicknesses of the first layer, the second layer, the third layer, and the fourth layer are gradually thickened from bottom to top, respectively, being 2-4 nm, 4- 6 nm, 6-8 nm, 8-10 nm.
  • the thickness of the Si thin film layer of the present invention refers to the thickness of the Si thin film layer on top of the spherical silicon quantum dots after filling the gap between the Ge quantum dots with the Si material.
  • the doping density of the silicon doped layer and the silicon based substrate are the same.
  • the outer surface of the silicon doped layer and the silicon substrate are respectively grown with a transparent conductive film, and the transparent conductive film is externally grown with an external contact electrode.
  • the invention not only has the advantages of simple structure, wide spectral response and high conversion efficiency, but also is compatible with the existing silicon-based microelectronic process, and is convenient for industrialization and commercialization of quantum dot solar cells, and at the same time provides optimization for performance of solar cells. A new idea.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • the solar cell device based on strain-type heterojunction quantum dots of the present embodiment includes a four-layer Ge/Si quantum dot structure layer grown on the doped silicon-based substrate 1 as shown in FIG.
  • the silicon-based substrate 1 may be either n-type or p-type, and has a thickness of a normal silicon substrate thickness.
  • the Ge/Si quantum dot structure layer is composed of a Si thin film layer 3 (ie, a shell of a heterogeneous quantum dot) containing a Ge quantum dot 2 having a diameter of 2-7 nm (ie, a core layer of a heterogeneous quantum dot), all Ge
  • the quantum dots have the same diameter and the distance between the quantum dots in the array of Ge quantum dots is kept within 4 nm.
  • the innermost first Si thin film layer thickness (ie, the thickness of the Si thin film layer at the top of the spherical silicon quantum dot after filling the gap between the Ge quantum dots with the Si material) is 2-4 nm, and the second is 4-6 nm.
  • the third layer is 6-8 nm, and the fourth layer is 8-10 nm, and the first layer, the second layer, the third layer, and the fourth layer are formed to gradually thicken from bottom to top.
  • the outermost quantum dot structure layer is covered by the SiO 2 cover film layer 4 filling the quantum dot gap to form a quantum dot array filled film multilayer structure.
  • a protective film of silicon doped layer 5 having a thickness of 10-20 nm is grown outside the cover film layer 4, and the doping type of the silicon doped layer 5 is opposite to that of the silicon based substrate (if the silicon based substrate 1 is n Type, the silicon doped layer 5 is p-type, and vice versa, so as to satisfy the typical solar cell PIN structure.
  • the doping density of the silicon doped layer 5 and the silicon based substrate 1 is the same.
  • the silicon-doped layer 6 and the outer surface of the silicon-based substrate 1 are respectively grown with a transparent conductive film 6, and the outer surface of the transparent conductive film 6 is respectively grown with electrodes 7.
  • Step 1 Using a vacuum chemical vapor deposition method, a germane gas as a precursor is introduced into the doped silicon-based substrate after cleaning by a microelectronic process, and a Ge thin film layer is grown on the silicon-based substrate;
  • the flow rate of the alkane (GeH 4 ) is 1 sccm-2 sccm, the pressure is 0.4-0.6 Pa, and the growth temperature is 350-420 ° C;
  • Step 2 Precisely control the growth process of the Ge film layer by a reflective high energy electron diffraction device (RHEED), control the thickness of the Ge film layer at 2-7 nm, and in-situ annealing; the in-situ annealing temperature is 580--620 ° C;
  • RHEED reflective high energy electron diffraction device
  • Step 3 A silane gas is introduced into the silicon-based substrate on which the Ge film layer is grown, and a Si film layer is grown on the Ge film layer; a flow rate of silane (SiH 4 ) is 1 sccm-2 sccm, and a pressure is 0.4-0.6 Pa. Growth temperature is 350-420 ° C);
  • Step 4 The morphology and growth thickness of the innermost Si film layer were controlled by atomic force microscopy. The thickness of the innermost Si film layer was firstly controlled at 2-4 nm, and then increased layer by layer. After the Si film layer was formed, it was annealed in situ. 580--620 ° C;
  • Step 5 Cooling and growing into a Ge/Si quantum dot structure layer composed of a Si thin film layer containing 2-7 nm Ge quantum dots;
  • Step 6 Repeat steps 3 and 4 according to the predetermined number of layers required, and the thickness of the Si film layer outside the innermost layer is increased by 2 nm at the ends of the upper layer thickness range;
  • Step 7 After reaching the predetermined number of layers, silane and oxygen are introduced, and a layer of SiO 2 covering film filled with quantum dot gap is grown by oxidation to a thickness of 2-4 nm to form a quantum dot array filled film multilayer structure; silane and oxygen
  • the ratio of no-load is 1:2 ⁇ 0.5, the flow rate is between 10sccm-25sccm, the pressure is 100-150Pa, and the growth temperature is 400-480°C;
  • Step 8 A silicon-doped layer is epitaxially grown as a protective film by introducing silicon tetrachloride (SiCl 4 ) and hydrogen, the thickness is controlled at 10-20 nm, and the doping type is opposite to that of the silicon-based substrate; silicon tetrachloride and The hydrogen ratio is no load 1:2 ⁇ 0.5, the flow rate is between 10sccm-20sccm, the pressure is 100-140Pa, and the growth temperature is 950-1050°C;
  • Step 9 An indium tin oxide transparent electrode (ITO) is grown on the outer surface of the silicon doped layer and the silicon substrate, respectively, and then the contact electrode is regrown.
  • ITO indium tin oxide transparent electrode
  • the strain-based heterostructure quantum dot solar cell of the present embodiment utilizes the difference in lattice parameters of the Ge and Si crystal materials themselves, and the material selection is completely compatible with the microelectronic process, the solar cell process requirements, and the preparation.
  • the process is simple and can be precisely controlled; the other defects are not introduced, the solar cell structure is optimized, the matching with the solar spectrum is improved, the photoelectric conversion efficiency is significantly improved, and the application can be popularized in engineering.
  • quantum dots are grown by self-assembly, it is one of the typical processes that are common.
  • the self-assembled material has few crystal defects and the preparation process is simple and mature.
  • MBE molecular beam epitaxy
  • MOCVD metal organic chemical vapor deposition
  • the accumulation of strain causes the epitaxial layer to transform into a three-dimensional island shape, thereby generating a uniform quantum.
  • Point array for quantum dots of heterogeneous structure, strain exists due to the difference in lattice constants of the two growth materials, and the strain distribution directly affects the energy band characteristics of the quantum dot device.
  • the present embodiment utilizes the strain effect of two materials in the quantum dots of the heterostructure and the influence of the energy band characteristics of the quantum dots, and is applied to the design of the solar cell of the quantum dot array to further improve the photoelectric conversion efficiency, and is a silicon-based solar energy. Further optimization of performance provides a new and practical technical path.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种基于应变型异质结量子点的太阳能电池装置,同时涉及其制备方法,属于太阳能电池材料领域。该电池装置包括在掺杂硅基衬底(1)上生长的至少二层Ge/Si量子点结构层;Ge/Si量子点结构层由含有直径2-7nm的Ge量子点(2)的Si薄膜层(3)构成,最内层的Si薄膜层(3)为2-4nm,以后逐层递增;最外层的量子点结构层为填充量子点间隙的SiO 2覆盖薄膜层(4),形成量子点阵列填充薄膜多层结构;覆盖薄膜层(4)外生长有一层厚度10-20nm的硅掺杂层保护膜(5),硅掺杂层(5)和硅基衬底(1)外表面生长有电极(7)。能带范围拓展到0.4-0.22eV之间,对应的转换效率在55-57%之间,相比现有技术可以提高7%以上,显著提升了太阳能电池的光电转换效率。

Description

基于应变型异质结量子点的太阳能电池装置及其制备方法 技术领域
本发明涉及一种太阳能电池,具体涉及基于应变型异质结量子点的太阳能电池装置,同时涉及其制备方法,属于太阳能电池材料领域。
背景技术
太阳能是地球上取之不尽、用之不竭的可再生、清洁能源,对太阳能的高效使用是目前研究机构、工业界等重点关注的核心课题之一,其中包括基于光电转换效应的太阳能电池装置及应用。量子点太阳能电池技术是现行太阳能电池研究的新一代技术。
基于半导体量子点的太阳能电池具有以下特征:量子点的尺寸在数个纳米尺度,常被称为“人造原子”,能带结构受到三维量子尺寸效应,能级不连续,且量子点的尺度直接决定能级特征;量子点内的电子运动空间局限于德布罗意波长的范围内,在三维势阱下,电子各个方向均量子化;量子点太阳能电池共振隧穿效应能提高对光生载流子的收集率,从而增大光电流;量子点太阳能电池存在碰撞离化效应,一个高能量光子可以激发两个或数个热电子的存在;嵌入致密的量子点阵列的叠层结构的太阳能电池可产生中间带,调控量子点的尺寸和形状,能够直接使太阳能电池的能级尽可能与太阳光谱相匹配。理论和实践表明,量子点太阳能电池有着很高的转换效率等优点。锗材料、硅材料的量子点由于材料无毒性、资源多,且完全与目前成熟的微电子工艺体系相兼容。对Ge量子点、Si量子点的技术研究成为当前一大热点和难点。
现有基于量子点太阳能电池及制备方法已经成熟,申请号为200910033256.1、201110199377.0以及201210195987.8的中国专利分别公开了一种实现纳米硅量子点可控掺杂的方法、基于异质结结构的硅量子点太阳能电池及制备方法、多结异质量子点阵列及太阳能电池的制备方法。这些多层结构的量子点太阳能电池,结构简单,光谱响应宽,与现有的硅基微电子工艺兼容。其中, 201110199377.0采用包含Si量子点的氮化硅薄膜、非晶硅薄膜构建异质结构的硅量子点太阳能电池,并阐释了制备方法;201210195987.8采用Ge量子点层、Si量子点层交错排列来设计多结异质量子点阵列的太阳能电池及制备方法。对于Ge晶体材料、Si晶体材料由于晶格常数的存在差异,对应的太阳能装置中必然会引入应变效应。然而,应变效应及其在太阳能电池中的有效利用上述专利文献及目前可知的相关文献均未报道。
发明内容
本发明的目的在于:针对上述现有技术存在的不足之处,提出一种基于应变型异质结量子点的太阳能电池装置,同时给出其制备方法,从而通过借助外层Si薄膜层厚度调制内部Ge量子点的应变大小、进而调节量子点的禁带宽度,以提高量子点与太阳光谱的匹配度、提升太阳能电池的光电转换效率。
为了达到以上目的,本发明基于应变型异质结量子点的太阳能电池装置基本技术方案为:包括在掺杂硅基衬底上生长的至少二层Ge/Si量子点结构层;所述Ge/Si量子点结构层由含有直径2-7nm的Ge量子点的Si薄膜层构成,最内层的Si薄膜层厚度为2-4nm,外层Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层覆盖,形成量子点阵列填充薄膜多层结构;所述覆盖薄膜层外生长有一层厚度10-20nm的硅掺杂层保护膜;所述硅掺杂层和硅基衬底外表面生长有电极。
本发明基于应变型异质结量子点的太阳能电池装置制备方法包括如下步骤:
步骤一.采用真空化学气相沉积法,在清洗后的掺杂硅基衬底上通入锗烷气体,在硅基衬底上生长Ge薄膜层;
步骤二.控制Ge薄膜层厚度在2-7nm,并原位退火;
步骤三.在生长出Ge薄膜层的硅基衬底上通入硅烷气体,在Ge薄膜层上生长Si薄膜层;
步骤四.第一次生长的最内层Si薄膜层厚度控制在2-4nm,以后逐层递增,Si薄膜层生成后原位退火;
步骤五.冷却生长成由含有直径2-7nmGe量子点的Si薄膜层构成的Ge/Si量子点结构层;
步骤六.根据所需预定层数,重复步骤三、步骤四,最内层之外的Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;
步骤七.达到预定层数后,通入硅烷和氧气,氧化生长一层填充量子点间隙的SiO2覆盖薄膜层,厚度控制在2-4nm,形成量子点阵列填充薄膜多层结构;
步骤八.通入四氯化硅和氢气外延生长一层硅掺杂层作为保护膜,厚度控制在10-20nm,掺杂类型与硅基衬底类型相反(如果硅基衬底为n型,则硅掺杂层为p型);
步骤九.分别在硅掺杂层和硅基衬底外表面生长电极。
理论分析可知,由于Ge量子点阵列分别由不同厚度的Si晶体薄膜覆盖,并且Si薄膜厚度自内而外(自下而上)逐渐增厚,因此相邻的Ge/Si量子点结构层晶格常数存在差异,导致在其材料交界面处存在应变分布。对于相同尺寸的Ge量子点而言,Si薄膜层越厚,产生的应变分布越大;反之,产生的应变分布就小。而应变导致其内部量子点的晶格常数变小、相邻原子间的波函数交叠变大、相邻原子之间的波函数相互作用变强,结果原本简并的能级因受到增强的相互作用,而使新能级之间的间距变大,即禁带宽度变大;反之,禁带宽度变小。因此,应变分布的大小差异会造成对应量子点的禁带宽度变化。根据光子与禁带宽度的匹配关系式:Eg=hν=h*(c/λ)(式中Eg为禁带宽度,单位电子福特eV;h为普朗克常数;ν为光子频率,单位赫兹Hz;c为光速常数;λ光波长,单位埃,即0.1nm)可知,当Ge量子点的禁带宽度变小时,波长λ变大,此时可吸收低能量范围的太阳光谱;反之,Ge量子点的禁带宽度变大时,可吸收高能量范围的太阳光谱。
依据上述理论,本发明Ge量子点阵列分别由不同厚度的Si晶体薄膜覆盖、且Si薄膜厚度自内而外逐渐增厚,可以进一步有效拓宽太阳能电池对太阳光的光谱响应范围,提高与太阳光谱的匹配度,从而提升太阳能电池的光电转换效率。
本发明基于Ge量子点与Si薄膜层之间的晶格常数差异,利用Si薄膜层厚度差异引起Ge量子点内应变的改变来调控太阳能电池的性能。Ge量子点与Si薄膜层构建异质结构的叠层结构太阳能电池装置,其原理机制完全不同于上述现有专利。
试验证明,本发明的太阳能电池装置的能带范围拓展到0.4-0.22eV之间,对应的转换效率在55-57%之间,相比现有技术可以提高7%以上,显著提升了太阳能电池的光电转换效率。并且Shockley–Queissr多结能带理论(参见201210195987.8)——应变可以导致Ge量子点的禁带宽度变小,使本发明具有理论依据。
本发明进一步的完善是,所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反。
本发明又进一步的完善是,所述Ge量子点的阵列中,相邻两个量子点外径表面之间的距离控制在4nm之内。
本发明更进一步的完善是,所述Si薄膜层共有四层,第一层、第二层、第三层、第四层的厚度自下而上逐渐增厚,分别为2-4nm、4-6nm、6-8nm、8-10nm。本发明的Si薄膜层厚度指先用Si材料填充Ge量子点之间的间隙后,在球形硅量子点顶部的Si薄膜层的厚度。
本发明还进一步的完善是,所述硅掺杂层和硅基衬底的掺杂密度相同。
本发明再进一步的完善是,所述硅掺杂层和硅基衬底外表面分别生长有透明导电薄膜,所述透明导电薄膜外生长有外部接触电极。
本发明不仅具有结构简单、光谱响应宽、转换效率高等显著优点,而且与现有的硅基微电子工艺兼容,便于量子点太阳能电池的产业化、商业化推广,同时为太阳能电池的性能优化提供了一种新思路。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明一个实施例的结构示意图。
具体实施方式
本实施例基于应变型异质结量子点的太阳能电池装置如图1所示,包括在掺杂硅基衬底1上生长的四层Ge/Si量子点结构层。硅基衬底1为n型或p型均可,厚度为正常硅基片厚度。Ge/Si量子点结构层由含有直径2-7nm的Ge量子点2(即异质型量子点的芯层)的Si薄膜层3(即异质型量子点的壳层)构成,所有的Ge量子点直径大小一致,Ge量子点的阵列中,量子点之间的距离保持在4nm之内。最内的第一层Si薄膜层厚度(即先用Si材料填充Ge量子点之间的间隙后,在球形硅量子点顶部的Si薄膜层的厚度)为2-4nm、第二为4-6nm、第三层为6-8nm、第四层为8-10nm,形成第一层、第二层、第三层、第四层厚度自下而上逐渐增厚结构。最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层4覆盖,形成量子点阵列填充薄膜多层结构。覆盖薄膜层4外生长有一层厚度10-20nm的硅掺杂层5保护膜,该硅掺杂层5的掺杂类型与硅基衬底的掺杂类型相反(如果硅基衬底1为n型,则硅掺杂层5为p型,反之也可),从而满足典 型太阳能电池P-I-N结构。硅掺杂层5和硅基衬底1的掺杂密度相同。硅掺杂层6和硅基衬底1外表面分别生长透明导电薄膜6,透明导电薄膜6的外表面分别生长有电极7。
制备本实施例基于应变型异质结量子点的太阳能电池装置包括如下步骤:
步骤一.采用真空化学气相沉积法,在利用微电子工艺进行清洗后的掺杂硅基衬底上通入作为前驱物的锗烷气体,在硅基衬底上生长Ge薄膜层;通入锗烷(GeH4)的流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃;
步骤二.通过反射式高能电子衍射装置(RHEED)精确定位控制Ge薄膜层的生长过程,控制Ge薄膜层厚度在2-7nm,并原位退火;原位退火温度为580--620℃;
步骤三.在生长出Ge薄膜层的硅基衬底上通入硅烷气体,在Ge薄膜层上生长Si薄膜层;通入硅烷(SiH4)流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃);
步骤四.采用原子力显微镜观测其形貌及生长厚度,第一次生长的最内层Si薄膜层厚度控制在2-4nm,以后逐层递增,Si薄膜层生成后原位退火;原位退火温度为580--620℃;
步骤五.冷却生长成由含有直径2-7nmGe量子点的Si薄膜层构成的Ge/Si量子点结构层;
步骤六.根据所需预定层数,重复步骤三、步骤四,最内层之外的Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;
步骤七.达到预定层数后,通入硅烷和氧气,氧化生长一层填充量子点间隙的SiO2覆盖薄膜层,厚度控制在2-4nm,形成量子点阵列填充薄膜多层结构;硅烷和氧气比例空载为1:2±0.5、流量为10sccm-25sccm之间、压强为100-150Pa、生长温度为400-480℃;
步骤八.通入四氯化硅(SiCl4)和氢气外延生长一层硅掺杂层作为保护膜,厚度控制在10-20nm,掺杂类型与硅基衬底类型相反;四氯化硅和氢气比例空载为1:2±0.5、流量为10sccm-20sccm之间、压强为100-140Pa、生长温度为950-1050℃;
步骤九.分别在硅掺杂层和硅基衬底外表面生长氧化铟锡透明电极(ITO),之后再生长接触电极。
试验证明,本实施例的基于应变效应的异质结构量子点太阳能电池利用了Ge、Si晶体材料本身的晶格参数的差异,材料的选取完全兼容微电子工艺、太阳能电池的工艺要求,并且制备工艺简单、能够精确控制;不引入其他缺陷,优化了太阳能电池结构,提高了与太阳光谱的匹配度,显著提高了光电转换效率,在工程上可推广应用。
由于量子点通过自组装生长是常见的典型工艺之一。自组装生长的材料晶体缺陷少、制备工艺简便成熟。借助分子束外延(MBE)或金属有机化学汽相淀积(MOCVD)在二维平面上生长时,随着生长厚度的增加,应变的积累引起外延层转变为三维岛状,进而生成均匀的量子点阵列;对于异质结构的量子点,由于两种生长材料晶格常数的差异,应变存在积累,应变分布直接影响到量子点器件的能带特征。因此,本实施例利用异质结构的量子点中两种材料的应变效应及对量子点的能带特征影响,应用在量子点阵列的太阳能电池的设计中进而提升光电转换效率,为硅基太阳能性能进一步优化提供一种新的、切实可行的技术路径。

Claims (8)

  1. 一种基于应变型异质结量子点的太阳能电池装置,包括在掺杂硅基衬底上生长的至少二层Ge/Si量子点结构层;其特征在于:所述Ge/Si量子点结构层由含有直径2-7nm的Ge量子点的Si薄膜层构成,最内层的Si薄膜层厚度为2-4nm,外层Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层覆盖,形成量子点阵列填充薄膜多层结构;所述覆盖薄膜层外生长有一层厚度10-20nm的硅掺杂层保护膜,所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反;所述硅掺杂层和硅基衬底外表面生长有电极。
  2. 根据权利要求1所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反。
  3. 根据权利要求2所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述Ge量子点的阵列中,相邻两个量子点外径表面之间的距离控制在4nm之内。
  4. 根据权利要求3所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述Si薄膜层共有四层,第一层、第二层、第三层、第四层的厚度自下而上逐渐增厚,分别为2-4nm、4-6nm、6-8nm、8-10nm。
  5. 根据权利要求4所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层和硅基衬底的掺杂密度相同。
  6. 根据权利要求5所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层和硅基衬底外表面分别生长有透明导电薄膜,所述透明导电薄膜外生长有外部接触电极。
  7. 根据权利要求1至6任一所述基于应变型异质结量子点的太阳能电池装置的制备方法,其特征在于包括如下步骤:
    步骤一.采用真空化学气相沉积法,在清洗后的掺杂硅基衬底上通入锗烷气体,在硅基衬底上生长Ge薄膜层;
    步骤二.控制Ge薄膜层厚度在2-7nm,并原位退火;
    步骤三.在生长出Ge薄膜层的硅基衬底上通入硅烷气体,在Ge薄膜层上生长Si薄膜层;
    步骤四.第一次生长的最内层Si薄膜层厚度控制在2-4nm,以后逐层递增,Si薄膜层生成后原位退火;
    步骤五.冷却生长成由含有直径2-7nmGe量子点的Si薄膜层构成的Ge/Si量子点结构层;
    步骤六.根据所需预定层数,重复步骤三、步骤四,最内层之外的Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;
    步骤七.达到预定层数后,通入硅烷和氧气,氧化生长一层填充量子点间隙的SiO2覆盖薄膜层,厚度控制在2-4nm,形成量子点阵列填充薄膜多层结构;
    步骤八.通入四氯化硅和氢气外延生长一层硅掺杂层作为保护膜,厚度控制在10-20nm,掺杂类型与硅基衬底类型相反(如果硅基衬底为n型,则硅掺杂层为p型);
    步骤九.分别在硅掺杂层和硅基衬底外表面生长电极。
  8. 根据权利要求7所述基于应变型异质结量子点的太阳能电池装置的制备方法,其特征在于:
    所述步骤一中,通入锗烷的流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃;
    所述步骤二中,原位退火温度为580--620℃;
    所述步骤三中,通入硅烷流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃);
    所述步骤四中,原位退火温度为580--620℃;
    所述步骤七中,硅烷和氧气比例空载为1:2±0.5、流量为10sccm-25sccm之间、压强为100-150Pa、生长温度为400-480℃;
    所述步骤八中,四氯化硅和氢气比例空载为1:2±0.5、流量为10sccm-20sccm之间、压强为100-140Pa、生长温度为950-1050℃。
PCT/CN2015/070818 2014-07-14 2015-01-16 基于应变型异质结量子点的太阳能电池装置及其制备方法 WO2016008288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410333956.3A CN104091848B (zh) 2014-07-14 2014-07-14 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN201410333956.3 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016008288A1 true WO2016008288A1 (zh) 2016-01-21

Family

ID=51639546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070818 WO2016008288A1 (zh) 2014-07-14 2015-01-16 基于应变型异质结量子点的太阳能电池装置及其制备方法

Country Status (2)

Country Link
CN (1) CN104091848B (zh)
WO (1) WO2016008288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150160A1 (en) * 2017-02-15 2018-08-23 The University Of Warwick Photovoltaic device
WO2018230058A1 (ja) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091848B (zh) * 2014-07-14 2016-06-15 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN105576150B (zh) * 2015-12-22 2017-12-19 成都新柯力化工科技有限公司 一种量子点尺寸梯度变化的钙钛矿型太阳能电池及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378016A (zh) * 2007-08-29 2009-03-04 中国科学院半导体研究所 利用准分子激光退火制作SiGe或Ge量子点的方法
US20090255580A1 (en) * 2008-03-24 2009-10-15 Neil Dasgupta Quantum dot solar cell with quantum dot bandgap gradients
CN101950762A (zh) * 2010-07-27 2011-01-19 上海太阳能电池研究与发展中心 硅基太阳能电池及其制备方法
CN103000742A (zh) * 2012-12-04 2013-03-27 南京大学 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
CN104091848A (zh) * 2014-07-14 2014-10-08 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN204088347U (zh) * 2014-07-14 2015-01-07 国家电网公司 基于应变型异质结量子点的太阳能电池装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388324B (zh) * 2008-10-14 2010-06-09 厦门大学 一种锗量子点的制备方法
JP2013229378A (ja) * 2012-04-24 2013-11-07 Kyocera Corp 太陽電池
CN103489939B (zh) * 2012-06-14 2016-04-20 苏州协鑫工业应用研究院有限公司 多结异质量子点阵列及其制备方法和多结异质量子点太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378016A (zh) * 2007-08-29 2009-03-04 中国科学院半导体研究所 利用准分子激光退火制作SiGe或Ge量子点的方法
US20090255580A1 (en) * 2008-03-24 2009-10-15 Neil Dasgupta Quantum dot solar cell with quantum dot bandgap gradients
CN101950762A (zh) * 2010-07-27 2011-01-19 上海太阳能电池研究与发展中心 硅基太阳能电池及其制备方法
CN103000742A (zh) * 2012-12-04 2013-03-27 南京大学 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
CN104091848A (zh) * 2014-07-14 2014-10-08 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN204088347U (zh) * 2014-07-14 2015-01-07 国家电网公司 基于应变型异质结量子点的太阳能电池装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150160A1 (en) * 2017-02-15 2018-08-23 The University Of Warwick Photovoltaic device
WO2018230058A1 (ja) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 二次電池

Also Published As

Publication number Publication date
CN104091848A (zh) 2014-10-08
CN104091848B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
US9406824B2 (en) Nanopillar tunneling photovoltaic cell
WO2013128901A1 (en) A vertical junction solar cell structure and method
US8551558B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US9496434B2 (en) Solar cell and method for producing solar cell
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
KR20110003751A (ko) p-i-n 나노선을 이용한 태양전지
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
Gu et al. Design and growth of III–V nanowire solar cell arrays on low cost substrates
WO2016008288A1 (zh) 基于应变型异质结量子点的太阳能电池装置及其制备方法
TW201308628A (zh) 太陽能電池
CN101950762A (zh) 硅基太阳能电池及其制备方法
Sohrabi et al. Optimization of third generation nanostructured silicon-based solar cells
KR20120078243A (ko) ZnO 나노선을 이용한 깃발형 하이브리드 솔라셀 제조 방법
JP5038459B2 (ja) 3次元サブセルを有するマルチ接合光電池構造およびその方法
KR101136882B1 (ko) 질화물 반도체 기반의 태양전지 및 그 제조방법
CN204088347U (zh) 基于应变型异质结量子点的太阳能电池装置
US9911892B2 (en) Method for the low-temperature production of radial-junction semiconductor nanostructures, radial junction device, and solar cell including radial-junction nanostructures
CN209963065U (zh) 一种具有图案化pdms结构的太阳能电池
JP2013105952A (ja) 太陽電池
Kurokawa et al. Observation of the photovoltaics effect from the solar cells using silicon quantum dots superlattice as a light absorption layer
KR101395028B1 (ko) 탠덤형 태양전지 및 그의 제조 방법
JP6036833B2 (ja) 太陽電池及びその製造方法
Arif et al. Investigation of new approaches for InGaN growth with high indium content for CPV application
Misra et al. Radial Junction Architecture: A New Approach to Stable and Highly Efficient Silicon Thin Film Solar Cells
JP6004429B2 (ja) 単結晶SiGe層の製造方法及びそれを用いた太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821390

Country of ref document: EP

Kind code of ref document: A1