CN204088347U - 基于应变型异质结量子点的太阳能电池装置 - Google Patents

基于应变型异质结量子点的太阳能电池装置 Download PDF

Info

Publication number
CN204088347U
CN204088347U CN201420387499.1U CN201420387499U CN204088347U CN 204088347 U CN204088347 U CN 204088347U CN 201420387499 U CN201420387499 U CN 201420387499U CN 204088347 U CN204088347 U CN 204088347U
Authority
CN
China
Prior art keywords
layer
silicon
quantum
quantum dot
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201420387499.1U
Other languages
English (en)
Inventor
许洪华
延巧娜
凃俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Original Assignee
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Nanjing Power Supply Co of Jiangsu Electric Power Co filed Critical State Grid Corp of China SGCC
Priority to CN201420387499.1U priority Critical patent/CN204088347U/zh
Application granted granted Critical
Publication of CN204088347U publication Critical patent/CN204088347U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型涉及一种基于应变型异质结量子点的太阳能电池装置,同时涉及其制备方法,属于太阳能电池材料领域。该电池装置包括在掺杂硅基衬底上生长的至少二层Ge/Si量子点结构层;Ge/Si量子点结构层由含有直径2-7nm的Ge量子点的Si薄膜层构成,最内层的Si薄膜层为2-4nm,以后逐层递增;最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层,形成量子点阵列填充薄膜多层结构;覆盖薄膜层外生长有一层厚度10-20nm的硅掺杂层保护膜,硅掺杂层和硅基衬底外表面生长有电极。本实用新型的能带范围拓展到0.4-0.22eV之间,对应的转换效率在55-57%之间,相比现有技术可以提高7%以上,显著提升了太阳能电池的光电转换效率。

Description

基于应变型异质结量子点的太阳能电池装置
技术领域
本实用新型涉及一种太阳能电池,具体涉及基于应变型异质结量子点的太阳能电池装置,同时涉及其制备方法,属于太阳能电池材料领域。
背景技术
太阳能是地球上取之不尽、用之不竭的可再生、清洁能源,对太阳能的高效使用是目前研究机构、工业界等重点关注的核心课题之一,其中包括基于光电转换效应的太阳能电池装置及应用。量子点太阳能电池技术是现行太阳能电池研究的新一代技术。
基于半导体量子点的太阳能电池具有以下特征:量子点的尺寸在数个纳米尺度,常被称为“人造原子”,能带结构受到三维量子尺寸效应,能级不连续,且量子点的尺度直接决定能级特征;量子点内的电子运动空间局限于德布罗意波长的范围内,在三维势阱下,电子各个方向均量子化;量子点太阳能电池共振隧穿效应能提高对光生载流子的收集率,从而增大光电流;量子点太阳能电池存在碰撞离化效应,一个高能量光子可以激发两个或数个热电子的存在;嵌入致密的量子点阵列的叠层结构的太阳能电池可产生中间带,调控量子点的尺寸和形状,能够直接使太阳能电池的能级尽可能与太阳光谱相匹配。理论和实践表明,量子点太阳能电池有着很高的转换效率等优点。锗材料、硅材料的量子点由于材料无毒性、资源多,且完全与目前成熟的微电子工艺体系相兼容。对Ge量子点、Si量子点的技术研究成为当前一大热点和难点。
现有基于量子点太阳能电池及制备方法已经成熟,申请号为200910033256.1、201110199377.0以及201210195987.8的中国专利分别公开了一种实现纳米硅量子点可控掺杂的方法、基于异质结结构的硅量子点太阳能电池及制备方法、多结异质量子点阵列及太阳能电池的制备方法。这些多层结构的量子点太阳能电池,结构简单,光谱响应宽,与现有的硅基微电子工艺兼容。其中,201110199377.0采用包含Si量子点的氮化硅薄膜、非晶硅薄膜构建异质结构的硅量子点太阳能电池,并阐释了制备方法;201210195987.8采用Ge量子点层、Si量子点层交错排列来设计多结异质量子点阵列的太阳能电池及制备方法。对于Ge晶体材料、Si晶体材料由于晶格常数的存在差异,对应的太阳能装置中必然会引入应变效应。然而,应变效应及其在太阳能电池中的有效利用上述专利文献及目前可知的相关文献均未报道。
发明内容
本实用新型的目的在于:针对上述现有技术存在的不足之处,提出一种基于应变型异质结量子点的太阳能电池装置,同时给出其制备方法,从而通过借助外层Si薄膜层厚度调制内部Ge量子点的应变大小、进而调节量子点的禁带宽度,以提高量子点与太阳光谱的匹配度、提升太阳能电池的光电转换效率。
为了达到以上目的,本实用新型基于应变型异质结量子点的太阳能电池装置基本技术方案为:包括在掺杂硅基衬底上生长的至少二层Ge/Si量子点结构层;所述Ge/Si量子点结构层由含有直径2-7nm的Ge量子点的Si薄膜层构成,最内层的Si薄膜层厚度为2-4nm,外层Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层覆盖,形成量子点阵列填充薄膜多层结构;所述覆盖薄膜层外生长有一层厚度10-20nm的硅掺杂层保护膜;所述硅掺杂层和硅基衬底外表面生长有电极。
本实用新型基于应变型异质结量子点的太阳能电池装置制备方法包括如下步骤:
步骤一. 采用真空化学气相沉积法,在清洗后的掺杂硅基衬底上通入锗烷气体,在硅基衬底上生长Ge薄膜层;
步骤二. 控制Ge薄膜层厚度在2-7nm ,并原位退火;
步骤三. 在生长出Ge薄膜层的硅基衬底上通入硅烷气体,在Ge薄膜层上生长Si薄膜层;
步骤四. 第一次生长的最内层Si薄膜层厚度控制在2-4nm,以后逐层递增,Si薄膜层生成后原位退火;
步骤五. 冷却生长成由含有直径2-7nmGe量子点的Si薄膜层构成的Ge/Si量子点结构层;
步骤六. 根据所需预定层数,重复步骤三、步骤四,最内层之外的Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;
步骤七. 达到预定层数后,通入硅烷和氧气,氧化生长一层填充量子点间隙的SiO2覆盖薄膜层,厚度控制在2-4nm,形成量子点阵列填充薄膜多层结构;
步骤八. 通入四氯化硅和氢气外延生长一层硅掺杂层作为保护膜,厚度控制在10-20nm,掺杂类型与硅基衬底类型相反(如果硅基衬底为n型,则硅掺杂层为p型);
步骤九. 分别在硅掺杂层和硅基衬底外表面生长电极。
理论分析可知,由于Ge量子点阵列分别由不同厚度的Si晶体薄膜覆盖,并且Si薄膜厚度自内而外(自下而上)逐渐增厚,因此相邻的Ge/Si量子点结构层晶格常数存在差异,导致在其材料交界面处存在应变分布。对于相同尺寸的Ge量子点而言,Si薄膜层越厚,产生的应变分布越大;反之,产生的应变分布就小。而应变导致其内部量子点的晶格常数变小、相邻原子间的波函数交叠变大、相邻原子之间的波函数相互作用变强,结果原本简并的能级因受到增强的相互作用,而使新能级之间的间距变大,即禁带宽度变大;反之,禁带宽度变小。因此,应变分布的大小差异会造成对应量子点的禁带宽度变化。根据光子与禁带宽度的匹配关系式:Eg=hν=h*(c/λ)(式中Eg为禁带宽度,单位电子福特eV;h为普朗克常数;ν为光子频率,单位赫兹Hz;c为光速常数;λ光波长,单位埃,即0.1nm)可知,当Ge量子点的禁带宽度变小时,波长λ变大,此时可吸收低能量范围的太阳光谱;反之,Ge量子点的禁带宽度变大时,可吸收高能量范围的太阳光谱。
依据上述理论,本实用新型Ge量子点阵列分别由不同厚度的Si晶体薄膜覆盖、且Si薄膜厚度自内而外逐渐增厚,可以进一步有效拓宽太阳能电池对太阳光的光谱响应范围,提高与太阳光谱的匹配度,从而提升太阳能电池的光电转换效率。
本实用新型基于Ge量子点与Si薄膜层之间的晶格常数差异,利用Si薄膜层厚度差异引起Ge量子点内应变的改变来调控太阳能电池的性能。Ge量子点与Si薄膜层构建异质结构的叠层结构太阳能电池装置,其原理机制完全不同于上述现有专利。
试验证明,本实用新型的太阳能电池装置的能带范围拓展到0.4-0.22eV之间,对应的转换效率在55-57%之间,相比现有技术可以提高7%以上,显著提升了太阳能电池的光电转换效率。 并且Shockley –Queissr多结能带理论(参见201210195987.8)——应变可以导致Ge量子点的禁带宽度变小,使本实用新型具有理论依据。
本实用新型进一步的完善是,所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反。
本实用新型又进一步的完善是,所述Ge量子点的阵列中,相邻两个量子点外径表面之间的距离控制在4nm之内。
本实用新型更进一步的完善是,所述Si薄膜层共有四层,第一层、第二层、第三层、第四层的厚度自下而上逐渐增厚,分别为2-4nm、4-6nm、6-8nm、8-10nm。本实用新型的Si薄膜层厚度指先用Si材料填充Ge量子点之间的间隙后,在球形硅量子点顶部的Si薄膜层的厚度。
本实用新型还进一步的完善是,所述硅掺杂层和硅基衬底的掺杂密度相同。
本实用新型再进一步的完善是,所述硅掺杂层和硅基衬底外表面分别生长有透明导电薄膜,所述透明导电薄膜外生长有外部接触电极。
本实用新型不仅具有结构简单、光谱响应宽、转换效率高等显著优点,而且与现有的硅基微电子工艺兼容,便于量子点太阳能电池的产业化、商业化推广,同时为太阳能电池的性能优化提供了一种新思路。
附图说明
    下面结合附图对本实用新型作进一步的说明。
图1是本实用新型一个实施例的结构示意图。
具体实施方式
本实施例基于应变型异质结量子点的太阳能电池装置如图1所示,包括在掺杂硅基衬底1上生长的四层Ge/Si量子点结构层。硅基衬底1为n型或p型均可,厚度为正常硅基片厚度。Ge/Si量子点结构层由含有直径2-7nm的Ge量子点2(即异质型量子点的芯层)的Si薄膜层3(即异质型量子点的壳层)构成,所有的Ge量子点直径大小一致,Ge量子点的阵列中,量子点之间的距离保持在4nm之内。最内的第一层Si薄膜层厚度(即先用Si材料填充Ge量子点之间的间隙后,在球形硅量子点顶部的Si薄膜层的厚度)为2-4nm、第二为4-6nm、第三层为6-8nm、第四层为8-10nm,形成第一层、第二层、第三层、第四层厚度自下而上逐渐增厚结构。最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层4覆盖,形成量子点阵列填充薄膜多层结构。覆盖薄膜层4外生长有一层厚度10-20nm的硅掺杂层5保护膜,该硅掺杂层5的掺杂类型与硅基衬底的掺杂类型相反(如果硅基衬底1为n型,则硅掺杂层5为p型,反之也可),从而满足典型太阳能电池P-I-N结构。硅掺杂层5和硅基衬底1的掺杂密度相同。硅掺杂层6和硅基衬底1外表面分别生长透明导电薄膜6,透明导电薄膜6的外表面分别生长有电极7。
制备本实施例基于应变型异质结量子点的太阳能电池装置包括如下步骤:
步骤一. 采用真空化学气相沉积法,在利用微电子工艺进行清洗后的掺杂硅基衬底上通入作为前驱物的锗烷气体,在硅基衬底上生长Ge薄膜层;通入锗烷(GeH4)的流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃;
步骤二. 通过反射式高能电子衍射装置(RHEED)精确定位控制Ge薄膜层的生长过程,控制Ge薄膜层厚度在2-7nm ,并原位退火;原位退火温度为580--620℃;
步骤三. 在生长出Ge薄膜层的硅基衬底上通入硅烷气体,在Ge薄膜层上生长Si薄膜层;通入硅烷(SiH4)流量为1sccm-2sccm、压强为0.4-0.6Pa、生长温度为350-420℃);
步骤四. 采用原子力显微镜观测其形貌及生长厚度,第一次生长的最内层Si薄膜层厚度控制在2-4nm,以后逐层递增,Si薄膜层生成后原位退火;原位退火温度为580--620℃;
步骤五. 冷却生长成由含有直径2-7nmGe量子点的Si薄膜层构成的Ge/Si量子点结构层;
步骤六. 根据所需预定层数,重复步骤三、步骤四,最内层之外的Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;
步骤七. 达到预定层数后,通入硅烷和氧气,氧化生长一层填充量子点间隙的SiO2覆盖薄膜层,厚度控制在2-4nm,形成量子点阵列填充薄膜多层结构;硅烷和氧气比例空载为1:2±0.5、流量为10sccm-25sccm之间、压强为100-150Pa、生长温度为400-480℃;
步骤八. 通入四氯化硅(SiCl4)和氢气外延生长一层硅掺杂层作为保护膜,厚度控制在10-20nm,掺杂类型与硅基衬底类型相反; 四氯化硅和氢气比例空载为1:2±0.5、流量为10sccm-20sccm之间、压强为100-140Pa、生长温度为950-1050℃;
步骤九. 分别在硅掺杂层和硅基衬底外表面生长氧化铟锡透明电极(ITO),之后再生长接触电极。
试验证明,本实施例的基于应变效应的异质结构量子点太阳能电池利用了Ge、Si晶体材料本身的晶格参数的差异,材料的选取完全兼容微电子工艺、太阳能电池的工艺要求,并且制备工艺简单、能够精确控制;不引入其他缺陷,优化了太阳能电池结构,提高了与太阳光谱的匹配度,显著提高了光电转换效率,在工程上可推广应用。
由于量子点通过自组装生长是常见的典型工艺之一。自组装生长的材料晶体缺陷少、制备工艺简便成熟。借助分子束外延(MBE)或金属有机化学汽相淀积(MOCVD)在二维平面上生长时,随着生长厚度的增加,应变的积累引起外延层转变为三维岛状,进而生成均匀的量子点阵列;对于异质结构的量子点,由于两种生长材料晶格常数的差异,应变存在积累,应变分布直接影响到量子点器件的能带特征。因此,本实施例利用异质结构的量子点中两种材料的应变效应及对量子点的能带特征影响,应用在量子点阵列的太阳能电池的设计中进而提升光电转换效率,为硅基太阳能性能进一步优化提供一种新的、切实可行的技术路径。

Claims (6)

1.一种基于应变型异质结量子点的太阳能电池装置,包括在掺杂硅基衬底上生长的至少二层Ge/Si量子点结构层;其特征在于:所述Ge/Si量子点结构层由含有直径2-7nm的Ge量子点的Si薄膜层构成,最内层的Si薄膜层厚度为2-4nm,外层Si薄膜层的厚度范围为在上一层厚度范围两端点分别递增2nm;最外层的量子点结构层为填充量子点间隙的SiO2覆盖薄膜层覆盖,形成量子点阵列填充薄膜多层结构;所述覆盖薄膜层外生长有一层厚度10-20nm的硅掺杂层保护膜,所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反;所述硅掺杂层和硅基衬底外表面生长有电极。
2.根据权利要求1所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层的掺杂类型与硅基衬底的掺杂类型相反。
3.根据权利要求2所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述Ge量子点的阵列中,相邻两个量子点外径表面之间的距离控制在4nm之内。
4.根据权利要求3所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述Si薄膜层共有四层,第一层、第二层、第三层、第四层的厚度自下而上逐渐增厚,分别为2-4nm、4-6nm、6-8nm、8-10nm。
5.根据权利要求4所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层和硅基衬底的掺杂密度相同。
6.根据权利要求5所述基于应变型异质结量子点的太阳能电池装置,其特征在于:所述硅掺杂层和硅基衬底外表面分别生长有透明导电薄膜,所述透明导电薄膜外生长有外部接触电极。
CN201420387499.1U 2014-07-14 2014-07-14 基于应变型异质结量子点的太阳能电池装置 Withdrawn - After Issue CN204088347U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420387499.1U CN204088347U (zh) 2014-07-14 2014-07-14 基于应变型异质结量子点的太阳能电池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420387499.1U CN204088347U (zh) 2014-07-14 2014-07-14 基于应变型异质结量子点的太阳能电池装置

Publications (1)

Publication Number Publication Date
CN204088347U true CN204088347U (zh) 2015-01-07

Family

ID=52181025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420387499.1U Withdrawn - After Issue CN204088347U (zh) 2014-07-14 2014-07-14 基于应变型异质结量子点的太阳能电池装置

Country Status (1)

Country Link
CN (1) CN204088347U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091848A (zh) * 2014-07-14 2014-10-08 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN108155265A (zh) * 2016-12-02 2018-06-12 财团法人金属工业研究发展中心 硅基异质接面太阳能电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091848A (zh) * 2014-07-14 2014-10-08 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
WO2016008288A1 (zh) * 2014-07-14 2016-01-21 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN104091848B (zh) * 2014-07-14 2016-06-15 国家电网公司 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN108155265A (zh) * 2016-12-02 2018-06-12 财团法人金属工业研究发展中心 硅基异质接面太阳能电池

Similar Documents

Publication Publication Date Title
CN102388466B (zh) 光伏电池
KR101036453B1 (ko) p-i-n 나노선을 이용한 태양전지
TWI549309B (zh) 用於多接面太陽能電池之擬晶式窗口層
US9406824B2 (en) Nanopillar tunneling photovoltaic cell
US20130220406A1 (en) Vertical junction solar cell structure and method
CN103000742B (zh) 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
KR20090116724A (ko) 에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지
EP2457257A1 (en) Methods of fabricating semiconductor structures and devices using quantum dot structures and related structures
TWI407575B (zh) A semiconductor device, a method for manufacturing the same, and a solar battery
CN104091848B (zh) 基于应变型异质结量子点的太阳能电池装置及其制备方法
Gu et al. Design and growth of III–V nanowire solar cell arrays on low cost substrates
CN101950762A (zh) 硅基太阳能电池及其制备方法
KR101271158B1 (ko) ZnO 나노선을 이용한 깃발형 하이브리드 솔라셀 제조 방법
CN101752444B (zh) p-i-n型InGaN量子点太阳能电池结构及其制作方法
CN101425548A (zh) InAs量子点材料的制备方法及其在太阳能电池中的应用
Sohrabi et al. Optimization of third generation nanostructured silicon-based solar cells
Norman et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells
CN204088347U (zh) 基于应变型异质结量子点的太阳能电池装置
EP2246905A2 (en) Multijunction photovoltaic structure with three-dimensional subcell and method thereof
KR101136882B1 (ko) 질화물 반도체 기반의 태양전지 및 그 제조방법
CN104733548B (zh) 具有量子阱结构的硅基薄膜太阳能电池及其制造方法
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
CN105304737A (zh) 一种可控阵列纳米线太阳能电池及其制备方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
KR20140066219A (ko) 가변 밴드갭 태양 전지

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20150107

Effective date of abandoning: 20160615

C25 Abandonment of patent right or utility model to avoid double patenting