KR20090116724A - 에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지 - Google Patents

에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지 Download PDF

Info

Publication number
KR20090116724A
KR20090116724A KR1020097015671A KR20097015671A KR20090116724A KR 20090116724 A KR20090116724 A KR 20090116724A KR 1020097015671 A KR1020097015671 A KR 1020097015671A KR 20097015671 A KR20097015671 A KR 20097015671A KR 20090116724 A KR20090116724 A KR 20090116724A
Authority
KR
South Korea
Prior art keywords
bandgap
energy
concentration
changing element
solar cell
Prior art date
Application number
KR1020097015671A
Other languages
English (en)
Inventor
제임스 씨. 김
이성수
Original Assignee
선다이오드, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선다이오드, 인크. filed Critical 선다이오드, 인크.
Publication of KR20090116724A publication Critical patent/KR20090116724A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

경사진 에너지 우물들을 가진 태양 전지를 위한 방법 및 장치가 제시된다. 태양 전지의 활성 영역은 나노구조체들을 포함한다. 나노구조체들은 III-V 화합물 반도체를 포함하는 물질과 III-V 화합물 반도체의 밴드갭을 변경하는 요소로부터 형성된다. 예를 들어, III-V 화합물 반도체는 갈륨 질화물(GaN)일 수 있다. 예를 들어, "밴드갭 변경 요소"는 인듐(In)일 수 있다. 활성 영역에서 인듐의 농도는 균등하지 않아서 상기 활성영역은 장벽들로 분리된 다수의 에너지 우물들을 가진다. 상기 에너지 우물들은 경사질 수 있으며, 이는 상기 에너지 우물들이 일반적으로 한 우물에서 또 다른 우물로 가면서 단조적으로 증가하거나 감소하는 서로 다른 밴드갭을 가진다는 것을 의미한다.

Description

에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지{SOLAR CELL HAVING ACTIVE REGION WITH NANOSTRUCTURES HAVING ENERGY WELLS}
본 발명은 태양전지 설계에 관한것이다. 보다 상세하게는, 본 발명의 실시예들은 에너지 우물들을 지닌 태양전지의 활성 영역에 관한 것이다.
태양전지(solar-cell) 기술은, 고전적인 에너지 공급원들(예를 들어 원유, 천연 가스)이 고갈되어 가고 "친환경 기술"의 이점에 대한 관심이 증가함으로 인하여, 근래에 대량으로 적용되고 있다. 태양전지 기술은, 태양으로부터 "무료" 에너지를 얻고 있지만, 전기 설비가 제공하는 와트당 소유비용($/W)을 훨씬 초과하는 와트당 소유비용($/W)을 지닌 고비용의 기술이었다. 최근, $5/W에서, 태양광 패널(solar panel)에 대한 상환기간(pay-off period)은 그 수명의 50%만큼이나 되며, 이는 대부분 사용되는 반도체 재료의 비용으로 인한 것이다. 지속적인 높은 $/W 특징은 비용 절감에 대한 개념을 이끌어냈으며, 그 예는 CPV(concenturated photovoltaics)이다. CPV에서, 태양의 에너지는 태양전지 위로 몇백배 더 집광(concenturation)된다. 그러나, CPV는 이 집광의 결과인 고열로 인하여, 태양전지가 열적으로 매우 견고할 것을 요구한다. 다행히도, 보다 견고한 열적 특성 및 태양의 스펙트럼에 보다 적합한 밴드갭 에너지들을 지닌 새로운 물질들의 도래는, CPV를 통하여 태양광 기술을 다시금 매력적이게 만들었다.
최근까지, 실리콘(Si)은 태양전지 기술의 핵심에 있어 왔다. 그러나, 가장 좋은 단일접합 Si 기반의 셀(single-junction-Si-based cell)들의 효율성이 단지 약 22%이다. 최근, 다중접합(multi-junction) 태양전지 설계는 단일접합 디바이스들을 훨씬 능가하는 효율성을 달성하였다. 일반적으로, 다중접합 설계에서, 각각의 접합은 서로 다른 물질들로 형성된다. 예를 들어, III-V 화합물 반도체들(예를 들어, InGaAs, InGaP) 및 그룹 IV 물질들(예를 들어, Ge)은 다중접합 태양전지들을 만들기 위하여 함께 사용되어왔다. 이 다중접합 태양전지들은 일반적으로 각각의 접합에 대해 서로 다른 물질을 사용한다. 언급된 3개의 반도체를 사용한 3 접합 설계에서 실험적 효율성은 40.7%만큼 높은것으로 주장된다.
그러나, 이 III-V 화합물 반도체 기반의 태양전지들은, 재료 비용 및 제조의 복잡성으로 인하여, 단일 접합 Si 디바이스들보다 비용이 더 많이 든다. 그러므로, 이러한 디바이스들은, 얇은 사이즈에 대한 요구가 과중한 비용을 의미하는 고전적인 태양광 패널 사업에서는 배제되어 왔다. 그러나, 우주분야 애플리케이션 및 다른 틈새 애플리케이션들은, III-V 화합물 반도체들에 기반을 둔, 보다 비싸지만 보다 효율적이고 견고한 타양전지에 대해 계속해서 특별히 관심을 가져왔다.
그러므로, 태양전지의 효율성이 개선되어 왔지만, 효율성에 대한 개선은 여전히 요구된다. 또한, 태양전지의 와트당 소유비용을 절감하는 것 또한 요구된다.
이 단락에서 기술할 기법들은 수행될 수 있는 기법들이지만, 이전에 고려되었거나 수행되어온 기법들과 반드시 유사한 것은 아니다. 그러므로, 다르게 표시되 지 않는한, 단지 이 단락에 종래의 기술들이 포함되었음으로 인하여 이 단락에서 기술된 기법들중 어느것이 종래의 기술에 해당되는 것이라 가정되어서는 안된다.
본 발명은 유사한 참조 번호들이 유사한 요소들을 나타내는 첨부 도면들에서 예시로서 설명되며, 그것으로 제약되지는 않는다.
도 1은 본 발명의 실시예에 따른 예시적인 단일 접합 태양전지이다.
도 2는 본 발명의 실시예에 따른 단일 나노구조체의 물리적 구조와 해당 전도 에너지 밴드 다이어그램을 표시한다.
도 3A, 3B, 3C, 3D, 및 3E는 본 발명의 실시예들에 따른 서로 다른 에너지 우물 구성에 대한 전도 에너지 밴드 다이어그램이다.
도 4는 본 발명의 실시예에 따른 예시적인 3 접합 태양전지를 도시한다.
도 5는 본 발명의 실시예에 따른 예시적인 2 접합 태양전지를 도시한다.
도 6은 본 발명의 실시예에 따른, 성장 기판이 식각된 예시적인 태양전지를 도시한다.
다음의 설명에서는, 본 발명의 완전한 이해를 제공하기 위하여, 예시의 목적으로 다양한 세부적인 사항들이 설명된다. 그러나, 이러한 세부적인 사항들 없이도 본 발명이 실행될 수 있다는 것은 명백하다. 즉, 본 발명을 불필요하게 모호하게 만들지 않기 위하여, 공지된 구조 및 디바이스들은 블럭 다이어그램으로 도시된다.
에너지 우물들을 지닌 광-활성 영역("활성 영역")을 구비한 광전지(photovoltaic cell)("태양전지")가 본 명세서에서 개시된다. 에너지 우물들은 양자 우물(quantum well)일 수 있으나, 이것이 요구되지는 않는다. 에너지 우물들은 경사질 수 있으며, 이는 에너지 우물들이, 일반적으로 한 우물에서 또 다른 우물로 가면서 단조적으로 증가 또는 감소하는 서로 다른 밴드갭을 가진다는 것을 의미한다. 태양전지는 상기 태양전지의 "윈도우"라고 일컬어지는 것을 통하여 전자기 복사(electromagnetic radiation)를 할 수 있다. 일반적으로, 윈도우로부터 멀리 떨어진 에너지 우물들은 윈도우에 근접한 에너지 우물들 보다 낮은 밴드갭을 가진다.
일 실시예에서, 활성 영역은 나노구조체들을 포함한다. 나노구조체들은 나노컬럼(nanocolumn), 나노와이어(nanowire), 나노로드(nanorod), 나노튜브(nanotube)등일 수 있다. 상기 나노구조체들은 III-V 화합물을 포함하는 물질과 III-V 화합물 반도체의 밴드갭을 변경하는 요소들로부터 형성된다. 예를 들어, III-V 화합물 반도체는 약 3.4eV의 밴드갭을 가진 갈륨 니트라이드(GaN)일 수 있다. 예를 들어, "밴드갭 변경 요소"는 인듐(In)일 수 있다. In이 GaN에 포함되어 Ga를 대체할때, 결과적인 InGaN의 밴도갭은 GaN의 밴드갭보다 낮다. 포함된 In이 많으면 많을 수록(따라서, 더 많은 Ga가 대체될수록) InGaN의 밴드갭은 더 낮아진다. 모든 Ga가 In으로 대체되면, 결과적으로 InN이 되며, 밴드갭은 0.7eV가 된다. 나노구조체가 실질적으로 결함과 변형으로부터 자유로우므로, 현저한 양의 In이 InGaN의 나노구조체에 포함될 수 있다.
일 실시예에서, 활성 영역이 장벽들에 의해 분리되는 다수의 에너지 우물들을 가지게끔, 활성 영역에서의 인듐의 농도는 균일하지 않다. 에너지 우물들은 광자(photon)들을 흡수할 수 있다. 앞에서 설명한 바와 같이, 에너지 우물들은 경사져 있으며, 이는 각각의 에너지 우물의 밴드갭이 윈도우로부터 멀어지면서 점차적으로 감소하는 것을 의미한다. 그러므로, 윈도우에 보다 가까이 있는 에너지 우물들은 적어도 밴드갭 만큼의 높은 에너지를 가진 광자들을 흡수하지만, 그보다 낮은 에너지를 가진 광자들을 흡수하지는 않는다. 그러나, 윈도우로부터 더 멀리 있는 에너지 우물들은 낮은 에너지를 지닌 광자들을 흡수할 수 있다.
주목할 점은 약 365 나노미터(nm)의 파장을 지닌 광자들이 약 3.4eV의 에너지를 가진다는 것이다. 그러므로, 365nm 또는 그보다 짧은 파장을 지닌 광자들은 3.4eV(예를 들어, GaN)의 밴드갭을 지닌 물질에 의해 흡수될 수 있다. 주목할 점은 약 1700나노미터(nm)의 파장을 지닌 광자들이 약 0.7eV의 에너지를 가진다는 것이다. 그러므로, 1700nm 또는 그보다 짧은 파장을 지닌 광자들은 0.7eV의 밴드갭을 지닌 물질(예를 들어, InN)에 의해 흡수될 수 있다. 또한, 주목할 점은 윈도우로부터 태양전지의 후면으로 갈수록 In 농도가 증가되게 함으로써, 점점 보다 낮은 에너지를 지닌(보다 긴 파장의) 광자들이 윈도우로부터 더 먼 곳에서 흡수될 수 있다는 것이다.
두 에너지 우물들간의 장벽은 그 두 에너지 우물들보다 더 높은 밴드갭을 가지며, 따라서 장벽 밴드갭보다 낮은 에너지들을 지닌 광자들을 흡수하지 않을 것이다. 즉, 광자는 장벽에 의해 흡수되도록 매우 짧은 파장을 가져야만 한다. 장벽들은 전하 캐리어들이 에너지 우물들 간에 이동하는 것을 막는 역할을 할 수 있다. 그러나, 충분히 활동적인 전하 캐리어들은 에너지 우물들을 "탈출하여" 드리프트 전류로서 쓸려갈(sweep away) 수 있다(이 드리프트 전류는 태양전지 "출력"으로서의 역할을 한다.)
도 1은 본 발명의 실시예에 따른 단일 접합 태양전지(100)의 예이다. 예시의 태양전지(10)는 일반적으로 상부 접촉부/윈도우(102), 상부 접합층(104), 활성 영역(106), 기판(108)(이것은 또한 바닥 접합층으로서의 역할을 한다.), 바닥 접촉부(110), 그리고 전기 리드들(112)을 포함한다.
상부 접촉부/윈도우(102)는 스펙트럼의 적어도 일부에서 전자기 복사에 투명하다. 태양 복사(예를 들어, 광자)(114)는 상부 접촉부/윈도우(102)를 통하여 들어오며, 활성 영역(106)내에서 흡수될 수 있다. 광자의 흡수는 전자를 전도 밴드로 프로모트(promote)한다. 광자의 흡수에 의해 전도 밴드로 프로모트된 전자들은 접촉부들(102, 110)로 전도될 수 있다. 정공들의 동작은 논의되지 않을 것임에 주목하자. 하부 접촉부(110)는 적절한 금속으로 만들어질 수 있으며, 투명할 필요는 없다. 하부 접촉부(110)는 층(110)을 포함하는 모든 태양전지 디바이스들에 대한 높은 반사력을 가지도록 최적화될 수 있다. 전자들은 전기 리드들(112)을 통해 전도된다.
활성 영역(106)은 태양전지(100) 내에 옆으로(laterally) 분포된 다수의 나노구조체들(115)로부터 형성된다. 활성 영역(106)은 더 높은 에너지의 광자들이 윈도우(102) 근처에서 흡수되고 더 낮은 에너지의 광자들이 기판(108) 근처에서 흡수 되게끔 설계된다. 이것은 나노구조체(115) 내의 밴드갭 변경 요소의 농도를 변화시킴으로써 달성된다. 특히, 나노구조체(115)의 각각의 세그먼트(117)은 그 세그먼트(117)에 대해 요구되는 밴드갭을 달성하기 위하여, 특정 농도의 밴드갭 변경 요소를 지닌다. 활성 영역(106)은 아래에서 보다 자세히 설명된다.
일 실시예에서, 나노구조체들(115)은 InGaN으로 형성된다. 태양전지(100)는 n-on-p 디바이스 또는 p-on-n 디바이스일 수 있다. n-on-p 실시예에서, InGaN 물질은 p-타입 기판(108) 위에서 성장한다. 또 다른 실시예에서, 태양전지는 InGaN 물질이 n-타입 기판(108)위에서 성장한 p-on-n 단일 접합 디바이스이다. 기판(108)을 위한 적당한 물질은 Si, 게르마늄(Ge), 실리콘 카바이드(SiC), 및 징크 옥사이드(ZnO)를 포함하며, 이에 제한되지는 않는다. 만약 기판(108)이 Si 또는 Ge라면, 기판(108)은 (111) 평면 배향일 수 있다. 만약 기판(108)이 SiC 또는 ZnO라면, 기판(108)은 (0001) 평면 배향일 수 있다. 일 실시예에서, 기판(108)은 p-타입 도판트로 도핑된다. Si 기판들에 대한 p-타입 도판트의 예는, 보론(B)을 포함하나, 이에 제한되지는 않는다. p-타입 도핑은 p, p+ 또는 p++일 수 있다. 일 실시예에서, 기판(108)은 n-타입 도판트로 도핑된다. Si 기판들을 위한 n-타입 도판트들의 예는 비소(As), 인(P)을 포함하지만, 이에 제한되지는 않는다. n-타입 도핑은 n, n+ 또는 n++ 일 수 있다.
활성 영역(106)이 도핑되어 결과적으로 p-n 디바이스 또는 n-p 디바이스가 될 수 있다. 그러한 디바이스들에서, 다이오드 접합이, 상부 접합층(104)와 활성 영역(106) 사이의 경계면(interface)에 인접하여, 윈도우(102) 근처에 나타날 수 있다. 그러나, 활성 영역(106)이 도핑될 필요가 없어서, 그 결과 p-i-n 디바이스 또는 n-i-p 디바이스가 될 수 있다. 예를 들어, p-i-n 디바이스에서, 다이오드의 전계는 활성 영역(106) 전체에 걸쳐 나타날 수 있다. 또한, 활성 영역(106)에서의 도핑의 양은 균일하지 않을 수 있다. 예를 들어, 일부 세그먼트들(117)이 강하게 도핑될 수 있으며, 다른 세그먼트들(117)은 약하게 도핑될 수 있고, 다른 세그먼트들은 여전히 도핑되지 않을 수 있다.
나노구조체(115)는 셀프 어셈블리(self-assembly) 또는 유기금속화학증착(metalorganic chemical vapor deposition), 분자 빔 에피택시(molecular beam epitaxy), 수소화물 기상 에피택시(hydride vapor phase epitaxy)와 같은 에피텍셜 성장 기법들을 사용한 패턴화 성장에 의하여 성장될 수 있다. 패턴화 성장에서, SiO2 또는 SiNx와 같은 마스크 물질로 덮이지 않은 기판 표면의 일부가 노출되어, 나노구조체에 대한 핵생성 사이트(nucleation site)로의 역할을 한다. 서로 다른 세그먼트들(117)이 서로 다른 인듐 농도를 가지게끔, 나노구조체들(115)의 성장 중 나노구조체(115) 내의 인듐의 농도가 조정된다. 인듐 포함에 영향을 미치는 요인은 활성영역 성장 중의 인듐 공급의 양이다. 인듐 포함에 영향을 미치는 또 다른 요인은 온도이며, 온도는 성장 중 성장 표면 위의 인듐의 증발률에 영향을 미친다. 다른 요인들 또한 나노구조체들(115)에 포함된 인듐의 양에 영향을 미칠 수 있다. n-타입 기판(108) 위에서 성장할때, 기판(108)에 인접하게 있는 나노구조체(115)의 세그먼트(117)는 어떠한 양의 인듐 농도라도 가질 수 있다.
나노구조체(115)의 측방향 너비(lateral width)는 약 5nm 내지 500nm의 범위일 수 있다. 전체 너비 범위는 단일 활성 영역(106) 내에 존재할 수 있다. 일 실시예에서, 나노구조체(115)의 적어도 일부의 너비는 측방향에서 양자 구속 효과(quantum confinement effect)가 없게끔 충분히 넓다. 그러나, 일 실시예에서, 나노구조체(115)의 적어도 일부의 너비는 측방향으로의 양자화 구속을 야기할만큼 충분히 좁다. 나노구조체(115)의 측방향 너비는 5nm보다 적을 수 있으며 500nm보다 클 수 있다. 상대적으로 좁은 너비는 결과적으로 나노구조체(115)가 스트레인 이완(strain relaxed)되게 할 것이다. 스트레인 이완된 나노구조체(115)는 고 농도의 인듐이 그 안에 포함될 수 있게 해줄 것이다.
세그먼트들(117)은 임의의 길이를 가질 수 있다. 또한, 특정 나노구조체(115) 내의 세그먼트들(117)은 서로 다른 길이를 가질 수 있다. 일 실시예에서, 인듐 농도는 특정 세그먼트(117) 내에서 거의 일정하다. 일 실시예에서, 인듐 농도는 나노구조체(115)의 성장축을 따라 계속해서 변화한다. 그러므로, 나노구조체(115)는 일 실시예에서, 세그먼트들(117)을 갖지 않는다.
상부 접합층(104)이 나노구조체(115)와 동일한 화합물 반도체로부터 형성될 수 있다. 예를 들어, 접합층(104)은 InGaN으로부터 형성될 수 있다. 접합층(104) 내에서, InGaN에 대한 공식은 InyGay-1N이며, y는 0 내지 1 사이의 임의의 값일 수 있다. 상부 접합층(104)은 서로 다른 인듐 농도를 가지는 하나 이상의 하부층을 포 함할 수 있다.
접합층(104)은 예시적인 태양전지(100) 내에서 유착되게(coalesced) 표시된다. 그러나, 접합층은 유착되지 않을 수 있다. 즉, 개별 나노구조체들(115)이 모든 접합층(104) 또는 접합층(104)의 일부로 신장될 수 있다. 태양전지(100)가 n-on-p 디바이스인 실시예에서, 접합층(104)은 n 도핑된다. n 타입 도핑은 n, n+ 또는 n++일 수 있다. 태양전지(100)가 p-on-n 디바이스인 실시예에서, 접합층(104)은 p도핑된다. p 타입 도핑은 p, p+ 또는 p++일 수 있다.
접합층(104)이 유착된다면, 상부 접합/윈도우(102)가 접합층(104)에 직접 증착될 수 있다. 예를 들어, 금속 그리드, 인듐-틴-옥사이드(ITO) 그리드, 또는 ITO 시트(sheet)가 유착된 접합 층(104) 위에 직접 증착될 수 있다. 만약 접합층(104)이 유착되지 않는다면, 그리드 또는 풀 시트(full sheet) ITO를 사용하여 투명 기판이 상기 유착되지 않은 접합층(104)에 본딩될 수 있으며, 또는 상기 투명 기판 위로 금속 그리드가 증착될 수 있다. 예시적인 태양전지(100)는 상기 태양전지(100) 위로 여러 차례 전자기 방사를 포커싱하는 태양 집광 시스템과 호환가능하다.
활성 영역(ACTIVE REGION)
활성 영역(106)은 세그먼트들(117)을 포함할 수 있으며, 각각의 세그먼트들은 특정 농도의 "밴드갭 변경 요소"를 가진다. 본 명세서에서, "밴드갭 변경 요소"는 그것의 농도가 그것이 포함된 물질의 밴드갭에 영향을 미치는 어떠한 요소이다. 예로서, 인듐은, 적어도 몇몇 III-IV 화합물 반도체들 내에 포함될 때, 밴드갭 변경 요소이다. 특정한 실시예에서, GaN 내의 인듐의 농도는 InGaN의 밴드갭에 영향을 미친다. 인듐은 그것이 GaN 내에 통합될 때 갈륨을 대체한다. 그러므로, 세그먼트(117)에 대한 공식은 InxGax-1N이다. 인듐은 또한 다른 III-V 화합물 반도체들의 밴드갭에 영향을 미친다. 일반적으로, In은 III-V 화합물 반도체의 밴드갭을 낮출 수 있다. 다른 밴드갭 변경 요소들은 밴드갭을 증가시킬 수 있다. 예를 들어, 알루미늄(Al)의 포함은 GaN의 밴드갭을 증가시킨다. 즉, AlGaN 내의 Al의 농도가 높을 수록, AlGaN의 밴드갭이 높아질 것이다.
예시의 목적으로, 다음의 논의는 In을 예시적인 밴드갭 변경 요소로서 사용할 것이다. 그러나, In이 아닌 요소가 사용될 수도 있다. 서로 다른 In 농도는 결과적으로 에너지 우물들 사이에 장벽들을 지닌 다수의 에너지 우물들이 생기게 한다. 도 2는 세그먼트들(117a, 117b)로 나뉘는 단일 나노구조체(115)의 물리적 구조와, 상기 나노구조체(115) 내의 세그먼트들(117)에 대응하는 에너지 우물들(204) 및 장벽들(206)을 보여주는 전도 에너지 밴드 다이어그램(202)을 표시한다. 에너지 우물들(204)은 양자 우물들이 일 수 있으나, 반드시 그러할 필요는 없다. 나노구조체(115)는 다수의 우물 세그먼트들(117a)과 다수의 장벽 세그먼트들(117b)을 가진다. 우물 세그먼트들은 또한 W1 - Wn로 표시되어 있다. 우물 세그먼트(117a)는 결과적으로 에너지 우물(204)이 생기게 하는 세그먼트(117)로 정의된다. 장벽 세그먼트(117b)는 결과적으로 에너지 장벽(206)이 생기게 하는 세그먼트(117)로 정의된 다. 우물 세그먼트 W1는 태양 복사가 들어오는 태양전지의 윈도우(102)에 가장 가까이 있다. 우물 세그먼트들(117a)을 서로 비교하면, 태양전지의 윈도우(102)로부터 먼 곳에 있는 우물 세그먼트들(117a) 내에서의 인듐 농도가 더 높다.
밴드갭 다이어그램(202)을 참조하면, 보다 높은 인듐 농도가 InGaN 내의 보다 낮은 밴드갭에 대응된다. 그러므로, 윈도우(102)로부터 먼 에너지 우물들(204)은 윈도우(102) 가까이 있는 에너지 우물들(204) 보다 낮은 밴드갭을 가진다. "경사진 에너지 우물들(graded energy wells)"은 본 명세서에서, 일반적으로, 태양전지의 윈도우(102)로부터 멀어지는 방향으로 우물 세그먼트들(117a)의 밴드갭들이 감소되는 구성을 설명하기 위하여 사용된다.
이 예에서, 장벽 세그먼트들(117b)은 서로 거의 동일한 인듐 농도를 가진다. 그러므로, 장벽 세그먼트들(117b)에 대응하는 에너지 장벽들(206)의 높이는, 에너지 밴드 다이어그램(202) 내에 표시된 것과 같이, 서로 거의 동일하다. 이것은 결과적으로, 윈도우(102)로부터 장벽 세그먼트들(117b)에 대한 태양전지의 기판(108)에 이르기까지 대략적으로 동등한 밴드갭(level band gap)이 되게 해준다. 그러나, 장벽 세그먼트들(117b)에 대한 이러한 동등한 밴드갭이 요구되지는 않는다. 일 실시예에서, 장벽 세그먼트들(117b)의 밴드갭은, 밴드갭이, 일반적으로, 윈도우(102)에 보다 가까운 장벽 세그먼트들(117b)에서 윈도우(102)와 먼 장벽 세그먼트들로 가면서 감소하게끔 경사져 있다.
설명의 편이를 위하여, 특정 에너지 우물(204)의 바닥부가 실질적으로 평탄 하게 도시되었다는 점에 유의하여야 한다. 다르게 표현하자면, 실질적으로 균일한 밴드갭을 가진 것으로 도시되었다. 그러나, 피에조 효과(piezoelectric effect)와 같은 현상들이 에너지 우물들(204)의 바닥에 경사(slope)가 생기게 한다. 또한, 인듐의 농도가 특정 장벽 세그먼트(117b) 전체에 걸쳐 균일하다 하더라도, 장벽 세그먼트들(117b)에 대한 밴드갭 또한 경사를 가질 수 있다.
전류로서의 추출을 위한 전자들의 선택
에너지 우물들(204) 및 에너지 장벽들(206)의 구성으로 인하여, 광자에 의해 전도밴드(또는 전도 밴드 위로)로 프로모트(promote)되는 모든 전자들이 에너지 우물(204)로부터 탈출할 수 있는 것은 아니다. (적어도)전도 밴드로 프로모트되는 전자들은 에너지의 분포를 가질 것이다. 전자들 중 일부는 장벽 세그먼트(117b)를 통과하여 지나갈 정도로 충분히 활동적일 것이다. 도 2는 에너지 우물들(204a) 중 하나의 전자들에 대한 열 에너지 분포를 보여준다. 적어도 장벽들(206)의 전도 밴드 만큼의 에너지를 가진 전자들은 에너지 우물(204a)을 "탈출"하여 활성 영역(106) 바깥으로 이동할 수 있다. 에너지 우물들(204b-d)로부터 빠져나오는 더 많은 활동적인 광자들이 존재함에도 불구하고, 열적 평형으로 인하여, 열적 분포(E)의 형상은 동일하게 유지되려할 검임에 유의하여야 한다. 다른 에너지 우물들(204b-d) 내의 충분한 열 에너지를 지닌 전자들 또한 활성 영역(106) 바깥으로 이동할 것이다. 에너지 우물들을 탈출하는 전자들은 n-p 접합에 의해 생성되는 전계로 인하여 "n-on-p" 실시예에서 윈도우(102)를 향해 이동한다. 에너지 우물들(204a-d)을 빠져나오는 전자들은 n-p 접합에 의해 생성된 전자 필드로 인하여 "n-on-p" 실시예에서 윈도우(102)를 향해 이동한다. CPV 동작 중 태양전지의 증가된 온도는, 열 에너지가, 우물들을 탈출하여 드리프트 전류로 빠져나갈 수 있는 전자들의 수를 증가시킴에 따라 동작상의 이점이 있을 것이다.
적어도 장벽 세그먼트들(117b)의 장벽 에너지(206)를 가진 전자들만이 장벽 세그먼트(117b)를 횡단할 수 있으므로, 반도체의 산란 중심체(scattering centers)에 의한 비탄성 산란(inelastic scatterings)으로 인하여 에너지 손실이 발생하지 않는 한, "활동적인" 전자들이 활성 영역(106) 바깥으로 이동함에 따라, 이 "활동적인" 전자들은 에너지 우물(204) 안으로 빠지지 않을 것이다. 또한, 장벽 세그먼트들(117b)의 밴드갭은 출력 전압을 결정하기 위한 파라미터로 사용될 수 있다.
대안적인 에너지 우물 및 장벽 구성
각각의 에너지 우물들(204)이 서로 다른 밴드갭을 가질 것이 요구되지는 않는다. 일 실시예에서, 도 3A의 전도 에너지 밴드 다이어그램(310) 내에 표시된 것과 같이, 에너지 우물들(204)이 그룹화된다.
도 3B의 전도 에너지 밴드 다이어그램(320)에 표시된 것과 같이, 각각의 에너지 우물(204)의 너비(Ww)가 개별적으로, 양자 구속 효과를 사용하여 밴드갭을 정밀 조정하게 되어있을 수 있다. 나노구조체 형성 중에 우물 세그먼트들(117a)의 길이를 제어함으로써 우물 너비 Ww가 설정될 수 있다.
도 3C의 전도 에너지 밴드 다이어그램(330)에 표시된 바와 같이, 각 장벽(206)의 너비(Bw)는 개별적으로, 에너지 우물들(204) 사이의 터널링을 제어하도록 되어있을 수 있다. 나노구조체(115) 성장 중에 장벽 세그먼트들(117b)의 길이를 제어함으로써 장벽 너비 Bw가 설정될 수 있다.
또한, 우물 너비는, 우물과 장벽의 계면에 있는 편극 전하들(polarization charges)로 인한 피에조 전계 효과(piezoelectric field effect)에 영향을 미침으로써 전자-정공 재결합율에 영향을 줄 수 있다(예를 들어, 감소시킬 수 있다).
에너지 우물들(204) 및 장벽들(206)은 개별적으로 적절하게 도핑(비도핑, n-타입, p-타입)되어, 우물-장벽 계면들에 있는 편극 전하들로 인한 피에조 전계에 영향을 미침으로써 전자-홀 재결합율에 영향을 줄 수 있다(예를 들어, 감소시킬 수 있다.).
일 실시예에서, 도 3D의 전도 에너지 밴드 다이어그램(340) 내에 도시된 바와 같이, 장벽들(206)이 경사질 수 있다. 장벽들(206)은 나노구조체(115) 성장 중에 밴드갭 변경 요소의 농도를 적절하게 선택함으로써 경사지게 될 수 있다.
일 실시예에서, 밴드갭 변경 요소의 농도는 활성 영역(106) 전체에 걸쳐서, 또는 그 일부에서 계속적으로 변화할 수 있다. 그러므로, 밴드갭 변경 요소의 농도 변화에도 불구하고, 에너지 우물들(204)과 장벽들(206)이 없다. 도 3E는 밴드갭 변경 요소의 계속적인 농도 변화로 인하여 활성 영역(106)의 적어도 일부에서 계속적으로 밴드갭이 변경되는 실시예에 대한 전도 에너지 밴드 다이어그램(350)을 표시한다.
터널 접합을 사용한 다중 접합 디바이스의 예
일 실시예에서, 태양전지 디바이스는 하나 이상의 터널 접합들을 지닌다. 도 4는, 본 발명의 실시예에 따른 예시적인 3개의 접합 디바이스(400)를 도시한다. 일반적으로, 디바이스(400)는 상부 접촉부/윈도우(102), 상부 접합층들(104a-c), 활성 영역들(106a-c), 터널 접합(412), 기판(108), 바닥 접촉부(110), 및 전기 리드(112)를 가진다.
세개의 활성 영역들(106a-c)이 터널 접합(412)에 의해 분리된다. 또한, 각각의 활성 영역(106a-c)은 상부 접합층(104a-c)과 쌍을 이루어 접합을 형성한다. 세개의 활성 영역들(106a-c) 각각은 서로 다른 파장 범위의 광자들을 흡수하도록 되어 있다. 예를 들어, 활성 영역(106a) 내의 상이한 세그먼트들(117)은 365 nm 내지 R nm 의 광자들을 흡수하도록 되어있을 수 있다. 활성 영역(106b)에서, 세그먼트들(117)은 R nm 내지 S nm의 광자들을 흡수하도록 되어 있을 수 있다. 활성 영역(106c)에서, 세그먼트들(117)은 S nm 내지 1700 nm의 광자들을 흡수하도록 되어있을 수 있다. 앞에서 논의된 바와 같이, 요구되는 파장 흡수를 달성하기 위하여 밴드갭 변경 요소(예를 들어, 인듐)의 농도가 선택된다. 또한, 밴드갭 에너지는 흡수될 수 있는 광자 중 가장 긴 파장과 동일한 "특성 파장(characteristic wavelength)"에 대응한다. 윈도우(102)에 가장 가까운 세그먼트들(117)이 가장 높은 밴드갭을 가지기 때문에, 그들의 특성 파장은 가장 짧고, 그러므로, 더 긴 파장들을 지닌 광자들을 "투과(transmit)"시키거나 "통과(pass)"시킨다. 이러한 방식으로, 윈도우(102)에 가장 가까운 세그먼트들(117)은 윈도우(102)로부터 멀리 떨어진 세그먼트들(117)에 대한 "장파장 투과필터(long-pass filters)"로서 동작하고, 흡 수된 광자들의 파장은 윈도우(102)로부터 멀어질 수록 점점 더 길어진다.
활성 영역들(106a, 106b, 106c) 중 어느것 내에서, 일부 세그먼트들(117)은 에너지 우물들(204)로 작용하고, 인접한 세그먼트들(117) 보다 높은 밴드갭을 지닌 다른 세그먼트들이 에너지 장벽들(206)로 작용한다. 에너지 우물들(204)은 경사질 수 있다. 그러나, 일 실시예에서, 활성 영역(106)의 적어도 일부는 도 3E에 표시된 것과 같은 계속적으로 변경되는 밴드갭을 가진다. 세 접합들을 분리하는 두개의 터널 접합들(412)에 의해 세 접합들의 직렬 연결이 이루어진다. 도 4에 표시된 실시예에서, 터널 접합들(412)은 디바이스(400) 내에서 성장하며, 따라서 디바이스(400)는 모놀리식(monolithic)이다. 대안적인 디바이스(400)로서, 더 많은 또는 더 적은 활성 영역들(106)과 터널 접합들(412)을 가진 디바이스가 사용될 수 있다.
디바이스(400)는 n-on-p 디바이스 또는 p-on-n 디바이스일 수 있다. 활성 영역들(106)은 InGaN을 포함할 수 있으나, 다른 물질들도 사용될 수 있다. 도 1의 예시적인 태양전지(100)의 상부 접촉부(102), 기판(108), 그리고 바닥 접촉부(110)의 논의는 예시적인 디바이스(400)에 적용된다. 상부 접합층들(104a-c)은 예시적인 태양전지(100)에의 접합층들과 유사하다. 그러나, 상부 접촉부/윈도우(102) 가까이에 있는 상부 접합층(104a)만이 유착될 수 있다. 상부 접합층들(104b, 104c)은 유착되지 않는다.
예시적인 다중-접합 태양전지
도 5는 본 발명의 실시예에 따른 예시적인 2 접합 태양전지(500)를 도시한다. 상기 태양전지(500)는 두개의 디바이스들을 개별적으로 성장시켜 그것들을 함 께 본딩함으로써 제작될 수 있다. 도 5에서, 두개의 디바이스들은 상부 디바이스(501)과 하부 디바이스(502)이다. 상부 디바이스(501)는 기판(108b) 위의 InGaN 물질의 성장하는 나노구조체에 의해 형성될 수 있다. 예시의 목적으로, 태양전지(500)는 특별히 n-타입 그리고 p- 타입 도핑에 관하여 논의될 것이다. 그러나, 도핑의 변화는 가능하다. 또한, 설명을 위하여 InGaN이 사용되지만, 다른 물질들이 사용될 수 있다.
기판(108b)은 관심영역(region of interest)에서 전자기 방사에 투명하며 n-타입 SiC 또는 ZnO 기판일 수 있다. 관심영역은 가시광선 파장 및 적외선 파장 영역일 수 있으며, 이 파장 범위 밖으로 신장될 수 있다.
디바이스(501) 내의 InGaN 물질은 세개의 영역들을 가진다. 기판(108b)에 가장 가까운 영역은, 임의의 인듐 농도를 가질 수 있는, 유착되지 않은 상부 접합층이다. 도핑은 n, n+ 또는 n++일 수 있다. 활성 영역(106d)은 도핑되지 않거나 p-타입 도핑을 가질 수 있다. 이 세그먼트들(117)은 타겟 흡수 스펙트럼이 약 365 nm 내지 R nm의 범위를 가지게끔 서로 다른 인듐 농도를 가진다. 디바이스(501)은 더 낮은 접합층(512)을 가진다. 하부 접합층(512)은 유착되거나 유착되지 않을 수 있다. 하부 접합층의 도핑은 p, p+ 또는 p++일 수 있다.
하부 디바이스(502)는 기판(108a) 위에 InGaN 물질의 나노구조체(115)를 성장시킴으로써 형성될 수 있다. 기판(108a)은 투명할 필요는 없으며, p-타입 Si, Ge, SiC, 또는 ZnO일 수 있다. 디바이스(502) 내의 InGan 물질은 두개의 영역들을 가진다. 기판(108a)에 가장 인접한 영역은 활성 영역(106e)으로, 이것은 도핑되지 않거나, p-타입 도핑을 가질 수 있다. 세그먼트들(117)은, 타겟 흡수 스펙트럼이 약 R nm 내지 1700 nm의 범위가 되게끔 서로 다른 인듐 농도를 가진다. 디바이스(502)는 n-p 접합을 완성하는 접합층(514)를 가진다. 도 5에 도시된 실시예에서, 접합층(514)은 유착된다. 따라서, 접합층(514)은 접합층(514) 내에서 유착하는 성장하는 나노구조체들에 의해 형성될 수 있따. 도핑은 n, n+ 또는 n++일 수 있다.
상부 디바이스(501)는 디바이스들(501, 502) 사이에 본딩 재료로서의 투명 ITO(506)를 사용하여 하부 디바이스(502)와 본딩될 수 있다. 그러므로 두개의 다이오드 접합들이 직렬로 연결된다. 생성된 전기는, 적당한 금속들로 이루어진 접촉부(110)에 수직으로 전도된다.
예시적인 2 디바이스 태양전지(500) 설계의 대안으로서, 세개 또는 그 이상의 디바이스들이 사용될 수 있다. 추가적인 디바이스들 다른 디바이스들 중 하나에 본딩하기 위하여 추가의 투명 ITO가 사용된다. 3개의 디바이스들에서는, 타겟 흡수 스펙트럼 범위들이 세개의 구간으로 나뉠 수 있다.
활성 영역들(106d, 106e) 중 하나에서, 일부 세그먼트들(117)은 에너지 우물들(204)로 동작할 수 있으며, 다른 세그먼트들은 인접 세그먼트들(117)보다 높은 밴드갭을 지닌 에너지 장벽들(206)로 동작할 수 있다. 에너지 우물들(204)은 경사질 수 있다. 그러나, 일 실시예에서, 활성 영역(106)의 적어도 일부는 도 3E에 도시된 것과 같이 밴드갭 내에서 연속적으로 변화한다.
식각된 기판(ETCHED AWAY SUBSTRATE)
일 실시예에서, 나노구조체(115)가 성장된 기판이 식각된다. 도 6은 일 실시예에 따라, 성장 기판이 식각된 예시적인 태양전지(600)를 도시한다. 일반적으로, 예시적인 태양전지(600)는 상부 접촉부/윈도우(102), 상부 접합층(104), 나노구조체(115)로 형성된 활성 영역(106), 하부 접합층(612), 하부 접촉부(614), 기저(base) 기판(616), 그리고 전기적 리드(112)를 가진다.
활설 영역(106) 및 하부 접합층(612)은 식각된 기판 위에서 성장한 나노구조체(115)이다. 예로서, 나노구조체들(115)은 InGaN 물질을 포함할 수 있다. 그러나, 상이한 밴드갭 변경 요소 및 상이한 III-V 화합물 반도체가 사용될 수 있다.
기판이 식각된 후, 하부 접촉부(614)과 기저 기판(616)은 나노구조체(115)에 본딩된다. 리드(112)에 대한 양호한 전기 전도를 위하여 하부 접촉부(614)가 시트 금속일 수 있다. 기저 기판(616)은 양호한 열 전도성을 지니며 기계적인 지지를 제공한다. 추가적으로, 기저 기판(616)이 높은 반사성(reflectivity)을 지니도록 최적화될 수 있다.
일 실시예에서, 예시적인 태양전지(600)는 p-on-n 디바이스이다. 그러므로, 하부 접합부(612)가 n 도핑될 수 있고, 상부 접합층(104)이 p 도핑 될 수 있으며, 활성 영역(106)이 n 도핑될 수 있다. 그러나, 활성 영역(106)이 도핑될 것이 요구되지는 않는다. 또한, 기판을 식각하는 것은 n-on-n, n-i-p, 및 p-i-n 디바이스들에서 사용될 수 있다. 또한, 성장 기판의 식각이 단일 접합 디바이스들로 제한되지는 않는다.
예시적인 태양전지(600)의 활성 영역(106)에서, 일부 세그먼트들(117)은 에 너지 우물들(204)로 동작할 수 있으며, 다른 세그먼트들은 인접 세그먼트들(117)보다 높은 밴드갭을 지닌 에너지 장벽들(206)로 동작할 수 있다. 에너지 우물들(204)은 경사질 수 있다. 일 실시예에서, 활성 영역(106)의 적어도 일부는 도 3E에 도시된 것과 같이 밴드갭 내에서 연속적으로 변화한다.
반사성 기판(REFLECTIVE SUBSTRATE)
일 실시예에서, 활성 영역(106) 내에 흡수되지 않은 광자들이 활성 영역으로 다시 반사되게끔, 기판(108)이 반사성으로 만들어진다. 예를 들어, 도 1을 다시 참조하면, 나노구조체(115) 성장을 위해 사용되는 기판(108)(예를 들어, Si)이 식각되어, 흡수되지 않은 광자들을 다시 활성 영역(106)으로 분산적으로 반사하는 다공성 실리콘(porous Si)을 생성할 수 있다. 기판(108)을 다공성으로 만드는 것은 수직 전도성을 감소시킬 수 있으므로, 기판(108)은 부분적으로 다공성으로 만들어질 수 있다. 일 실시예에서, 기판(108)은 n-타입 Si 기판이다. 그러나, 기판(108)은 Si 또는 n-타입 도핑으로 제한되지 않는다. 기판(108)을 반사성으로 만드는 것은 단일 접합 디바이스들에 제한되지 않는다.
전술한 상세한 설명에서, 발명의 실시예들이 실시예들에 따라 달라질 수 있는 다양한 세부사항들을 참조로 설명되었다. 그러므로, 본 발명과 본 발명에 대해 출원인이 의도하는 전체적이고 포괄적인 내용은 본 출원의 청구항들이며, 상기 청구항들은 그러한 청구항들이 기재된 특정 형태 내에서, 임의의 후속적인 수정을 포함한다. 그러한 청구항들에 포함된 용어들에 대해, 본 명세서에 명시적으로 기재된 정의들은 청구항들에서 사용되는 용어들의 의미를 결정한다. 따라서, 청구항에 명 시적으로 기재되지 않은 한정사항, 구성요소, 성질, 특징, 이점 또는 속성들은 어떠한 방식으로도 청구항의 범위를 제한하지 않는다. 따라서, 상세한 설명과 도면들은 제한적인 방식이라기보다는 예시적인 것으로 여겨져야 한다.

Claims (32)

  1. 태양전지로서,
    활성 영역을 포함하여 구성되며, 여기서 상기 활성 영역은 복수의 나노구조체들을 포함하며, 상기 나노구조체는,
    III-V 화합물 반도체와; 그리고
    상기 화합물 반도체 내에 혼합된 밴드갭 변경 요소를 포함하며;
    상기 밴드갭 변경 요소의 농도는 비균등하여 상기 나노구조체들 각각에 복수의 세그먼트들을 생성하며, 상기 세그먼트들 각각은 밴드갭을 가지며;
    여기서 특정 세그먼트의 밴드갭은 상기 밴드갭 변경 요소의 농도에 의해 설정되며; 그리고
    상기 밴드갭 변경 요소의 농도는 상기 활성 영역 전체에 걸쳐 비균등하여 서로 다른 에너지 레벨들을 지닌 에너지 우물들을 형성하는 것을 특징으로 하는 태양전지.
  2. 제1 항에 있어서,
    상기 태양전지는 전자기 방사(electromagnetic radiation)를 할 수 있게 하는 윈도우를 가지며, 상기 윈도우에 가까이 있는 에너지 우물들은 상기 윈도우로부터 멀리 있는 에너지 우물들보다 높은 밴드갭을 가지는 것을 특징으로 하는 태양전지.
  3. 제1 항에 있어서,
    상기 태양전지는 전자기 방사를 할 수 있게 하는 윈도우를 가지며, 에너지 우물들의 밴드갭은 상기 윈도우로부터 멀어지는 방향으로, 한 에너지 우물로부터 다른 에너지 우물로 가면서 단조적으로 감소하는 것을 특징으로 하는 태양전지.
  4. 제1 항에 있어서,
    상기 에너지 우물들 사이의 장벽들은 대략적으로 서로 동일한 밴드갭들을 가지는 것을 특징으로 하는 태양전지.
  5. 제1 항에 있어서,
    상기 에너지 우물들 사이의 장벽들은 경사진 밴드갭(graded band gap)들을 가지는 것을 특징으로 하는 태양전지.
  6. 제1 항에 있어서,
    상기 태양전지는 전자기 방사를 할 수 있게하는 윈도우를 가지며, 상기 윈도우에 가까이 있는 에너지 우물들 사이의 장벽들은 상기 윈도우로부터 멀리 있는 장벽들보다 큰 밴드갭을 가지는 것을 특징으로 하는 태양전지.
  7. 제1 항에 있어서,
    상기 에너지 우물들 사이의 장벽들은 상기 에너지 우물들 사이에서 전하 캐리어들이 이동하는 것을 방해하는 것을 특징으로 하는 태양전지.
  8. 제1 항에 있어서,
    특정 에너지 우물의 너비는 양자 구속 효과(quantum confinement effect)에 의해 상기 특정 에너지 우물의 밴드갭에 영향을 미치도록 되어 있는 것을 특징으로 하는 태양전지.
  9. 제1 항에 있어서,
    상기 에너지 우물들 중 두 에너지 우물들 사이의 특정 장벽의 너비는 상기 두 에너지 우물들 사이의 전하 캐리어 터널링을 제어하도록 되어 있는것을 특징으로 하는 태양 전지.
  10. 제1 항에 있어서,
    특정 에너지 우물의 너비가, 우물과 장벽의 계면(well-barrier interface)들에 있는 편극 전하들로 인한 피에조 전계 효과(piezoelectric field effect)에 영향을 줌으로써 전자-정공 재결합율에 영향을 주도록 되어 있는 것을 특징으로 하는 태양전지.
  11. 제1 항에 있어서,
    특정 에너지 우물이, 상기 특정한 에너지 우물과 인접 장벽 사이의 계면에 있는 편극 전하들로 인한 피에조 전계 효과에 영향을 줌으로써 전자-정공 재결합율에 영향을 주도록 도핑되는 것을 특징으로 하는 태양전지.
  12. 제11 항에 있어서,
    상기 특정 에너지 우물에 인접한 특정 에너지 장벽이, 상기 계면에 있는 편극 전하들로 인한 피에조 전계 효과에 영향을 줌으로써 상기 전자-정공 재결합율에 영향을 주도록 도핑되는 것을 특징으로 하는 태양전지.
  13. 제1 항에 있어서,
    특정 에너지 우물에 인접한 특정 에너지 장벽이, 상기 특정 에너지 장벽과 상기 특정 에너지 우물 사이의 계면에 있는 편극 전하들로 인한 피에조 전계 효과에 영향을 줌으로써 전자-정공 재결합율에 영향을 주도록 도핑되는 것을 특징으로 하는 태양전지.
  14. 제1 항에 있어서,
    상기 밴드갭 변경 요소는 인듐을 포함하는 것을 특징으로 하는 태양전지.
  15. 제1 항에 있어서,
    상기 밴드갭 변경 요소는 알루미늄을 포함하는 것을 특징으로 하는 태양전 지.
  16. 제1 항에 있어서,
    상기 밴드갭 변경 요소는 상기 활성 영역의 부분들의 밴드갭을 낮춤으로써 상기 에너지 우물들을 생성하는 것을 특징으로 하는 태양전지.
  17. 제1 항에 있어서,
    상기 밴드갭 변경 요소는 상기 에너지 우물들 사이의 장벽들의 밴드갭을 증가시키는 것을 특징으로 하는 태양전지.
  18. 제1 항에 있어서,
    III-V 화합물 반도체는 갈륨 질화물(gallium nitride)을 포함하는 것을 특징으로 하는 태양전지.
  19. 제1 항에 있어서,
    청구항 1항에 기재된 것과 같은 복수의 활성 영역들을 포함하는 것을 특징으로 하는 태양 전지.
  20. 제1 항에 있어서,
    상기 활성 영역을 통과할 때 흡수되지 않은 광자들을 다시 상기 활성 영역으 로 반사하도록 되어있는 층을 더 포함하는 것을 특징으로 하는 태양 전지.
  21. 태양 전지를 형성하는 방법으로서,
    기판 위에 복수의 나노구조체들을 성장시키는 것을 포함하며, 여기서 상기 나노구조체들을 성장시키는 것은,
    상기 나노구조체들 각각이 비균등한 농도의 밴드갭 변경 요소를 가지게 하기 위하여, III-V 화합물 반도체 내부에 혼합된 밴드갭 변경 요소의 농도를 조정하는 것을 포함하며, 여기서 상기 나노구조체들 각각은 복수의 세그먼트들을 가지고, 그리고 상기 세그먼트들 각각은 밴드갭을 가지며;
    특정 세그먼트의 밴드갭은 상기 밴드갭 변경 요소의 농도를 조정함으로써 설정되며; 그리고
    서로 다른 에너지 레벨들을 지닌 에너지 우물들을 생성하기 위하여, 상기 밴드갭 변경 요소의 농도는 비균등한 것을 특징으로 하는 태양 전지를 형성하는 방법.
  22. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 상기 활성 영역의 제1 측에 더 가까이 있는 에너지 우물들이 상기 제1 측으로부터 멀리있는 에너지 우물들보다 더 높은 밴드갭들을 가지게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  23. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 에너지우물들의 밴드갭이 일 에너지 우물에서 다른 에너지 우물로 가면서 단조적으로 감소되게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  24. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 상기 에너지 우물들 사이의 장벽들이 다른 장벽들과 대략적으로 동일한 밴드갭들을 가지게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  25. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 상기 에너지 우물들 사이의 장벽들이 경사진 밴드갭들을 가지게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  26. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 상기 활성 영역의 제1 측에 가까이 있는 에너지 우물들 사이의 장벽들이 상기 제1 측으로부터 멀리있는 장벽들보다 큰 밴드갭들을 가지게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  27. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 특정 에너지 우물의 너비가 양자 구속 효과에 의해 상기 특정 에너지 우물의 밴드갭에 영향을 주게 되게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  28. 제21 항에 있어서,
    상기 밴드갭 변경 요소의 농도를 조정하는 것은, 상기 에너지 우물들 중 두 두 에너지 우물들 사이의 특정 장벽의 너비가 상기 두 에너지 우물들 사이의 전하 캐리어 터널링을 조정하게끔 상기 농도를 조정하는 것을 포함하는 것을 특징으로 하는 태양 전지를 형성하는 방법.
  29. 제21 항에 있어서,
    상기 밴드갭 변경 요소는 인듐을 포함하는 것을 특징으로 하는 태양전지를 형성하는 방법.
  30. 제21 항에 있어서,
    상기 밴드갭 변경 요소는 알루미늄을 포함하는 것을 특징으로 하는 태양전지 를 형성하는 방법.
  31. 제21 항에 있어서,
    상기 III-V 화합물 반도체는 갈륨 질화물을 포함하는 것을 특징으로 하는 태양전지를 형성하는 방법.
  32. 제21 항에 있어서,
    상기 활성 영역들 통과할때 흡수되지 않았던 광자들을 다시 상기 활성 영역 내부로 반사하도록 되어 있는 층을 형성하는 것을 더 포함하는 태양전지를 형성하는 방법.
KR1020097015671A 2006-12-29 2007-12-28 에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지 KR20090116724A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/648,059 US7629532B2 (en) 2006-12-29 2006-12-29 Solar cell having active region with nanostructures having energy wells
US11/648,059 2006-12-29

Publications (1)

Publication Number Publication Date
KR20090116724A true KR20090116724A (ko) 2009-11-11

Family

ID=39582212

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097015671A KR20090116724A (ko) 2006-12-29 2007-12-28 에너지 우물들을 가진 나노구조체들을 구비한 활성 영역을 가진 태양전지

Country Status (5)

Country Link
US (2) US7629532B2 (ko)
EP (1) EP2102913A2 (ko)
KR (1) KR20090116724A (ko)
CN (1) CN101589474A (ko)
WO (1) WO2008083294A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066219A (ko) * 2011-09-23 2014-05-30 갈리움 엔터프라이지즈 피티와이 엘티디 가변 밴드갭 태양 전지
US9806111B2 (en) 2010-06-08 2017-10-31 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080178931A1 (en) * 2007-01-26 2008-07-31 Hye-Won Seo Multi-junction solar cell
JP2010534922A (ja) * 2007-04-09 2010-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高効率の縦列太陽電池用の低抵抗トンネル接合
EP2168167B1 (en) * 2007-06-19 2019-04-10 QuNano AB Nanowire-based solar cell structure
KR20090054260A (ko) * 2007-11-26 2009-05-29 삼성전기주식회사 태양전지
US20090173373A1 (en) * 2008-01-07 2009-07-09 Wladyslaw Walukiewicz Group III-Nitride Solar Cell with Graded Compositions
US8030729B2 (en) * 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US8390005B2 (en) * 2008-06-30 2013-03-05 Hewlett-Packard Development Company, L.P. Apparatus and method for nanowire optical emission
US20100012168A1 (en) * 2008-07-18 2010-01-21 Honeywell International Quantum dot solar cell
WO2010027322A1 (en) * 2008-09-04 2010-03-11 Qunano Ab Nanostructured photodiode
US20100224237A1 (en) * 2009-03-04 2010-09-09 Sundiode Inc. Solar cell with backside contact network
US8242353B2 (en) * 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
WO2010117330A1 (en) * 2009-04-09 2010-10-14 Fredrik Boxberg Photovoltaic device, and a manufacturing method thereof
US20100269895A1 (en) * 2009-04-27 2010-10-28 Katherine Louise Smith Multijunction photovoltaic structure with three-dimensional subcell
KR101245371B1 (ko) * 2009-06-19 2013-03-19 한국전자통신연구원 태양전지 및 그 제조방법
EP2457257B9 (en) 2009-07-20 2014-03-26 Soitec Methods of fabricating semiconductor structures and devices using quantum dot structures and related structures
US9559229B2 (en) * 2009-12-31 2017-01-31 Epistar Corporation Multi-junction solar cell
KR101652406B1 (ko) * 2010-02-19 2016-08-30 삼성전자주식회사 전기 에너지 발생 장치
KR101786765B1 (ko) * 2010-06-08 2017-10-18 선다이오드, 인크. 측벽 전기 콘택을 갖는 나노구조 광전자 디바이스
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8476637B2 (en) 2010-06-08 2013-07-02 Sundiode Inc. Nanostructure optoelectronic device having sidewall electrical contact
US8217258B2 (en) 2010-07-09 2012-07-10 Ostendo Technologies, Inc. Alternating bias hot carrier solar cells
US9620670B2 (en) * 2010-09-02 2017-04-11 Micron Technology, Inc. Solid state lighting dies with quantum emitters and associated methods of manufacturing
GB201020843D0 (en) * 2010-12-09 2011-01-19 Univ Nottingham Solar cells based on InGaN
KR101208272B1 (ko) * 2011-02-24 2012-12-10 한양대학교 산학협력단 양면 구조를 가지는 태양전지 및 이의 제조방법
US10170652B2 (en) 2011-03-22 2019-01-01 The Boeing Company Metamorphic solar cell having improved current generation
CN103999232B (zh) * 2012-03-06 2015-10-14 国立研究开发法人科学技术振兴机构 多量子阱太阳能电池及多量子阱太阳能电池的制造方法
JP6060652B2 (ja) * 2012-11-28 2017-01-18 富士通株式会社 太陽電池及びその製造方法
CN103094378B (zh) * 2013-01-28 2016-09-14 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的背入射太阳能电池
FR3011381B1 (fr) * 2013-09-30 2017-12-08 Aledia Dispositif optoelectronique a diodes electroluminescentes
US20190348563A1 (en) 2017-01-05 2019-11-14 Brilliant Light Power, Inc. Extreme and deep ultraviolet photovoltaic cell
KR102377550B1 (ko) * 2017-05-19 2022-03-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 및 이를 포함하는 반도체 소자 패키지
CN108630777B (zh) * 2018-04-23 2019-11-12 华南师范大学 通过水解离进行太阳能制氢的混合装置及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114236B2 (ja) * 1998-07-08 2008-07-09 沖電気工業株式会社 半導体発光装置
US6437233B1 (en) * 2000-07-25 2002-08-20 Trw Inc. Solar cell having multi-quantum well layers transitioning from small to large band gaps and method of manufacture therefor
EP2273552A3 (en) 2001-03-30 2013-04-10 The Regents of the University of California Methods of fabricating nanstructures and nanowires and devices fabricated therefrom
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
EP1540741B1 (en) 2002-09-05 2014-10-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7081584B2 (en) * 2003-09-05 2006-07-25 Mook William J Solar based electrical energy generation with spectral cooling
US7662706B2 (en) 2003-11-26 2010-02-16 Qunano Ab Nanostructures formed of branched nanowhiskers and methods of producing the same
US7129154B2 (en) 2004-05-28 2006-10-31 Agilent Technologies, Inc Method of growing semiconductor nanowires with uniform cross-sectional area using chemical vapor deposition
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US20060207647A1 (en) 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
KR100631980B1 (ko) * 2005-04-06 2006-10-11 삼성전기주식회사 질화물 반도체 소자
WO2008048232A2 (en) * 2005-08-22 2008-04-24 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same
US7465954B2 (en) * 2006-04-28 2008-12-16 Hewlett-Packard Development Company, L.P. Nanowire devices and systems, light-emitting nanowires, and methods of precisely positioning nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806111B2 (en) 2010-06-08 2017-10-31 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions
KR20140066219A (ko) * 2011-09-23 2014-05-30 갈리움 엔터프라이지즈 피티와이 엘티디 가변 밴드갭 태양 전지

Also Published As

Publication number Publication date
US20080156366A1 (en) 2008-07-03
EP2102913A2 (en) 2009-09-23
WO2008083294A2 (en) 2008-07-10
CN101589474A (zh) 2009-11-25
US20100047957A1 (en) 2010-02-25
US7629532B2 (en) 2009-12-08
WO2008083294A3 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
EP2168167B1 (en) Nanowire-based solar cell structure
CN102484147B (zh) 具有纳米线的多结光生伏打电池
KR101683095B1 (ko) 고효율 나노구조 광전지 소자 제조
US9059344B2 (en) Nanowire-based photovoltaic energy conversion devices and related fabrication methods
JP6355085B2 (ja) 光電変換素子
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
US20130240829A1 (en) Quantum dot structure, method for forming quantum dot structure, wavelength conversion element, light-light conversion device, and photoelectric conversion device
US10811551B2 (en) Tandem solar cell including metal disk array
CN102144304A (zh) 具有高转换效率的光伏电池
US20150200322A1 (en) Semiconductor Heterojunction Photovoltaic Solar Cell with a Charge Blocking Layer
TWI590481B (zh) 具有脈衝摻雜層的太陽能電池
CN106159002A (zh) 一种基于纳米线/量子点复合结构的中间带太阳能电池及其制备方法
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
Goodnick et al. Solar cells
US20100224237A1 (en) Solar cell with backside contact network
KR20140066219A (ko) 가변 밴드갭 태양 전지
KR101628957B1 (ko) 패터닝된 그리드전극과 이를 적용한 박막 태양전지 및 이들의 제조방법
WO2013055429A2 (en) Quantum dot structures for efficient photovoltaic conversion, and methods of using and making the same
Kalinovsky et al. High power GaSb PV cells with nanocrystalline Si inclusions in the space charge region
SE533522C2 (sv) Nanotrådsbaserad effektivmediumsolcell

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid