CN101371980B - 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法 - Google Patents

介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法 Download PDF

Info

Publication number
CN101371980B
CN101371980B CN2007100726850A CN200710072685A CN101371980B CN 101371980 B CN101371980 B CN 101371980B CN 2007100726850 A CN2007100726850 A CN 2007100726850A CN 200710072685 A CN200710072685 A CN 200710072685A CN 101371980 B CN101371980 B CN 101371980B
Authority
CN
China
Prior art keywords
titanium dioxide
ethyl alcohol
absolute ethyl
silicon dioxide
mesoporous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100726850A
Other languages
English (en)
Other versions
CN101371980A (zh
Inventor
井立强
付宏刚
康传红
郭桐
苏海娇
崔虎成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN2007100726850A priority Critical patent/CN101371980B/zh
Publication of CN101371980A publication Critical patent/CN101371980A/zh
Application granted granted Critical
Publication of CN101371980B publication Critical patent/CN101371980B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,纳米二氧化钛是一种重要的无机半导体功能材料,表面修饰是一种经常被采用的改性方法,但尚未见到采用介孔二氧化硅对纳米二氧化钛进行表面修饰的报道。将钛酸四丁酯和无水乙醇的均匀混合液在剧烈搅拌条件下缓慢地滴入到由无水乙醇,二次蒸馏水和浓硝酸组成的混合体系中,搅拌,得到淡黄色的二氧化钛溶胶,接着将溶胶转移到高压反应釜中,密封,水热冷却至室温,倒掉上清液,得到膏状纳米二氧化钛,然后将其转移到烧杯中,再加入二氧化硅溶胶,经过搅拌,干燥,研磨,焙烧而得到介孔二氧化硅修饰的纳米二氧化钛粉末。本发明用作催化剂的合成。

Description

介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法
技术领域:
本发明涉及一种介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,尤其涉及上述方法制作的介孔二氧化硅修饰的二氧化钛高活性光催化剂产品。
背景技术:
纳米二氧化钛是一种重要的无机半导体功能材料,由于它拥有独特的催化、电学、光学以及光化学等方面的性能而引起人们广泛的关注。纳米二氧化钛以其稳定的化学性质、强氧化还原性、抗光腐蚀性、无毒、成本低等优点而被认为是比较理想的光催化剂之一。二氧化钛光催化氧化技术有望成为新一代的高效、节能、环保的污染物防治技术。但因其带隙能(3.2eV)较高而导致对太阳光的利用率较低,同时也存在自身量子效率较低的问题,从而限制了二氧化钛光催化氧化技术的实用化。为了进一步提高纳米二氧化钛的光催化性能,表面修饰是经常被采用的一种有效改性方法。根据最新研究成果可知,二氧化钛锐钛矿向金红石的相转变是由团聚的锐钛矿粒子内部界面开始的,随着热处理温度升高,逐渐从内部向外部扩展,直至表面。可以推测,在发生相转变初期,锐钛矿微晶团聚或烧结不显著,同时初步形成了粒子内部含有少量金红石而外部主要为锐钛矿相的壳层结构。粒子内部含有少量金红石相不会影响二氧化钛的光学吸收,但是由于能级匹配而由锐钛矿和金红石两种晶相所形成的同质异相结是有利于表面锐钛矿发生光生电荷分离的,这对光催化反应是有利的。因此,通过提高纳米二氧化钛晶相转变温度且使其为含有少量金红石的混晶相,可能实现具有粒子尺寸细小、比表面积大、结晶度高等结构特点的纳米二氧化钛的设计合成,进而获得具有较高光催化活性的纳米二氧化钛。硅基介孔材料作为一种新型的纳米结构材料,由于其具有较大的比表面积、水热稳定性以及结构和孔径可调性等特点,近年来成为了国际上跨学科的研究热点之一。已有文献报道,二氧化硅可起到抑制相变、提高二氧化钛光催化活性的作用。因此我们尝试采用多孔二氧化硅对二氧化钛纳米粒子进行表面修饰来设计合成具有大比表面积、高结晶度等结构特点的纳米二氧化钛,致力于进一步提高纳米二氧化钛的光催化活性。在本发明中,首次利用介孔二氧化硅的表面修饰实现了对纳米二氧化钛光催化剂性能的有效改善。
发明目的:
本发明的目的是提供一种介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,通过介孔二氧化硅表面修饰试图改变纳米锐钛矿二氧化钛的表面性质,并且很大程度地提高其由锐钛矿向金红石相的转变温度,进而显著地改善纳米锐钛矿二氧化钛的光催化活性,甚至超过国际商品P-25型二氧化钛。所构建的新型结构的半导体复合纳米材料用于改善材料在光催化等方面的性能。
上述的目的通过以下的技术方案实现:
介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,将钛酸四丁酯和无水乙醇的均匀混合液在剧烈搅拌条件下以每分钟30滴的速度缓慢地滴入到由无水乙醇,二次蒸馏水和浓硝酸组成的混合体系中,继续搅拌2小时,得到淡黄色的二氧化钛溶胶,接着将二氧化钛溶胶以30mL为一单位转移到聚四氟乙烯内衬的高压反应釜中,密封,在160℃的条件下水热6小时,冷却至室温,倒掉上清液,得到淡黄色的膏状纳米二氧化钛,然后将膏状纳米二氧化钛转移到烧杯中,再向烧杯中加入由含有F-127非离子表面活性剂的体系和含有正硅酸乙脂的体系均匀混合而成的二氧化硅溶胶,接着搅拌,加热,并继续搅拌直至粘稠,干燥,研磨,焙烧,得到介孔二氧化硅修饰的纳米二氧化钛粉末。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的钛酸四丁酯和无水乙醇的均匀混合液是在室温连续搅拌条件下,将20mL钛酸四丁酯缓慢地加入到20mL无水乙醇中,继续搅拌30分钟,获得均匀混合液,所述的无水乙醇,二次蒸馏水和浓硝酸组成的混合体系,是在室温连续搅拌条件下,将80mL无水乙醇加入到20mL二次蒸馏水中,再加入4mL的70%浓硝酸,继续搅拌30分钟,获得混合体系。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有F-127非离子表面活性剂的体系是在室温下将0.9g的F-127非离子表面活性剂加入到12.7mL的无水乙醇中,超声15分钟,搅拌2小时,接着加入2滴0.1M的盐酸水溶液和0.09g的1,3,5-三甲苯,继续搅拌2小时。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有正硅酸乙脂的体系是向7.0mL无水乙醇中边搅拌边依次滴加1.98mL正硅酸乙脂,0.5mL二次蒸馏水和0.5mL的0.06M盐酸水溶液,在室温下超声15分钟,搅拌2小时,从室温缓慢升温至70℃,在恒温条件下继续搅拌1小时,所述的均匀混合而成的二氧化硅溶胶是将F-127、无水乙醇、0.1M的盐酸水溶液和1,3,5-三甲苯的混合液倒入到无水乙醇、正硅酸乙脂、二次水和0.5mL的0.06M盐酸水溶液的混合体系中,从室温升温至70℃,在恒温条件下继续搅拌1小时。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的再向烧杯中加入二氧化硅溶胶是将每个高压反应釜中的膏状纳米二氧化钛转移到100mL的烧杯中,再向烧杯中加入不同体积的浓度分别为0.3%-7%的系列介孔二氧化硅溶胶,搅拌1小时,所述的加热是以每分钟10℃的速度从室温升到70℃,在恒温下连续搅拌,蒸发溶剂,直至粘稠。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的干燥是在干燥箱中100℃温度下干燥6小时,然后研磨,所述的焙烧是在马氟炉中焙烧,在升温速率为10℃/min的条件下升温,焙烧温度分别为700℃和800℃,焙烧时间均为2小时,最终得到经不同温度热处理的不同量介孔二氧化硅修饰的纳米二氧化钛粉末。
这个技术方案有以下有益效果:
1.本发明通过介孔二氧化硅表面修饰实现了高活性纳米二氧化钛光催化剂的合成。
2.本发明合成过程工艺简单、反应条件温和、操作方便、成本低,易于实现工业化生产。
3.本发明所构建的新型纳米结构复合材料表现出了结构的新颖性,是介孔结构和零维单元结构的有机复合。这种新型纳米结构材料不仅为结构理论研究提供条件,而且可能有利于材料在多方面性能的提高。也将为设计合成其它半导体复合结构材料提供新的思路和方法。
4.本发明通过介孔二氧化硅的表面修饰,改善了传统的二氧化钛纳米粒子易团聚的缺点,并增大了比表面积,同时有效地提高了锐钛矿相二氧化钛的结晶度,最终导致光催化性能得到明显改善,甚至超过国际商品P-25型二氧化钛的,这种介孔二氧化硅表面修饰的二氧化钛高活性光催化剂拥有很高的开发使用价值。
5.本发明中所合成的介孔二氧化硅修饰的二氧化钛高活性光催化剂的性质表征主要有:X-射线衍射分析(用来分析相结构和相组成),比表面积测定仪(用来分析比表面积),氮气吸附脱附等温线(分析孔径结构)和光催化降解实验(评估光催化活性)。
附图说明:
附图1是不同温度热处理的纳米二氧化钛的XRD衍射图。从图可见,未经热处理过的二氧化钛为锐钛矿相,随着热处理温度升高,XRD衍射峰逐渐增强,意味着锐钛矿相的结晶度逐渐升高。但是当热处理温度为550℃时,少量金红石开始出现,说明此时锐钛矿开始向金红石转变。再继续提高热处理温度,金红石含量逐渐增加,当热处理温度为850℃时,已经完全转变为金红石相。二氧化钛从550-850℃完成了整个相转变过程。
附图2是经700℃热处理的不同量介孔二氧化硅表面修饰的纳米二氧化钛粉末的XRD衍射图。
附图3是经800℃热处理的不同量介孔二氧化硅表面修饰的纳米二氧化钛粉末的XRD衍射图。从图2和图3可见,在较高温度(>550℃)热处理下,表面修饰介孔二氧化硅的量较低时,二氧化钛中出现了少量的金红石相,但仍然以锐钛矿相为主。随着表面修饰的介孔二氧化硅的量增加,金红石相的量逐渐较少,甚至消失。但是未修饰的二氧化钛样品几乎已经完全转变成了金红石相,充分说明了介孔二氧化硅的表面修饰能够显著地抑制二氧化钛由锐钛矿向金红石的转变,且随着二氧化硅量的增加,抑制相变效果越来越显著。另外,在2θ≈31°处有一微弱的XRD衍射峰,表明样品中含有微量的板钛矿相,意味着能够获得锐钛矿、金红石和板钛矿的三相共存的混晶纳米二氧化钛粉末,这将可能有利于光催化活性的提高。
附图4是经800℃热处理的3%介孔二氧化硅表面修饰的纳米二氧化钛的氮气吸附脱附等温线。从图中可以看出脱附过程与吸附过程的等温线并不完全重合,形成一个明显滞后圈。证明了样品中多孔结构的存在。而脱附分支在中等大小相对压力处有一陡的变化,意味着具有细颈和广体的管子或墨水瓶形状的多孔结构。
附图5是经800℃热处理的3%介孔二氧化硅表面修饰的纳米二氧化钛的孔径分布曲线,可以看出纳米二氧化钛表面的介孔二氧化硅的孔径为2-3nm,而图5中3-12nm的孔是由二氧化钛纳米粒子堆积而成的。
表1是经700℃和800℃热处理的不同量介孔二氧化硅表面修饰的纳米二氧化钛的、550℃热处理的纳米二氧化钛的和国际商品P-25型二氧化钛的比表面积。可见介孔二氧化硅的表面修饰能够适当地提高纳米二氧化钛的比表面积。
表2是罗丹明B水溶液在700℃焙烧的不同量介孔二氧化硅表面修饰的二氧化钛上的光催化降解率。在光催化反应过程中,是以150W氙灯为光源,使用0.1g所制备的二氧化光催化剂和50mL浓度为10mg/L的罗丹明B水溶液体系,光照1小时,利用约在553nm的可见特征吸收值来检测罗丹明B的浓度。
表3是罗丹明B水溶液在800℃焙烧的不同量介孔二氧化硅表面修饰的二氧化钛上的光催化降解率。从表2和表3可以看出,在较高温度热处理下,随着修饰介孔二氧化硅量的增加,吸附降解逐渐增加,同时降解率也逐渐增加。经介孔二氧化硅修饰的纳米二氧化钛的光催化活性远远地优越于经550℃热处理的未修饰的纳米二氧化钛的光催化活性,甚至超过了国际商品P-25型二氧化钛的。
表1经700℃和800℃热处理的不同量介孔二氧化硅修饰的纳米二氧化钛的比表面积
 
样品 S(m2·g-1) 样品 S(m2·g-1)
T-550 78.5 P25 55.2
ST-0.3-700 23.4 ST-0.3-800 14.0
ST-1-700 53.3 ST-1-800 40.2
ST-2-700 97.7 ST-2-800 60.9
ST-3-700 118.1 ST-3-800 86.1
ST-4-700 144.6 ST-4-800 93.0
ST-5-700 158.1 ST-5-800 124.2
ST-7-800 151.8
ST-X-Y:T表示二氧化钛;ST表示介孔二氧化硅修饰的二氧化钛;X表示介孔二氧化硅修饰的百分含量;Y表示热处理温度;P-25表示国际商品P-25型二氧化钛。
表2罗丹明B水溶液在700℃热处理的不同量介孔二氧化硅修饰的二氧化钛上的降解率
 
样品 T-550 ST-0.3-700 ST-1-700 ST-3-700 ST-4-700 P-25
吸附降解(%)(有催化剂、无光) 10.45 2.42 4.89 7.03 9.75 6.23
光催化降解(%)(有催化剂、有光) 27.03 40.22 53.52 75.04 76.94 70.84
降解率(%) 16.58 37.80 48.63 68.01 67.19 64.64
ST-X-Y:T表示二氧化钛;ST表示介孔二氧化硅修饰的二氧化钛;X表示介孔二氧化硅修饰的百分含量;Y表示热处理温度;P-25表示国际商品P-25型二氧化钛。
表3罗丹明B水溶液在800℃焙烧的不同量介孔二氧化硅表面修饰的二氧化钛上的降解率
 
样品 ST-1-800 ST-2-800 ST-3-800 ST-4-800 ST-5-800 ST-7-800
 
吸附降解(%)(有催化剂、无光) 10.88 15.00 17.25 22.32 39.84 46.36
光催化降解(%)(有催化剂、有光) 59.76 88.72 88.27 90.53 96.75 94.04
降解率(%) 48.88 73.72 71.02 68.21 56.91 47.68
ST-X-Y:ST表示介孔二氧化硅修饰的二氧化钛;X表示介孔二氧化硅修饰的百分含量;Y表示热处理温度。
综上所述,经700℃或800℃热处理的适量介孔二氧化硅表面修饰的二氧化钛的光催化活性明显地高于未修饰的经550℃热处理的二氧化钛的光催化活性,甚至超过了P-25型二氧化钛的。根据文献报道及前面的XRD和表面积表征结果可以推断,经适量介孔二氧化硅表面修饰的二氧化钛的光催化活性的提高与介孔二氧化硅修饰抑制相转变而进一步提高结晶度和比表面积的增加有关。在保证小粒子尺寸和大比表面积的条件下,结晶度的提高有利于光生电荷分离,以至于光催化性能得到明显改善。因此,本发明通过介孔二氧化硅表面修饰较好地实现了合成纳米二氧化钛高活性光催化剂的目的,将进一步加速其应用化进程。
本发明的具体实施方式:
实施例1:
介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,将钛酸四丁酯和无水乙醇的均匀混合液在剧烈搅拌条件下以每分钟30滴的速度缓慢地滴入到由无水乙醇,二次蒸馏水和浓硝酸组成的混合体系中,继续搅拌2小时,得到淡黄色的二氧化钛溶胶,接着将二氧化钛溶胶以30mL为一单位转移到聚四氟乙烯内衬的高压反应釜中,密封,在160℃的条件下水热6小时,冷却至室温,倒掉上清液,得到淡黄色的膏状纳米二氧化钛,然后将膏状纳米二氧化钛转移到烧杯中,再向烧杯中加入由含有F-127非离子表面活性剂的体系和含有正硅酸乙脂的体系均匀混合而成的二氧化硅溶胶,接着搅拌,加热,并继续搅拌直至粘稠,干燥,研磨,焙烧,得到介孔二氧化硅修饰的纳米二氧化钛粉末。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的钛酸四丁酯和无水乙醇的均匀混合液是在室温连续搅拌条件下,将20mL钛酸四丁酯缓慢地加入到20mL无水乙醇中,继续搅拌30分钟,获得均匀混合液,所述的无水乙醇,二次蒸馏水和浓硝酸组成的混合体系是在室温连续搅拌条件下,将80mL无水乙醇加入到20mL二次蒸馏水中,再加入4mL的70%浓硝酸,继续搅拌30分钟,获得混合体系。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有F-127非离子表面活性剂的体系是在室温下将0.9g的F-127非离子表面活性剂加入到12.7mL的无水乙醇中,超声15分钟,搅拌2小时,接着加入2滴0.1M的盐酸水溶液和0.09g的1,3,5-三甲苯,继续搅拌2小时。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有正硅酸乙脂的体系是向7.0mL无水乙醇中边搅拌边依次滴加1.98mL正硅酸乙脂,0.5mL二次蒸馏水和0.5mL的0.06M盐酸水溶液,在室温下超声15分钟,搅拌2小时,从室温缓慢升温至70℃,在恒温条件下继续搅拌1小时,所述的均匀混合而成的二氧化硅溶胶是将F-127、无水乙醇、0.1M的盐酸水溶液和1,3,5-三甲苯的混合液倒入到无水乙醇、正硅酸乙脂、二次水和0.5mL的0.06M盐酸水溶液的混合体系中,从室温升温至70℃,在恒温条件下继续搅拌1小时。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的再向烧杯中加入二氧化硅溶胶是将每个高压反应釜中的膏状纳米二氧化钛转移到100mL的烧杯中,再向烧杯中加入不同体积的浓度分别为0.3%-7%的系列介孔二氧化硅溶胶,搅拌1小时,所述的加热是以每分钟10℃的速度从室温升到70℃,在恒温下连续搅拌,蒸发溶剂,直至粘稠。
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的干燥是在干燥箱中100℃温度下干燥6小时,然后研磨,所述的焙烧是在马氟炉中焙烧,在升温速率为10℃/min的条件下升温,焙烧温度分别为700℃和800℃,焙烧时间均为2小时,最终得到经不同温度热处理的不同量介孔二氧化硅修饰的纳米二氧化钛粉末。
实施例2:
介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,将钛酸四丁酯和无水乙醇的均匀混合液在剧烈搅拌条件下以每分钟30滴的速度缓慢地滴入到由无水乙醇,二次蒸馏水和浓硝酸组成的混合体系中,继续搅拌2小时,得到淡黄色的二氧化钛溶胶,接着将二氧化钛溶胶以30mL为一单位转移到聚四氟乙烯内衬的高压反应釜中,密封,在160℃的条件下水热6小时,冷却至室温,倒掉上清液,得到淡黄色的膏状纳米二氧化钛,然后将膏状纳米二氧化钛转移到烧杯中,再向烧杯中加入由含有F-127非离子表面活性剂的体系和含有正硅酸乙脂的体系均匀混合而成的二氧化硅溶胶,接着搅拌,加热,并继续搅拌直至粘稠,干燥,研磨,焙烧,得到介孔二氧化硅修饰的纳米二氧化钛粉末。
实施例3:
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的钛酸四丁酯和无水乙醇的均匀混合液是在室温连续搅拌条件下,将20mL钛酸四丁酯缓慢地加入到20mL无水乙醇中,继续搅拌30分钟,获得均匀混合液,所述的无水乙醇,二次蒸馏水和浓硝酸组成的混合体系,是在室温连续搅拌条件下,将80mL无水乙醇加入到20mL二次蒸馏水中,再加入4mL的70%浓硝酸,继续搅拌30分钟,获得混合体系。
实施例4:
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有F-127非离子表面活性剂的体系是在室温下将0.9g的F-127非离子表面活性剂加入到12.7mL的无水乙醇中,超声15分钟,搅拌2小时,接着加入2滴0.1M的盐酸水溶液和0.09g的1,3,5-三甲苯,继续搅拌2小时。
实施例5:
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的含有正硅酸乙脂的体系是向7.0mL无水乙醇中边搅拌边依次滴加1.98mL正硅酸乙脂,0.5mL二次蒸馏水和0.5mL的0.06M盐酸水溶液,在室温下超声15分钟,搅拌2小时,从室温缓慢升温至70℃,在恒温条件下继续搅拌1小时,所述的均匀混合而成的二氧化硅溶胶是将F-127、无水乙醇、0.1M的盐酸水溶液和1,3,5-三甲苯的混合液倒入到无水乙醇、正硅酸乙脂、二次水和0.5mL的0.06M盐酸水溶液的混合体系中,从室温升温至70℃,在恒温条件下继续搅拌1小时。
实施例6:
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的再向烧杯中加入二氧化硅溶胶是将每个高压反应釜中的膏状纳米二氧化钛转移到100mL的烧杯中,再向烧杯中加入不同体积的浓度分别为0.3%-7%的系列介孔二氧化硅溶胶,搅拌1小时,所述的加热是以每分钟10℃的速度从室温升到70℃,在恒温下连续搅拌,蒸发溶剂,直至粘稠。
实施例7:
所述的介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法,所述的干燥是在干燥箱中100℃温度下干燥6小时,然后研磨,所述的焙烧是在马氟炉中焙烧,在升温速率为10℃/min的条件下升温,焙烧温度分别为700℃和800℃,焙烧时间均为2小时,最终得到经不同温度热处理的不同量介孔二氧化硅修饰的纳米二氧化钛粉末。

Claims (3)

1.一种介孔二氧化硅修饰的二氧化钛光催化剂的合成方法,其特征是:将钛酸四丁酯和无水乙醇的均匀混合液在剧烈搅拌条件下以每分钟30滴的速度缓慢地滴入到由无水乙醇、二次蒸馏水和浓硝酸组成的混合体系中,继续搅拌2小时,得到淡黄色的二氧化钛溶胶,接着将二氧化钛溶胶以30mL为一单位转移到聚四氟乙烯内衬的高压反应釜中,密封,在160℃的条件下水热6小时,冷却至室温,倒掉上清液,得到淡黄色的膏状纳米二氧化钛,然后将膏状纳米二氧化钛转移到烧杯中,再向烧杯中加入由含有F-127非离子表面活性剂的体系和含有正硅酸乙酯的体系均匀混合而成的二氧化硅溶胶,接着搅拌,加热,并继续搅拌直至粘稠,干燥,研磨,焙烧,得到介孔二氧化硅修饰的纳米二氧化钛粉末,所述的含有F-127非离子表面活性剂的体系是在室温下将0.9g的F-127非离子表面活性剂加入到12.7mL的无水乙醇中,超声15分钟,搅拌2小时,接着加入2滴0.1M的盐酸水溶液和0.09g的1,3,5-三甲苯,继续搅拌2小时,所述的含有正硅酸乙酯的体系是向7.0mL无水乙醇中边搅拌边依次滴加1.98mL正硅酸乙酯、0.5mL二次蒸馏水和0.5mL的0.06M盐酸水溶液,在室温下超声15分钟,搅拌2小时,从室温缓慢升温至70℃,在恒温条件下继续搅拌1小时,所述的均匀混合而成的二氧化硅溶胶是将F-127、无水乙醇、0.1M的盐酸水溶液和1,3,5-三甲苯的混合液倒入到无水乙醇、正硅酸乙酯、二次蒸馏水和0.5mL的0.06M盐酸水溶液的混合体系中,从室温升温至70℃,在恒温条件下继续搅拌1小时。
2.根据权利要求1所述的介孔二氧化硅修饰的二氧化钛光催化剂的合成方法,其特征是:所述的钛酸四丁酯和无水乙醇的均匀混合液是在室温连续搅拌条件下,将20mL钛酸四丁酯缓慢地加入到20mL无水乙醇中,继续搅拌30分钟,获得均匀混合液,所述的无水乙醇、二次蒸馏水和浓硝酸组成的混合体系,是在室温连续搅拌条件下,将80mL无水乙醇加入到20mL二次蒸馏水中,再加入4mL的70%浓硝酸,继续搅拌30分钟,获得混合体系。
3.根据权利要求1或2所述的介孔二氧化硅修饰的二氧化钛光催化剂的合成方法,其特征是:所述的加热是以每分钟10℃的速度从室温升到70℃,在恒温下连续搅拌,蒸发溶剂,直至粘稠。
CN2007100726850A 2007-08-21 2007-08-21 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法 Expired - Fee Related CN101371980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100726850A CN101371980B (zh) 2007-08-21 2007-08-21 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100726850A CN101371980B (zh) 2007-08-21 2007-08-21 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法

Publications (2)

Publication Number Publication Date
CN101371980A CN101371980A (zh) 2009-02-25
CN101371980B true CN101371980B (zh) 2011-02-16

Family

ID=40446471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100726850A Expired - Fee Related CN101371980B (zh) 2007-08-21 2007-08-21 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法

Country Status (1)

Country Link
CN (1) CN101371980B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138147A (zh) * 2017-04-18 2017-09-08 南昌大学 以介孔二氧化硅为硬模板制备高比表面二氧化锡催化剂的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584983B (zh) * 2008-05-22 2013-01-02 中国科学院福建物质结构研究所 一种高效二氧化钛-氧化硅光催化材料及其合成方法
CN103657586B (zh) * 2013-11-19 2015-07-15 浙江大学 一种SiO2包覆TiO2材料的制备方法
CN103691391A (zh) * 2013-12-13 2014-04-02 天津工业大学 一种含钛介孔二氧化硅的制备方法
CN106552614A (zh) * 2015-09-29 2017-04-05 云南民族大学 疏水性二氧化钛/介孔硅核/壳复合光催化剂的制备方法
CN105842303B (zh) * 2016-05-24 2019-10-08 国家电网有限公司 一种基于纳米氧化钛复合材料的氟化硫酰气体传感器及其制备方法和应用
CN110183865A (zh) * 2019-06-10 2019-08-30 中南大学 一种改性沥青的制备方法
CN111747445B (zh) * 2020-07-31 2022-09-09 重庆工商大学 一种TiO2-SiO2氧化物复合材料及其制备方法
CN112608649A (zh) * 2020-12-11 2021-04-06 南通勘察设计有限公司 一种抗脱落型建筑外墙用防水涂料及其制备方法
CN113042022A (zh) * 2020-12-25 2021-06-29 杭州电子科技大学 一种能够在可见光照射下降解污染物的TiO2的制备方法
CN116554718B (zh) * 2023-05-05 2024-04-05 江西昌浩实业有限公司 一种海胆状二氧化钛涂料的制备方法及用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189459A (zh) * 1998-01-09 1998-08-05 中国科学院固体物理研究所 纳米二氧化钛/二氧化硅介孔复合体及制备方法
CN1287878A (zh) * 2000-08-24 2001-03-21 中国科学院上海硅酸盐研究所 介孔二氧化钛光催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189459A (zh) * 1998-01-09 1998-08-05 中国科学院固体物理研究所 纳米二氧化钛/二氧化硅介孔复合体及制备方法
CN1287878A (zh) * 2000-08-24 2001-03-21 中国科学院上海硅酸盐研究所 介孔二氧化钛光催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Jun Yang et al..Synthesis of nano titania particles embedded in mesoporous SBA-15:Characterization and photocatalytic activity.《Journal of Hazardous Materials》.2006,第137卷952-958. *
林会亮等.介孔TiO2-SiO2的制备及光催化降解黑液的影响因素.《中华纸业》.2007,第28卷(第3期),67-70. *
马劲等.超双亲透明介孔二氧化硅涂层.《科学通报》.2006,第51卷(第14期),1637-1639. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138147A (zh) * 2017-04-18 2017-09-08 南昌大学 以介孔二氧化硅为硬模板制备高比表面二氧化锡催化剂的方法
CN107138147B (zh) * 2017-04-18 2020-04-24 南昌大学 以介孔二氧化硅为硬模板制备高比表面二氧化锡催化剂的方法

Also Published As

Publication number Publication date
CN101371980A (zh) 2009-02-25

Similar Documents

Publication Publication Date Title
CN101371980B (zh) 介孔二氧化硅修饰的二氧化钛高活性光催化剂的合成方法
Colón et al. Photocatalytic behaviour of sulphated TiO2 for phenol degradation
Wang et al. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation
Liu et al. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon
Guo et al. Dye-sensitized TiO2@ SBA-15 composites: Preparation and their application in photocatalytic desulfurization
CN101293669B (zh) 锐钛矿和金红石可控相比例纳米二氧化钛粉体的制备方法
CN101371981A (zh) 磷酸表面修饰的纳米二氧化钛高活性光催化剂及合成方法
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN105217678B (zh) 一种暴露高活性晶面的锐钛型纳米二氧化钛的制备方法
CN102060330B (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN102633302B (zh) 离子液体/水介质中纤维素模板合成介孔TiO2的方法
CN103752299A (zh) 一种制备大孔空心球型氧化钛光催化材料的方法
Yoo et al. Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis
CN101015790A (zh) 可降解有机污染物的二氧化钛微球光催化剂及其制造方法
Li et al. Construction of novel amphiphilic [Bmin] 3PMo12O40/g-C3N4 heterojunction catalyst with outstanding photocatalytic oxidative desulfurization performance under visible light
CN108355693A (zh) 高效超细TiO2纳米颗粒/石墨相氮化碳纳米片复合光催化剂的制备
Pan et al. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous γ-Al2O3 support
CN109331817A (zh) 一种用于分解空气中有机物的光催化材料及制备方法
CN110354895A (zh) 一种分子筛基Ce-Mn氧化物多孔光催化剂及其制备方法和应用
Ebrahimi et al. Sono-precipitation fabrication of ZnO over modified SAPO-34 zeotype for effective degradation of methylene blue pollutant under simulated solar light illumination
CN100375649C (zh) 核壳结构可见光催化活性的纳米复合材料的制备方法
CN104549222A (zh) 一种可见光催化剂钛酸铬的制备方法及应用
CN106111100A (zh) 一种中空活性碳纤维/二氧化钛纳米复合光催化剂的制备方法
CN108043390A (zh) 纳米片Bi2WO6/SnO2催化降解液相污染物的方法
CN100389879C (zh) 一种纳米晶介孔二氧化钛光催化剂的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110216

Termination date: 20130821