CN101321810B - 将固体颗粒分散在颗粒聚合物中的方法 - Google Patents

将固体颗粒分散在颗粒聚合物中的方法 Download PDF

Info

Publication number
CN101321810B
CN101321810B CN2006800455852A CN200680045585A CN101321810B CN 101321810 B CN101321810 B CN 101321810B CN 2006800455852 A CN2006800455852 A CN 2006800455852A CN 200680045585 A CN200680045585 A CN 200680045585A CN 101321810 B CN101321810 B CN 101321810B
Authority
CN
China
Prior art keywords
particle
solvent
polymkeric substance
water
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800455852A
Other languages
English (en)
Other versions
CN101321810A (zh
Inventor
让-拉裴尔·卡耶
费尔南德·戈泰
丹尼尔·格勒塞内尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Publication of CN101321810A publication Critical patent/CN101321810A/zh
Application granted granted Critical
Publication of CN101321810B publication Critical patent/CN101321810B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种用于将固体颗粒分散在颗粒聚合物内的方法,其包括如下步骤:(a)在有机溶剂(S)内形成聚合物(P1)颗粒的溶液(OS);(b)形成固体颗粒(P2)的水分散体(AD);(c)将所述溶液(OS)与所述分散体(AD)混合以得到液体混合物(M),同时避免聚合物(P1)或颗粒(P2)的大量沉淀;(d)将所述液体混合物(M)与非溶剂(NS)混合以得到包括颗粒(P3)的浆体(SL);在步骤(b),(c)和/或(d)过程中还存在相转移剂(PTA)。

Description

将固体颗粒分散在颗粒聚合物中的方法
本申请要求于2005年12月5日提交的美国临时申请60/741913的优先权,并在此处引入作为参考。
其涉及将固体颗粒分散在聚合物中的方法。更具体地,本发明涉及一种用于将第一聚合物的固体颗粒以高度分散的方式引入第二聚合物的颗粒表面上的方法。本发明还涉及聚合物的固体颗粒,其表面上均匀地分散有另一种聚合物的固体颗粒。
塑性材料被广泛用于在众多领域中制备软性或硬性的各种成型制品,如用于建筑工业,室内装饰和汽车引擎盖下制品(bonnet articles)、航空工业、医疗行业、电子和电气行业、家用电器、包装、管道和绝缘电缆、货物运输等的材料。
对于高度工业化的应用,改进和/或调整一些塑性材料的性能(电、机械、化学、物理、热...)可能是有利的,包括工程塑料。这可通过在这些塑性材料中引入不同量的有机或无机化合物而实现,包括有机聚合物,其具有更高水平的所需性质和/或其具有待被赋予所述塑性材料的其它性质。为该目的,待被引入所述塑性材料内的有机或无机化合物的量与它们的尺寸和分散的方式有关,即,在塑性材料基质内的化合物越细和分散程度越高,它们被引入的量越小。此外,当所述有机或无机化合物的颗粒是纳米颗粒时,即颗粒尺寸低于100nm(一百纳米),这些化合物比相同组成但尺寸更大的颗粒在赋予含有所述化合物的塑性材料特定性质方面要有效得多。
通过机械方法将各种化合物和添加剂(包括有机聚合物)引入塑性材料中是公知的,如将它们在捏合机、挤出机等中熔融混合到一起。
近来,已经提出通过以下方法制备塑性材料和含氯乙烯的聚合物的共混物(参见,例如文献EP-A-1603968),所述方法通过将二者溶解在共同的(有机)溶剂内,通过在这样形成的溶液内注入相同的非溶剂而共沉淀二者和通过回收形成的共混物的固体颗粒。
这发生在无用于所述塑性材料和用于所述待与其混合或共混的化合物和/或添加剂的共同溶剂的情况。在这些情况下,提出了一种用于制备纳米粒子和聚合物的复合物的技术方案,例如,在文献WO01/48060中。根据该文献中公开的方法,将纳米粒子的液体悬浮物与聚合物-溶剂溶液混合,所述溶剂可完全与其中悬浮有所述纳米粒子的液体混溶,并且所述聚合物在所述液体内是不溶的。由纳米粒子和聚合物的均匀混合物组成的固相从所述液体中分离出。
限制该方法范围的一个问题在于需要找到能够溶解实践中感兴趣的聚合物(例如,象工程聚合物)的溶剂,且同时所述溶剂可完全与其中悬浮有纳米粒子的液体混溶。
反过来,文献EP-A-0718346描述了一种用于将固态形式的添加剂引入热塑性合成聚合物的颗粒中的方法,其包括:
提供添加剂的流体混合物;
提供聚合物树脂的溶液;
将所述添加剂混合物与聚合物树脂溶液混合;和
同时从所述混合物中除去所述流体和溶剂,从而
共沉淀来自混合物的添加剂和聚合物树脂粉末。
经常,将添加剂引入所述聚合物的速率不够高,所述添加剂在聚合物中的分散也不够均匀。
本发明的目的在于,通过提供一种以高度分散的方式和在高引入速率下将固体颗粒引入聚合物内的方法,克服这些缺点。
因而,本发明涉及一种用于将固体颗粒分散在颗粒聚合物内的方法,其包括以下步骤:
(a)在有机溶剂(S)内形成聚合物(P1)颗粒的溶液(OS);
(b)形成固体颗粒(P2)的水分散体(AD);
(c)将所述溶液(OS)与所述分散体(AD)混合以得到液体混合物(M),同时避免聚合物(P1)或颗粒(P2)的大量沉淀;
(d)将所述液体混合物(M)与非溶剂(NS)混合以得到包括颗粒(P3)的浆体(SL);
在步骤(b),(c)和/或(d)过程中还存在相转移剂(PTA)。
根据本发明方法的步骤(a),在有机溶剂(S)中形成聚合物(P1)颗粒的溶液(OS)。待被溶解在溶剂(S)中的聚合物(P1)可以是粉末或粒状的形式,即以适于加工的颗粒形式。从而,使用的粉末可以例如是来自聚合的“粗”粉末,即聚合和产品回收步骤直接得到的粉状材料。术语“粒状”是指在挤出机出口切断的聚合物的挤出料。
至少部分可溶、并优选基本溶于有机溶剂的任何聚合物均可被用作本发明步骤(a)中的聚合物(P1)。这种聚合物的例子有合成的热塑性聚合物,其包括:烃聚合物,如聚乙烯、聚丙烯、其它聚烯烃和乙烯和1-烯烃的共聚物;聚苯乙烯;聚卤代乙烯;聚偏二卤乙烯;聚丙烯酸酯,包括例如聚甲基丙烯酸甲酯;线性聚碳酰胺;聚碳亚胺(polycarbonimides),聚碳酸酯;聚氧亚烷基(polyoxyalkalenes);聚苯醚;聚对苯二甲酸亚烷基酯;聚醚酰亚胺酯;聚醚酯;芳族砜聚合物,包括例如聚砜、聚苯砜和聚醚砜;芳族醚酮聚合物,包括例如聚醚醚酮和聚醚酮酮;和任何这些聚合物的已知共混物。优选聚合物(P1)是芳族砜聚合物,更优选是聚苯砜。
所述能够部分地、且优选基本完全溶解所述聚合物(P1)的有机溶剂(S)通常选自溶解度参数(其定义和实验值可见″Properties of Polymers″,D.W.Van Krevelen,1990 Edition,pp.200-202,和″Polymer Handbook″,J.Brandrup and E.H.Immergut,Editors,Second Edition,p.IV-337 toIV-359)接近于待被溶解聚合物的溶解度参数和/或与之具有强相互作用(例如氢键)的液体。术语“接近”通常等同于“偏离不多于6个单位”(以Mpa1/2表示)。它通常是有机溶剂,优选极性溶剂如MEK(甲乙酮),与许多聚合物均产生良好的结果,特别是与卤代聚合物如PVC。理解为溶剂是指单独物质和物质混合物。特别是在连续和/或闭环循环法的情况下,所述溶剂可以是再循环液体的物流并可含有特定量的非溶剂。优选,聚合物(P1)和溶剂(S)的溶解度参数彼此之间的差不大于约4,甚至更优选不大于约1.8。在大气压力下溶剂的沸腾温度通常低于150℃,通常低于120℃。由于在本说明书下文解释的原因,这些溶剂具有一些水可混溶性可能是有利的(即,允许约5wt%的水或甚至约10wt%的水无相分离)。这对于大多数极性溶剂是实际情况,从而其是优选的。
对于聚合物(P1),适当溶剂(S)的例子包括乙酸乙酯;甲乙酮,纯的或与己烷混合;二乙基酮,N-甲基吡咯烷酮;N,N-二甲基甲酰胺;N,N-二甲基乙酰胺;二甲基亚砜;甲酚;环丁砜;甲酰胺;环己酮;等。
优选,所述溶剂选自N-甲基吡咯烷酮(NMP),N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAC),环丁砜,环己酮及其混合物。
根据本发明方法的有利实施方式,在溶液(OS)形成的过程中还存在相分离化合物(PS),其通常可与溶剂(S)相容(并与步骤(d)中使用的非溶剂(NS)不相容(参见下文))。对此的主要原因在于,考虑到聚合物(P1)和溶剂(S)的成本以及通过在环境中处理它们可产生的不利情况,希望处理在步骤(d)中混合的液体混合物(M)/非溶剂(NS)以使得可分别回收其各个组分。
在溶剂(S)/非溶剂(NS)回收和再循环过程中在步骤(d)结束时,将特定的相分离化合物(PS)加入至溶剂(S)中可促进溶剂(S)/非溶剂(NS)随后的分离时。从而所述方法变得更加灵活,能耗密度更小和更便宜。
根据本发明该有利的实施方式,所述相分离化合物(PS)定义为在步骤(d)中促进溶剂(S)/非溶剂(NS)的混合物的相分离的化合物。根据该实施方式,所述的相分离化合物(PS)可有利地与溶剂(S)混溶并与非溶剂(NS)不相混溶。从而,将基本上不存在来自所述三种化合物的混合物的分离的富非溶剂相,并且如果可将非溶剂(NS)处理到环境中(例如如果所述非溶剂(NS)是水)这可能是有利的,并且同样使得更容易得到基本上不含该溶剂的浆体(SL)。优选所述相分离化合物(PS)具有不同于待被溶解的聚合物(P1)的溶解度参数。
术语“可与溶剂(S)混溶”理解为是指通常在室温下以所有体积比例在溶剂中的可溶解性,即是指从而形成一种均匀的液相。
术语“与非溶剂(NS)不相混溶”理解为是指室温下在非溶剂中的溶解度小于5%v/v,即对于5%v/v或更高的浓度发生相分离。
所述相分离化合物(PS)优选选自具有5-10个碳原子的脂族或芳族烃,任选卤代的。通过选择甲苯作为相分离化合物(PS)得到了优异的结果,特别是当所述溶剂(S)是环己酮时。通过选择一氯代苯作为相分离化合物(PS)也得到了优异的结果,特别是当溶剂(S)是环丁砜时。
通常选择待被用于本发明方法步骤(a)的溶剂(S)的量(或溶剂/相分离剂的混合物)以防止由溶解聚合物(P1)产生的的粘度增加干扰所述方法(过滤等)的良好进行。在某些情况下,优选在溶解步骤(a)过程中,聚合物(P1)的量不超过250g/升溶剂(S)和任何相分离化合物(PS),特别是200g/l,优选100g/l。在其他的情况下,该含量可以为250g/l或更多,更具体地350g/l或更多。
本发明方法的步骤(a)通常在至少为大气压的压力下进行,更具体地至少1.5巴。该压力有利地不超出10巴,优选5巴。
本发明方法的步骤(a)通常还在至少为75℃的温度下进行,更具体地在至少100℃下;所述温度通常不超出125℃,更具体地110℃。
此外,在惰性气氛下进行所述步骤(a)会是有利的,例如在氮气下;通常这样做是为了避免任何爆炸或溶剂降解的风险。[优选本发明方法的所有步骤(a),(c)和(d)均在惰性气氛下进行]。
聚合物(P1)在溶剂(S)中的溶解通常在容器或溶解器内进行,所述容器或溶解器通常装配有适当的装置用于控制温度和压力。
根据本发明方法的步骤(b),形成固体颗粒(P2)的水分散体(AD)。“水分散体”是指所述固体颗粒(P2)被稳定地分散在水介质内,因而有利地,当将使用所述分散体时,在该时间内不会发生颗粒的沉积。
为本发明的目的,术语“颗粒”意指从几何学的观点而言,具有确定的三维体积和形状的固体材料块,其特征在于三个维度,其中所述维度中没有任何一个超出剩余的两个其他维度多于10倍。颗粒通常不是等尺寸的,即在一个方向上比其他方向更长。
颗粒(P2)可有利地是纳米粒子,即具有纳米尺寸的颗粒(即平均原始粒径小于100nm)。
适用于本发明目的的纳米粒子优选具有小于90nm的平均原始粒径,更优选小于80nm,最优选小于70nm。它们的平均原始粒径大于2nm,优选大于10nm,最优选大于20nm。
根据ISO 13321标准,可通过动态激光光散射(DLLS)技术测量“平均原始粒径”。
还应理解的是,按照ISO 13321标准的目的,术语原始颗粒的“平均粒径”意指次谐波强度-平均粒径XPCS,如通过ISO 13321附录C的方程式(C.10)确定的。
为本发明的目的,可由无机以及有机化合物组成颗粒(P2)。在有机化合物的情况下,它们可以是单体以及聚合化合物。因而,颗粒(P2)可由热塑性混合领域内使用的常规添加剂构成,如无机填料,包括粘土、滑石、氢氧化镁等;冲击改性剂;抗静电剂;抗氧化剂;增塑剂;加工助剂;稳定剂;着色剂;脱模剂;防火剂和阻燃剂,包括金属氧化物、氢氧化物和盐,磷酸三苯酯等;抗紫外线剂;无机和有机颜料,炭黑等。
颗粒(P2)也可包括不同于聚合物(P1)的有机聚合物。颗粒(P2)内包括的有机聚合物可以是任何的水可分散性聚合物。优选,根据包括至少一个在水介质内进行的步骤的聚合工艺合成所述有机聚合物。颗粒(P2)内包括的有机聚合物通常选自衍生自一种或多种烯键式不饱和单体的聚合物,以该方式合成。由其得到所述有机聚合物的烯键式不饱和单体的例子有丙烯酸单体、苯乙烯单体和卤代的烯键式不饱和单体。衍生自卤代的烯键式不饱和单体的有机聚合物是优选的。
根据本发明的方法,聚酯和聚氨酯在其他有机水可分散性聚合物的例子中是适用的。
衍生自丙烯酸单体的聚合物的例子包括衍生自烷基丙烯酸酯和甲基丙烯酸酯的聚合物,如甲基丙烯酸酯和甲基丙烯酸甲酯。
衍生自苯乙烯单体的聚合物的例子包括聚苯乙烯和苯乙烯共聚物,如包括至少一种聚苯乙烯嵌段和另一种选自烷基聚丙烯酸酯和甲基丙烯酸酯或聚乙酸乙烯酯的嵌段的嵌段共聚物。
衍生自卤代的烯键式不饱和单体的聚合物通常包括至少50wt%、优选70wt%的衍生自这类单体的单体单元。这些卤代单体优选选自氯代和氟代单体,更优选选自氟代单体。
为本发明的目的,定义“衍生自卤代单体的聚合物”包括衍生自这些单体的均聚物以及衍生自至少一种其他卤代和/或烯键式不饱和非卤代单体如乙烯、乙酸乙烯酯和丙烯酸单体的共聚物。
为本发明的目的,定义“氯代单体”包括脂肪族氯代烯键式不饱和单体和含有一个或多个氯原子作为单独的杂原子。包括一个氯原子的氯代单体的例子有烯丙基氯、巴豆基氯(crotyl chloride)和乙烯基氯。包括两个氯原子的氯代单体的例子是偏二氯乙烯。
为本发明的目的,定义“氟代单体”包括脂肪族氟代烯键式不饱和单体和含有一个或多个氟原子作为单独的杂原子。包括一个氟原子的氟代单体的例子有烯丙基氟和乙烯基氟。包括两个氟原子的氟代单体的例子是偏二氟乙烯。氟代单体的其他例子有三氟乙烯、四氟乙烯和六氟丙烯。由衍生自四氟乙烯的聚合物得到了非常好的结果。
当颗粒(P2)包括有机聚合物时,可直接通过本领域已知的方法得到在本发明方法的步骤(b)中形成的水分散体(AD),所述本领域已知的方法如分散或乳液聚合(即胶乳),任选随后浓缩和/或进一步加入表面活性剂或者可通过将干燥的含聚合物的颗粒(P2)在水中再次分散而得到,任选在适当的表面活性剂或分散剂的存在下。
如上详述的包括微乳液聚合步骤的方法特别适用于制备平均原始粒径小于100nm的含聚合物的纳米粒子(P2)的水分散体(AD)。
分散在水分散体(AD)内的颗粒(P2)的量取决于意图被分散在聚合物(P1)内的颗粒(P2)的最终量。分散在水分散体(AD)内的颗粒(P2)的量通常小于50wt%,优选小于40wt%。所述的量通常高于15wt%,优选高于25wt%。
水分散体(AD)有利地包括表面活性剂,其改进了颗粒(P2)在水介质内的分散。所述表面活性剂通常选自阴离子型表面活性剂、阳离子型表面活性剂和两性离子或两性表面活性剂。当颗粒(P2)包括通过本领域已知的方法(如分散或乳液聚合)直接得到的有机聚合物时,这些表面活性剂可以是与在所述聚合过程中任选使用的那些相同类型的表面活性剂。
阴离子型表面活性剂的例子有单或二烷基磺基琥珀酸钠;壬基苯基磷酸钠或铵;烷基羧酸钠、钾或铵;烷基硫酸钠或铵;伯或仲烷基磺酸钠;烷基芳基磺酸钠或铵,如正十二烷基苯和四丙基苯磺酸钠或铵。
这些阴离子型表面活性剂可以被烷氧基化。烷氧基化阴离子型表面活性剂的例子有乙氧基化的单烷基磺基琥珀酸钠;烷氧基化的壬基苯基磷酸钠或铵;烷基羧酸钠、钾或铵;乙氧基化的烷基硫酸钠或铵,如乙氧基化的正十二烷基硫酸钠;烷氧基化的烷基芳基磺酸盐,如烷氧基化的辛基和壬基苯磺酸盐。
阴离子型表面活性剂的其他例子有阴离子(全)氟表面活性剂,具有(全)氟聚醚或(全)氟碳结构,具有例如被铵基、或碱金属或碱土金属皂化的羧基或磺酸端基。
阳离子型表面活性剂的例子有伯和仲胺盐酸盐和季铵盐,例如,如十八烷基氯化铵、六癸基三甲基氯化铵和十八烷基三甲基氯化铵。
这些阳离子型表面活性剂可以被烷氧基化。烷氧基化的阳离子型表面活性剂的例子有乙氧基化的伯胺和仲胺盐酸盐。
阳离子型表面活性剂的其他例子有咪唑鎓和磷鎓盐。
两性表面活性剂的例子是包括羧基的表面活性剂(例如,酸性pH:-COOH/碱性pH:-COO-Na+)和胺基(例如,碱性pH:-NH2/酸性:-NH3 +Cl-)。
这些两性表面活性剂可以被烷氧基化。烷氧基化的两性表面活性剂的例子有包括乙氧基化羧基的表面活性剂(例如,酸性pH:-COOH/碱性pH:-COO-Na+)和乙氧基化胺基(例如,碱性pH:-NH2/酸性pH:-NH3 +Cl-)。
这些表面活性剂也可用于混合物中。优选阴离子型表面活性剂。其中,更优选具有皂化的羧基端基的阴离子(全)氟表面活性剂,尤其当颗粒(P2)包括衍生自氟代单体的聚合物时。在颗粒(P2)是PTFE颗粒的情况下,全氟辛酸铵得到了良好的结果。
根据本发明方法的步骤(c),将溶液(OS)与水分散体(AD)混合,以得到液体混合物(M),同时避免聚合物(P1)或颗粒(P2)的大量沉淀。
特别地,可通过:
(c-1)将溶液(OS)加入水分散体(AD)中;或者
(c-2)将水分散体(AD)加入溶液(OS)中
而完成步骤(c)。
颗粒(P2)可以是溶于溶液(OS)或不溶的;通常,颗粒(P2)在所述溶液中是不溶的。
通过剧烈搅拌所述混合物,在实施方式(c-1)或(c-2)中可避免聚合物(P1)或颗粒(P2)的过早沉淀,通过任何已知的设备或工艺提供高剪切的搅拌,例如通过机械搅拌器和/或通过气体注入等。
当根据实施方式(c-1)进行步骤(c)时,通过加入水而稀释水分散体(AD)会是有帮助的。这是适当的,例如,当颗粒(P2)是从包括微乳液聚合步骤的方法得到的水分散体(AD)形式的聚合物纳米粒子时。这可通过将水加入到水分散体(AD)内而实现,或者优选通过将水分散体(AD)加入水内。通过用一定量的与其混溶的有机溶剂(S)使所述加入的水饱和,可进一步避免聚合物(P1)的过早沉淀。然后混合所述稀释的溶液(OS)和水分散体(AD),产生由分散在水相内的有机相组成的稳定的液体混合物(M)。
当根据实施方式(c-2)进行步骤(c)时,通过用一定量的与其混溶的水使有机溶剂(S)饱和,可进一步避免聚合物(P2)的过早沉淀。然后混合溶液(OS)和水分散体(AD),产生由分散在有机相内的水相组成的稳定的液体混合物(M)。
优选根据实施方式(c-1)进行本发明方法的步骤(c)。
待被混合到一起的水分散体(AD)和溶液(OS)各自的量取决于水分散体(AD)和溶液(OS)各自的颗粒浓度,并取决于待被引入颗粒聚合物(P1)内的颗粒(P2)最终的量。
通常,将水分散体(AD)和溶液(OS)以如下比例混合到一起,即使得颗粒(P2)和聚合物(P1)[(P2)/(P1)]之间的重量比介于0.001~0.5之间,优选在0,002~0.2之间,更优选在0.01~0.1之间。
本发明方法的一个重要特征在于,在步骤(b)、(c)和/或(d)的过程中存在相转移剂(PTA)。这意味着如果在步骤(b)已经存在PTA,则它在步骤(c)和(d)中将保留,并且如果它在步骤(c)存在,则它也将在步骤(d)的过程中存在。换言之:优选,一旦将PTA加入本发明的方法中,它将保留在其中至少直到步骤(d)完成。
为本发明的目的,术语“相转移剂”必须理解为定义为任何可促进至少大部分的颗粒(P2)从分散体(AD)的水相迁移至由溶液(OS)形成的有机相的任何化合物,通过萃取它们,穿过两相之间的界面。该迁移现象应主要在本发明方法的步骤(c)过程中或在其结束时发生。因而,相转移剂(PTA)应最晚存在于本发明方法的步骤(c)的结束,即,当将溶液(OS)和分散体(AD)混合以得到液体化合物(M)时和在固体颗粒沉淀之前。
为本发明的目的,所述相转移剂(PTA)可选自多种不同的液体和固体化合物,无机以及有机的,条件是所述试剂可实现将颗粒(P2)从分散体(AD)的水相中萃取到由溶液(OS)形成的有机相内的功能。为此,PTA通常是能够与在水分散体内的颗粒(P2)相互作用的表面活性剂,以包围它们(即覆盖它们的表面),从而使得它们亲水性较小(更亲有机物质),从而这些颗粒将倾向于迁移到所述有机相(聚合物(P1)的溶液)。
在本发明的方法中主要有两种可能性:
或者:A.在分散体(AD)或在液体混合物(M)中原位产生PTA;或者
B.将PTA加入所述分散体(AD)或液体混合物(M)内。
实施方式A.得到了良好的结果,并便于在颗粒(P2)是聚合物颗粒的情况下使用,因为通常聚合物颗粒的水分散体包括离子型表面活性剂,其很容易转变为(例如通过离子交换反应)更亲有机物质的。
可在该实施方式中使用若干类型的离子型表面活性剂,例如:
(1)衍生自鎓离子的盐,如铵、亚胺鎓(iminium)、咪唑鎓、氧鎓、氟鎓、磷鎓、硫鎓、氯鎓、鉮、硒鎓(selenonium)、溴鎓、锑鎓、碲鎓、碘鎓和铋鎓(参见IUPAC Compendium of Chemical Terminology,2nd edition,1997)。那些盐的例子有:
-季铵离子的盐,即四甲基-、四丁基-、四十二烷基-、四十六烷基-、三乙基苯基-、三甲基己基铵等的盐;
-季磷鎓离子的盐,即三苯基甲基-、三苯基乙基-、三苯基正丙基-、三苯基正戊基磷鎓等的盐;
-叔硫鎓离子的盐,即三甲基硫鎓等的盐。
这些盐的反离子的例子有:卤化物、硝酸盐、氯酸盐、锰酸盐、硫酸盐、氟硼酸盐等;
(2)大环醚,即冠醚和大二环醚,例如,如18-冠-6和{2,2,2}穴合物;
(3)N-烷基磷酰胺,例如,如N-十二烷基-和N-十六烷基磷酰胺;
(4)亚甲基桥接的磷和氧化硫;
(5)聚乙二醇...
在所有这些表面活性剂中,季铵和磷鎓离子的盐是优选的,尤其是季铵离子的盐。
例如,可通过改变分散体(AD)的pH进行所述离子交换反应。通常,这可以通过进行可能的水分散体(AD)的碱度或酸度中和而进行。该碱度(各自酸度)通常由表面活性剂的特定性质赋予水分散体(AD)。然后通过以下方法得到水分散体(AD)的中和-或者向所述水分散体或者优选向由混合所述水分散体和溶液(OS)得到的液体混合物(M)中-加入适量的
Figure S2006800455852D00131
酸(在分散体(AD)为碱性的情况下)或碱(在分散体(AD)为酸性的情况下)。
本领域普通技术人员可确定加入的酸或碱的量和性质,例如通过预先测量所述水分散体(AD)和/或液体混合物(M)的pH。
如所述的,可使用任何无机或有机
Figure S2006800455852D00141
酸或碱以产生本发明的相转移剂。例如优选,当在水分散体(AD)的形成过程中使用阴离子型表面活性剂时-这是最常见的情况-使用适量的无机或有机酸。无机酸的例子有硝酸、硫酸和氢卤酸,尤其是盐酸。有机酸的例子有单羧酸如甲酸和乙酸。
相反,当在形成水分散体(AD)的过程中使用阳离子型表面活性剂时,适量的无机碱或有机碱。无机碱的例子有碱金属和碱土金属氢氧化物,尤其是氢氧化钠和氨。有机碱的例子有胺如乙胺和吡啶。
当使用无机或有机
Figure S2006800455852D00142
酸或碱通过与表面活性剂的反应产生相转移剂(PTA)时,通常或者在水分散体(AD)中或者在液体混合物(M)中引入的量不超出水相的饱和度。优选,以每摩尔水所含的摩尔数表示的所述无机或有机
Figure S2006800455852D00143
酸或碱的量介于0,001~1摩尔/摩尔之间,更优选介于0,05~0.1摩尔/摩尔之间。
至于第二种实施方式,其中PTA被加入介质中,它优选在步骤(c)的最后或在其过程中被加入。由于所述水分散体通常已经包含了如上所述的表面活性剂,这应被PTA取代,使得后者可发挥其作用。因而,在该实施方式中,PTA应是对颗粒(P2)的表面和对有机相均具有大的亲和力的表面活性剂。上述表面活性剂的酸或碱形式可起到这样的作用。
根据本发明方法的步骤(d),来自步骤(c)得到的液体混合物(M)与非溶剂(NS)混合以得到包括颗粒(P3)的浆体(SL)。在优选的实施方式中,这些颗粒(P3)包括聚合物(P1)的颗粒,所述聚合物(P1)的颗粒具有基本上完全分散在其表面上的聚合物(P2)的颗粒。
为本发明的目的,术语“非溶剂(NS)”必须理解为定义为聚合物(P1)的非溶剂,即特征在于溶解度参数(如上定义)与聚合物(P1)的溶解度参数明显不同的任何液体。术语“明显不同”必须理解为是指所述非溶剂(NS)和所述聚合物(P1)各自的溶解度参数彼此相差至少约4。
最常用的非溶剂(NS)是水和无机液体。
有利地,所述非溶剂(NS),如果自身不是水,至少部分地可与水混溶。
本领域普通技术人员可容易地确定所述非溶剂(NS)的量,以产生所述溶解的聚合物(P1)的完全沉淀。
已经成功用于本发明方法的非溶剂(NS)的例子有:
-水;
-包括水和丙酮和/或甲醇的混合物,优选水/(丙酮和/或甲醇)的体积比为1/1;
-包括丙酮和甲醇的混合物,优选体积比为1/1。
考虑到其易得性和环境因素,优选将水作为非溶剂(NS)。
根据本发明方法的步骤(d),可以液态和气态形式使用所述非溶剂(NS)[即将所述非溶剂(NS)的液相和相应的气相与液体混合物(M)混合]。已经发现,当在步骤(d)中在液态和气态形式下混合非溶剂(NS)时,有利地加速了聚合物(P1)的沉淀,尤其根据实施方式(c-2)进行步骤(c)时,并可蒸发溶剂(S)。
根据步骤(d)的另一个实施方式,通过加入非溶剂(NS)的蒸气,有利地从混合物(M)蒸馏出有机溶剂(S)。
根据实现本发明的一种优选方式,通过在低于非溶剂(NS)沸点的温度下蒸发,从混合物(M)中基本除去溶剂(S)和非溶剂(NS)。通过选择其沸点低于所述非溶剂和/或与其得到共沸混合物的物质,特别可进行该除去。
有利地,所述溶剂(S)和非溶剂(NS)形成共沸混合物。这种溶剂(S)/非溶剂(NS)混合物的示例性例子是环己酮/甲苯以90/10重量比作为溶剂(S),和任选用环己酮饱和的水作为非溶剂(NS),其中甲苯和环己酮均可在低于水沸点的温度下被蒸馏掉。
当水被用作非溶剂(NS)时,加入水蒸气有利地使得可蒸馏任何用作溶剂(S)的共沸混合物。
在某些情况下,该蒸馏流出的蒸气且包括溶剂(S)和非溶剂(NS),可在冷凝下进行相分离;这使得可容易回收并再循环溶剂和非溶剂。
从而,本发明该优选实施方式的本发明方法的显著优点在于,它可在闭环内操作而不产生废物,条件是在该方法中包括溶剂(S)的相和包括非溶剂(NS)的相均可回收并再次使用。
在本发明方法中,优选在减压下进行步骤(d)。
在所述步骤(d)之后,得到颗粒(P3)。在一些优选实施方式中,这些是具有基本上完全分散在其表面上的聚合物(P2)颗粒的聚合物(P1)的颗粒。
有利地从浆体(SL)的液体介质中分离颗粒(P3),所述介质可以是纯的非溶剂(在例如通过共沸蒸馏除去溶剂的情况下)或者是溶剂/非溶剂混合物。可通过任何已知方法除去该液体介质(蒸发、离心、过滤等...)。
本发明方法可进一步包括另外的洗涤和/或干燥来自浆体(SL)的颗粒的步骤。
来自所述浆体(SL)的分离并任选干燥后的颗粒(P3)最终有利地在连续或分批装置内熔融混合,任选与聚合物(P1)混合。所述分离和任选干燥的浆体可有利地用作母料,即浓缩的添加剂组合物,以与聚合物(P1)混合。若其被用作母料,则其有利地使得可得到包括颗粒(P2)的高度分散的组合物,优选纳米粒子(P2),和聚合物(P1)。
熔融混合装置对于本领域普通技术人员是公知的。
用于熔融混合所述来自所述浆体(SL)的分离并任选干燥的颗粒的适当连续装置的例子尤其是螺杆挤出机,所述颗粒任选与聚合物(P1)混合。从而,所述浆体,任选与聚合物(P1)和任选的其他组分(如添加剂、填料、颜料、加工助剂等)混合,被有利地进料到挤出机内并挤出。
该操作方法可被应用于:或者着眼于制备制成品如例如中空体、管道、层压物、压光制品,或者着眼于具有可用的含适当比例的所需聚合物组合物、任选的添加剂、填料、颜料、加工助剂的粒状物形式的颗粒,其有利于随后转化为制成品。以该后者的目的,所述来自浆体(SL)的颗粒有利地被挤出为股料并将所述股料切断成为粒状物。
本发明还涉及聚合物(P1)的颗粒(P3),所述聚合物(P1)的颗粒(P3)具有基本上完全分散在其表面上的聚合物(P2)的颗粒。如已经在上面解释的,取决于聚合物(P1)和颗粒(P2)的性质,上述方法使得可获得这样的颗粒,其被认为是原始的。它们通常具有几百μm范围内的尺寸,且它们表面上的颗粒(P2)的尺寸范围在几百nm的范围内。此外,当P1是无定形聚合物(如聚碳酸酯或聚砜)时,在某些情况下,本发明的方法可能使得其(至少部分地)结晶(cristalline),从而得到的颗粒容易破碎成小片(具有μm范围的尺寸)。从而,在熔融处理后,得到的共混物非常均匀(即使P1再次变为无定形的)。
将参考下面的实施例更详细地说明本发明,其目的仅在于说明而非性质本发明自身的范围。
实施例1R
该实施例的目的为进行比较。
通过在100℃下搅拌加热在2000g溶剂混合物中的200g PPSU达1小时,制得在环己酮/甲苯混合物(90/10wt/wt)内的聚苯砜溶液(OS),所述聚苯砜可以商品名RADE
Figure S2006800455852D00181
R商购自Solvay AdvancedPolymers。然后将该溶液冷却至70℃。
在装配有机械搅拌器、温度和压力调节器和水蒸气引入装置的双夹套反应器中,引入2325的脱气水和175g的环己酮,以形成非溶剂液体混合物(NS),并保持在60℃下搅拌(600rpm)。同时保持所述混合物在600rpm下搅拌,加入9.0g的聚四氟乙烯(PTFE)纳米粒子的水分散体(由在表面活性剂存在下进行的微乳液聚合得到,所述表面活性剂是以名称ALGOFLONBMP 76/2出售的全氟辛酸铵,且固含量为33.6wt%,平均原始粒径为50-60nm)。
然后通过封液管(dip tube)向保持在搅拌下的该悬浮液内加入(OS)溶液。在5分钟后完成所述加入。
然后将压力设定在400mbar,并以800mbar的ΔP注入水蒸气;馏出甲苯/水共沸混合物和随后的环己酮/水共沸混合物,并得到浆体(SL)。
然后在聚酰胺筛(75μm)上从水相过滤这样得到的浆体(SL)。在100℃减压下干燥回收产物过夜直至恒重。
包括分散在聚苯砜颗粒中的PTFE的干燥组合物其特征在于形态粗糙(颗粒的粒度分布从约2mm延伸至几μm)。
实施例2(根据本发明)
重复实施例1的步骤,除了用10ml HCl水溶液(0.1M)酸化所述混合物之外,将(OS)溶液加入基于PTFE的悬浮液中得到所述混合物,用作相转移剂(PTA),通过中和所述全氟基表面活性剂的羧酸铵部分,使得PTFE纳米粒子更具亲脂性并增强它们迁移至有机(OS)相内的能力。
所述干燥组合物包括分散在聚苯砜颗粒内的PTFE,其特征在于包括平均尺寸约100μm的颗粒的规则形态。电子显微镜法表明,这些颗粒具有在其表面上均匀分散的PTFE颗粒。
从两种样品得到的颗粒氟含量测量(利用X-射线荧光技术)表明,本发明的方法增强了PTFE纳米粒子在微粒聚苯砜聚合物中的分散,此外如所述实施例中所示改进了最终组合物的形态。

Claims (17)

1.一种用于将固体颗粒分散在颗粒聚合物内的方法,其包括如下步骤:
(a)在有机溶剂(S)内形成聚合物(P1)颗粒的溶液(OS);
(b)形成固体颗粒(P2)的水分散体(AD);
(c)将所述溶液(OS)与所述分散体(AD)混合以得到液体混合物(M),同时避免聚合物(P1)或颗粒(P2)的大量沉淀;
(d)将所述液体混合物(M)与非溶剂(NS)混合以得到包括颗粒(P3)的浆体(SL);
在步骤(b),(c)和/或(d)过程中还存在相转移剂(PTA),
其中
·所述聚合物(P1)是合成的热塑性聚合物,其选自烃聚合物、聚卤代乙烯、聚丙烯酸酯、线性聚碳酰胺、聚碳亚胺、聚碳酸酯、聚氧亚烷基、聚苯醚、聚对苯二甲酸亚烷基酯、聚醚酰亚胺酯、聚醚酯、芳族砜聚合物、芳族醚酮聚合物和任何这些聚合物的共混物;
·所述颗粒(P2)是纳米粒子,其具有如根据ISO 13321标准通过动态激光光散射(DLLS)技术测量的小于100nm的次谐波强度-平均粒径XPCS,并且选自无机填料、冲击改性剂、抗静电剂、抗氧化剂、增塑剂、加工助剂、稳定剂、着色剂、脱模剂、防火剂、阻燃剂、抗紫外线剂、无机和有机颜料和炭黑;
·所述颗粒(P3)包含聚合物(P1)的颗粒,其具有以高度分散的方式分散到其表面上的颗粒(P2);
·所述相转移剂(PTA)为能够促进至少大部分的颗粒(P2)从分散体(AD)的水相迁移至由溶液(OS)形成的有机相的化合物,通过萃取它们,穿过两相之间的界面,并且所述相转移剂(PTA)是离子型表面活性剂,选自(1)衍生自鎓离子的盐,这些盐的反离子选自卤化物、硝酸盐、氯酸盐、锰酸盐、硫酸盐和氟硼酸盐;(2)大环醚;(3)N-烷基磷酰胺;(4)亚甲基桥接的磷和氧化硫;和(5)聚乙二醇。
2.根据权利要求1所述的方法,其中在形成溶液(OS)的过程中存在相分离化合物(PS),所述相分离化合物(PS)可与所述溶剂(S)混溶但不与步骤(d)中使用的非溶剂(NS)混溶。
3.根据权利要求1或2所述的方法,其中聚合物(P1)是选自聚偏二卤乙烯的聚卤代乙烯。
4.根据权利要求1或2所述的方法,其中颗粒(P2)是纳米粒子。
5.根据权利要求1或2所述的方法,其中颗粒(P2)包括有机的水可分散聚合物。
6.根据权利要求5所述的方法,其中根据包括至少一个步骤在水介质中进行的聚合方法合成聚合颗粒(P2)。
7.根据权利要求1或2所述的方法,其中水分散体(AD)包括离子型表面活性剂。
8.根据权利要求7所述的方法,其中所述离子型表面活性剂是阴离子型表面活性剂。
9.根据权利要求1或2所述的方法,其中溶液(OS)加入水分散体(AD)中,后者用水稀释。
10.根据权利要求9所述的方法,其中所述水用一定量的可与其混溶的有机溶剂(S)饱和。
11.根据权利要求1或2所述的方法,其中非溶剂(NS)是水。
12.根据权利要求1或2所述的方法,其中有机溶剂(S)和非溶剂(NS)形成共沸混合物。
13.根据权利要求7所述的方法,其中通过包括表面活性剂的离子交换反应原位产生相转移剂(PTA)。
14.根据权利要求13所述的方法,其中表面活性剂选自季铵盐和磷鎓离子盐。
15.根据权利要求13所述的方法,其中所述离子交换反应包括无机的酸。
16.根据权利要求1或2所述的方法,其中在步骤(c)结束时或过程中将PTA加入到所述液体混合物(M)内。
17.根据权利要求1或2所述的方法,其中通过加入非溶剂(NS)的蒸气从所述液体混合物(M)中馏出有机溶剂(S)。
CN2006800455852A 2005-12-05 2006-12-04 将固体颗粒分散在颗粒聚合物中的方法 Expired - Fee Related CN101321810B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74191305P 2005-12-05 2005-12-05
US60/741,913 2005-12-05
PCT/EP2006/069240 WO2007065866A1 (en) 2005-12-05 2006-12-04 Process for dispersing solid particles in particulate polymers

Publications (2)

Publication Number Publication Date
CN101321810A CN101321810A (zh) 2008-12-10
CN101321810B true CN101321810B (zh) 2013-03-20

Family

ID=37698312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800455852A Expired - Fee Related CN101321810B (zh) 2005-12-05 2006-12-04 将固体颗粒分散在颗粒聚合物中的方法

Country Status (11)

Country Link
US (2) US20100215962A1 (zh)
EP (2) EP1960457B1 (zh)
JP (1) JP5404050B2 (zh)
KR (1) KR101409098B1 (zh)
CN (1) CN101321810B (zh)
AT (1) ATE553143T1 (zh)
CA (1) CA2630906C (zh)
ES (1) ES2388038T3 (zh)
HK (1) HK1125393A1 (zh)
IN (1) IN2008CH02766A (zh)
WO (2) WO2007065866A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275162A1 (en) * 2005-12-05 2008-11-06 Solvay (Societe Anonyme) Ptfe-Based Compositions
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US8567612B2 (en) 2008-04-15 2013-10-29 Nanoh2O, Inc. Hybrid TFC RO membranes with nitrogen additives
CA2722471C (en) 2008-05-09 2016-09-06 Solvay Advanced Polymers, L.L.C. Fire resistant, high flow poly(aryl ether sulfone) composition
EP2401318A1 (en) 2009-02-26 2012-01-04 Solvay SA Polymer composition
JP5275882B2 (ja) * 2009-04-08 2013-08-28 株式会社イノアック技術研究所 複合材料
JP5968328B2 (ja) 2010-11-10 2016-08-10 ナノエイチツーオー・インコーポレーテッド 非金属添加剤を含む改良された混成tfcro膜
CN102796379A (zh) * 2011-06-01 2012-11-28 深圳光启高等理工研究院 复合材料和基于复合材料制备基材的方法
US8932792B2 (en) * 2012-11-27 2015-01-13 Xerox Corporation Preparation of polyester latex emulsification by direct steam injection
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
EP3684848B1 (en) 2017-09-22 2021-10-27 SHPP Global Technologies B.V. Process for the manufacture of flame retardant polycarbonate particles and flame retardant polycarbonate particles prepared thereby
US11597805B2 (en) * 2019-04-10 2023-03-07 Xerox Corporation Method for producing sulfone polymer micro-particles for SLS 3D printing
KR102425311B1 (ko) * 2019-10-02 2022-07-27 한국화학연구원 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
EP4039734A4 (en) * 2019-10-02 2023-09-27 Korea Research Institute of Chemical Technology POLYMER COMPOSITE WITH ARAMID NANOFIBRE AND METHOD FOR THE PRODUCTION THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598603A1 (en) * 1992-11-17 1994-05-25 General Electric Company Method of dispersing solid additives in polymeric resins
CN1127269A (zh) * 1994-12-21 1996-07-24 通用电气公司 将固体添加剂分散于聚合物中的方法及由此制成的产品
WO2004081088A1 (fr) * 2003-03-10 2004-09-23 Solvay (Société Anonyme) Procede de fabrication d'un alliage a base de pvc

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032543A (en) * 1959-02-04 1962-05-01 Du Pont Polymerization of tetrafluoroethylene
US3993843A (en) * 1973-03-13 1976-11-23 E. I. Du Pont De Nemours And Company Aqueous dispersion of aromatic polysulfone resin with perfluorocarbon resin, and coated articles
US4169117A (en) * 1973-03-13 1979-09-25 E. I. Du Pont De Nemours And Company Aromatic polysulfone resin solution having perfluorocarbon polymer particles dispersed therein
US3981945A (en) * 1973-11-19 1976-09-21 Imperial Chemical Industries Limited Coating compositions comprising a polysulfone and a fluorocarbon polymer
US4186121A (en) * 1978-06-19 1980-01-29 E. I. Du Pont De Nemours & Company Process for obtaining colloidal dispersion of polymeric tetrafluoroethylene
JPS5889802A (ja) * 1981-11-24 1983-05-28 Matsumoto Yushi Seiyaku Kk 磁性流体の製造法
JPS58160353A (ja) * 1982-03-16 1983-09-22 Sumitomo Chem Co Ltd 樹脂組成物
JPS62109846A (ja) * 1985-11-06 1987-05-21 Daikin Ind Ltd 含フツ素共重合体粒子水性分散体ならびに含フツ素共重合体粒子オルガノゾル組成物
JP2611400B2 (ja) * 1988-12-12 1997-05-21 ダイキン工業株式会社 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
US5164426A (en) * 1989-04-15 1992-11-17 Daikin Industries Ltd. Aqueous dispersion, composite powder and organosol of fluorine-containing polymer
DE3938850A1 (de) * 1989-08-31 1991-03-07 Orpegen Med Molekularbioforsch Neue allylester und ihre verwendung zum aufbau von festphasensystemen fuer festphasenreaktionen
US5204400A (en) * 1990-06-22 1993-04-20 Amoco Corporation Poly(biphenyl ether sulfone)compositions
US5916958A (en) * 1990-04-04 1999-06-29 Amoco Corporation Flame retardant thermoplastic compositions
EP0489152A4 (en) * 1990-06-22 1992-11-25 Amoco Corporation Thermoplastic compositions containing anhydrous zinc borate and a fluorocarbon polymer
EP0535785A1 (en) * 1991-09-30 1993-04-07 Amoco Corporation Flame retardant blends of polysulfone with polycarbonate and/or polyalkylene phthalate
JP3303408B2 (ja) * 1992-07-09 2002-07-22 ダイキン工業株式会社 含フッ素樹脂複合微粒子
US5322731A (en) * 1993-03-09 1994-06-21 Minnesota Mining And Manufacturing Company Adhesive beads
JP3221142B2 (ja) * 1993-03-22 2001-10-22 ダイソー株式会社 金属微粒子の担持方法
US5504170A (en) * 1993-08-27 1996-04-02 W. L. Gore & Associates, Inc. Aqueous microemulsion polymerization of tetrafluoroethylene
JP3728702B2 (ja) * 1995-02-02 2005-12-21 オカモト株式会社 接着剤兼印刷インキおよび印刷模様付きフッ素樹脂フィルムラミネート鋼板の製造方法
US5846645A (en) * 1995-03-03 1998-12-08 Asahi Glass Company Ltd. Fluorocarbon resin-coated product
US6503988B1 (en) * 1995-11-09 2003-01-07 Daikin Industries, Ltd. Polytetrafluoroethylene fine powders and their use
JP2000128991A (ja) * 1998-10-30 2000-05-09 Dow Corning Toray Silicone Co Ltd フッ素樹脂粉末の分散性向上剤、有機樹脂改質剤および有機樹脂組成物
JP3293084B2 (ja) * 1999-02-04 2002-06-17 日新製鋼株式会社 耐熱非粘着プレコート鋼板
ES2347271T3 (es) * 1999-04-07 2010-10-27 Solvay Advanced Polymers, Llc Resinas de poli(bifenil-eter-sulfona) que tienen una resistencia mejorada al amarilleo.
FR2804119B1 (fr) * 2000-01-24 2002-12-13 Rhodia Chimie Sa Procede de preparation de melanges-maitres a base de polymere et de particules minerales et melanges-maitres ainsi obtenus
CN1209397C (zh) * 2000-02-16 2005-07-06 三洋化成工业株式会社 粒度均匀的树脂分散体、树脂粒子及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598603A1 (en) * 1992-11-17 1994-05-25 General Electric Company Method of dispersing solid additives in polymeric resins
CN1127269A (zh) * 1994-12-21 1996-07-24 通用电气公司 将固体添加剂分散于聚合物中的方法及由此制成的产品
WO2004081088A1 (fr) * 2003-03-10 2004-09-23 Solvay (Société Anonyme) Procede de fabrication d'un alliage a base de pvc

Also Published As

Publication number Publication date
JP5404050B2 (ja) 2014-01-29
WO2007065867A1 (en) 2007-06-14
EP1960457A1 (en) 2008-08-27
CA2630906A1 (en) 2007-06-14
EP1960457B1 (en) 2012-04-11
HK1125393A1 (en) 2009-08-07
ES2388038T3 (es) 2012-10-05
IN2008CH02766A (zh) 2009-03-06
CA2630906C (en) 2014-07-22
US20100215962A1 (en) 2010-08-26
US20090264594A1 (en) 2009-10-22
KR101409098B1 (ko) 2014-06-20
JP2009518488A (ja) 2009-05-07
EP1960471A1 (en) 2008-08-27
WO2007065866A1 (en) 2007-06-14
KR20080077617A (ko) 2008-08-25
ATE553143T1 (de) 2012-04-15
CN101321810A (zh) 2008-12-10

Similar Documents

Publication Publication Date Title
CN101321810B (zh) 将固体颗粒分散在颗粒聚合物中的方法
US11168205B2 (en) Composite polymer modifiers
US12018132B2 (en) Processes for recycling polystyrene waste and/or polystyrene copolymer waste
CN1997696B (zh) 溶剂处理塑料的方法
DE60117489T2 (de) Mehrfach polymere Zusatzmittel-Systeme, Verfahren und Produkte davon
CN101861352A (zh) 方法
US20040214927A1 (en) Compatible multi-functional color concentrate compositions
CN110655664A (zh) 一种高效环保低成本制备聚四氟乙烯共混物的方法及产物
CN101649184A (zh) 用于热塑性树脂的抗静电剂和抗静电树脂组合物
CN100434457C (zh) 回收溶液中聚合物的方法
CN100369958C (zh) 制备基于pvc的掺合物的方法
CN105189618A (zh) 卤代聚合物复合材料组合物、其制造方法和其用途
CN101421344B (zh) 混杂冲击改性剂及其制备方法
CN109804015A (zh) 再循环聚合物组合物
KR100377860B1 (ko) 열가소성 수지의 분체 제조 방법
JP6635483B1 (ja) 耐油性樹脂組成物及びこれを用いてなる成形品
AU2005237160B2 (en) Method of manufacturing polyelectrolyte
CN116218093A (zh) 一种聚苯乙烯组合物及其制备方法和应用
CA2458164A1 (en) Compatible multi-functional color concentrate compositions
JP2007137915A (ja) 合成樹脂組成物、その製造方法および合成樹脂成形体
JP2009096852A (ja) 樹脂成形体の製造方法及び樹脂成形体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1125393

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1125393

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130320

Termination date: 20211204