CN101313367A - 碘物质到碘化物的快速还原 - Google Patents

碘物质到碘化物的快速还原 Download PDF

Info

Publication number
CN101313367A
CN101313367A CNA2006800407295A CN200680040729A CN101313367A CN 101313367 A CN101313367 A CN 101313367A CN A2006800407295 A CNA2006800407295 A CN A2006800407295A CN 200680040729 A CN200680040729 A CN 200680040729A CN 101313367 A CN101313367 A CN 101313367A
Authority
CN
China
Prior art keywords
aqueous solution
iodine
soluble ion
ion exchanger
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800407295A
Other languages
English (en)
Other versions
CN101313367B (zh
Inventor
H·布鲁彻特-赛弗
S·古恩泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN101313367A publication Critical patent/CN101313367A/zh
Application granted granted Critical
Publication of CN101313367B publication Critical patent/CN101313367B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明的目标是提供方法和在水溶液中合适的添加剂混合物的结果数据库,其能有效和迅速地:a)在较宽的温度和pH范围内还原I2、RI和碘酸盐为非挥发性的碘化物阴离子,b)有效地结合碘化物阴离子以阻止它们潜在的再氧化成挥发性的碘物质,尤其是在较低pH和辐射下。该目标通过在水溶液中保留碘物质的方法实现,包括步骤a)在水溶液中添加亲核剂或多种亲核剂的混合物;和b)在水溶液中添加可溶性离子交换剂或多种可溶性离子交换剂的混合物。提供一种新的还原碘酸盐、分子碘以及有机碘化物为非挥发性的碘化物阴离子和进一步结合以抑制易挥发的碘的再生的方法。

Description

碘物质到碘化物的快速还原
本发明涉及在水溶液中有效保留碘的方法。
气体放射性碘,尤其131I的放射性核素,由于它容易地和几乎不可逆地进入人的甲状腺中局部致癌而造成对健康有害。因此放射性碘物质是在核发电中构成显著威胁的有害的化合物。例如,在核电站(NPP)的严重事故期间,可以预料堆芯熔化会释放气体放射性碘进入反应堆安全壳(containment)的气氛中。万一排气过滤器失灵或安全壳泄漏,放射性碘会逸入环境。此外,在常规操作期间,碘也可能从泄漏的燃料元件释放入初次冷却系统中,在沸水反应堆情况下,碘可以污染蒸汽涡轮。因此在维修期间,放射性碘可能潜在地释放入涡轮机房并随后暴露给人员。
存在许多碘化合物,但是最重要的碘物质是碘化物、碘酸盐和挥发性化合物分子碘(I2)和有机碘化物(RI)。许多有机碘化物可以潜在地在容器中形成,但是碘甲烷(CH3I)是最易挥发的。迄今为止,在核发电中没有适宜的方法来避免非故意的碘物质释放,尽管早已注意到需要俘获碘物质的事实。
因此本发明的目标是提供有效的和可靠的保留在核发电中释放作为间接损害的碘物质的方法。
这些目标依照本发明对水溶液中的碘物质进行保留的方法来实现,该方法包括步骤:a)向水溶液添加亲核剂或多种亲核剂的混合物;和b)向水溶液添加可溶性离子交换剂或多种可溶性离子交换剂的混合物。
该特征提供有效地保留碘物质的方法。通过向水溶液中添加亲核剂或亲核剂的混合物,经添加可溶性离子交换剂或可溶性离子交换剂的混合物,I2、RI和碘酸盐在很宽的温度和pH范围内还原成非挥发性的碘化物阴离子,碘化物阴离子的有效结合阻止它们的潜在的再次氧化为易挥发的碘物质,尤其在低的pH和在通常发生在核发电故障时的剧烈的辐照下。
为了提高上述方法的效率,步骤a)和b)可以同时进行。
合适的亲核剂可以选自硫代硫酸钠,Na2S2O3,N2H5OH,NH2OH,H2NC2H4SH,(NH4)2S,甲酸钠。
优选的可溶性离子交换剂可以是长链胺,更优选长链季胺。
尤其当在前提到的步骤a)和b)同时进行时,硫代硫酸钠可以用作优选的亲核剂,且三辛基甲基氯化铵可以用作优选的可溶性离子交换剂。
为使用和保养核电站零件,必需能从被污染的安全壳和设备中除去碘物质。因此在步骤a)和b)之后执行步骤c)是非常有用的,步骤c)包括用固相无机材料过滤水溶液的步骤。合适的固相无机材料可以是选自SiO2,Al2O3,TiO2和凝灰岩或其混合物。
按照本发明的方法通过保留反应堆安全壳中的碘在严重事故条件下实现控制碘源的方法及过程。目标同时还在于确保在适合固相上碘与负载添加剂间的有效结合。从而完全简化了这种放射性废料的处理。
通过适应于各自情况应用上述方法来函盖几种应用。作为第一方案可以考虑危险的损毁,例如在核电站中堆芯熔化。大量的气体化合物由于堆芯的过热而产生。这些气体化合物不得不释放到环境以免干井的爆炸。现在,这些气体化合物可以被引导到一泄压过滤器中,步骤a)和b)可以在泄压过滤器中进行。碘物质现在有效地在泄压过滤器中吸收和因此不释放入环境中。
作为发明方法应用的第二方案,可以考虑燃料棒的棒机套的泄漏。包含在反应堆压力容器中的水溶液可以根据本发明的步骤进行处理,再一次允许完全保留碘物质,例如为保养目的。然后,剧烈的辐照损坏材料并阻止碘物质。这些材料不损害现在关闭的和运转核发电系统的化学性质。
作为第三方案,再一次考虑危险的损毁,其中污染的水和气体渗透干井。因此能够在反应堆压力容器内放置亲核剂和可溶性离子交换剂。另外,为还原和结合碘物质,包含亲核剂和可溶性离子交换剂的水溶液可以被喷入反应堆压力容器中。
作为第四方案,应考虑在核电站涡轮与发生器之间在常规操作期间的情况。蒸汽通常包含一定量碘物质,其也渗透通过在涡轮和发生器之间的密封装置。当清洗涡轮和发生器之间的体积时,例如为保养目的,清洗气体包含碘物质和因此将按照本发明提出的方法进行处理。
第五方案的范围为涡轮安全壳内损坏,其会引起阀门关闭输送到涡轮的蒸汽。为了缩短衰变期,还须对涡轮安全壳进行清洗以对涡轮部件进行净化。经用清洗气体清洗涡轮安全壳,例如用空气,污染的空气可以如第四方案所解释的进行处理。
第六方案涉及蒸汽发生器内部的热交换器棒的破坏。热交换器棒构成初级冷却部分回路。因为初级冷却回路内的蒸汽在150bar压力范围下且蒸汽发生器的环境压力仅在60bar范围内,显著的压力梯度会引起初级冷却回路的蒸汽倒流入蒸汽发生器周围环境。当探测到初级冷却回路的热棒破坏时,根据本发明的处理现在会直接向第二冷却回路的水中加入亲核剂和可溶性离子交换剂。
另一个方案(第七方案)涉及直接在冷凝器内部应用根据本发明的方法以保留碘物质。冷凝水可以包含亲核剂和可溶性离子交换剂剂。
本发明的实施例和试验结果的表格在下文中论述。因此:
表1包括显示了对比性的在添加剂的混合物水溶液中CH3I分解速率的试验数据。
图1显示了实验的和预测的CH3I水解速率的温度相关性。
图2表明了辐射分触(G(-CH3I))与原始CH3I浓度的相关性。
图3表明了添加剂对CH3I分解的作用。
溶解的I2和CH3I通过引入亲核剂,例如通常使用的硫代硫酸钠(THS)迅速地分解成非挥发性的碘化物阴离子。然而,为了有效地还原溶液中的碘物质,CH3I从溶液进入气相的传质速率可以是非常有竞争性的。
我们的实验证明CH3I没有从包含硫代硫酸钠的碱液塔中的上升的气泡中完全地除掉,因为气泡停留时间(几秒)还是太短了以至不能抵偿在气泡表面上界面层中的缓慢分解。类似地,被引入未搅拌的硫代硫酸钠溶液中的大部分CH3I迅速地扩散到大气气氛中,尤其在较高温度(>120℃)下。因此我们研究了需要用亲核剂获得更快的CH3I分解速率。
为了追踪CH3I分解和检验全部的质量平衡,应用放射示踪技术,因为当预期有接近完全的分解时它能提供充分的检测灵敏度。CH3 131I是经在液体CH3I(1ml)和几滴在碱性溶液中无载体的131I示踪剂之间的同位素交换制备的。放置两天完成同位素交换之后的溶液混合物用钝性KI溶液和用几等分试样的水轻微搅拌以获得不含碘化物的CH3 131I以制备水溶液原料。
利用玻璃隔膜瓶,气体调节和采样系统进行实验。在浓度(4·10-5到1·10-3M),pH(3到9)和温度(22到90℃)范围内的CH3 131I和Cs131I水溶液与宽范围的亲核化合物,例如Na2S2O3,N2H5OH,NH2OH,H2NC2H4SH和(NH4)2S反应。也试验了其它改变辐射分解条件的添加剂,例如甲酸钠。改变CH3I/亲核试剂浓度比。也研究了可能影响CH3I分解效率和固着过程的其他的离子的效果,例如,在安全壳地坑(containment sump)中的分解电缆上的氯化物。
在预定反应时间之后,通过用两注射器针头穿透隔膜盖,易挥发的碘产物由穿过溶液的气泡除去。一个针头连到气体源,另一个连到包含用于计算活性的固体相吸附剂的燃料管(cartridge)上。一些反应溶液也在γ-光电管的0.4Gy.s-1的剂量率下辐射。
为了提高CH3I分解速率,可溶性化合物例如长链季胺(例如Aliquat 336)经添加亲核试剂来试验。它们具有两种功能:作为相转移催化剂提高亲核反应速率,及作为离子交换剂吸收反应产物(碘化物)以阻止其再次氧化。也进行试验来分别地测定反应组分即在硼酸和硼酸盐溶液中的辐射添加剂的辐射分解稳定性,也测定了辐射CH3I溶液的辐射分解效率(G-值)。也研究了长链季胺中的碳原子数目对分解速率的效果。
使用以燃料管形式的材料进行基于选择性吸附、固相萃取或离子交换的简单快速的分析方法以测定在气体及液体样品中的碘物质,即CH3I、I2、IO3 -和I-
分别在温度和剂量的宽范围内进行CH3I水解和辐射分解的专门实验以获得基线数据以通过使用添加剂来确定分解速率的相对增长。
由在PSI进行的实验而发展的根据本发明的方法,基于同时使用强还原物质和长链季胺。可优选配合使用硫代硫酸钠和商业上已知为Aliquat 336的三辛基甲基氯化铵,以提供非常迅速的CH3I分解。同时,避免了碘化物到易挥发的碘的显著辐射分解再氧化。
表1和图3显示了通过它们同时使用而导致的分解相对增强。因为Aliquat336是微溶的油质物质,浓缩物与THS浓缩物配合使用来在温度25℃到90℃和pH3到9获得最优的CH3I分解和碘化物阴离子的保留。获得的数据库表明适用于特定的NPP应用(如上方案1到7所述),其中碘通过被保留在安全壳排气过滤器、安全壳喷淋系统的溶液中及保留在地坑中而得到控制。在图1和2中分别显示了CH3I水解速率的温度相关性和辐射分解对于初始CH3I浓度的相关性的计算和测量数据。
Aliquat 336与另一个阴离子例如碳酸根或硼酸根的使用,已经证明相似的分解和吸收效率。Aliquat 336与这种还原剂的同时使用可以使得它在设备停止运行期间的应用可行,也就是说,如果碘的处理是问题的话。如果对于这种应用不希望在Aliquat 336中具有氯化物阴离子,可以制备不含氯化物的Aliquat336。因为Aliquat 336在高剂量(>1MGy)时显著地分解形成二氧化碳,当两种添加剂在正常功率操作期间不需要时(如上面方案2提到的),它作为共同添加剂的使用是不会有害的。进一步的研究表明负载碘化物的Aliquat 336吸收到选出的、市场上可买到的固相无机材料上,这有利于容易并有效地过滤以处理碘废料。
PSI研究提供一种新的还原碘酸盐、分子碘以及有机碘化物为非挥发性碘化物阴离子并进一步使其结合以抑制易挥发碘的再生的方法。试验数据可用于改善和实施各种有效的方法,以应对在NPP维修和严重的反应堆事故期间的实际问题。
Figure A20068004072900071
1在较高温度下,在反应容器的气体空间收集大量CH3I部分,其阻止它们在溶液中的分解,也就是说,这些数值可能代表最小的分解速率。
表1:在添加剂混合物的水溶液中的对比性CH3I分解速率。

Claims (8)

1.用于保留水溶液中所含的碘物质的方法,包括下列步骤:a)向水溶液中添加亲核剂或多种亲核剂的混合物;和b)向水溶液中添加可溶性离子交换剂或多种可溶性离子交换剂的混合物。
2.依据权利要求1的方法,其中步骤a)和b)同时进行。
3.依据权利要求1或2的方法,其中亲核剂选自硫代硫酸钠,Na2S2O3,N2H5OH,NH2OH,H2NC2H4SH,(NH4)2S,甲酸钠。
4.依据前述任意权利要求的方法,其中可溶性离子交换剂是长链胺。
5.依据权利要求4的方法,其中可溶性离子交换剂是长链季胺。
6.依据前述任意权利要求的方法,其中采用硫代硫酸钠作为亲核剂和三辛基甲基氯化铵作为可溶性离子交换剂。
7.依据前述任意权利要求的方法,其中步骤c)在步骤a)和b)之后进行,其包括用固相无机材料过滤水溶液的步骤。
8.依据权利要求7的方法,其中固相无机材料或其混合物选自例如基于硅石或矾土的吸收材料。
CN2006800407295A 2005-11-01 2006-08-17 碘物质到碘化物的快速还原 Expired - Fee Related CN101313367B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP05023808 2005-11-01
EP05023808.8 2005-11-01
EP05028134.4 2005-12-22
EP05028134A EP1780730A1 (en) 2005-11-01 2005-12-22 Fast reduction of iodine species to iodide
PCT/EP2006/008103 WO2007051503A1 (en) 2005-11-01 2006-08-17 Fast reduction of iodine species to iodide

Publications (2)

Publication Number Publication Date
CN101313367A true CN101313367A (zh) 2008-11-26
CN101313367B CN101313367B (zh) 2012-07-11

Family

ID=37607423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800407295A Expired - Fee Related CN101313367B (zh) 2005-11-01 2006-08-17 碘物质到碘化物的快速还原

Country Status (11)

Country Link
US (1) US8142665B2 (zh)
EP (2) EP1780730A1 (zh)
JP (1) JP4921480B2 (zh)
KR (1) KR101261667B1 (zh)
CN (1) CN101313367B (zh)
AT (1) ATE428176T1 (zh)
CA (1) CA2627743C (zh)
DE (1) DE602006006206D1 (zh)
ES (1) ES2324959T3 (zh)
SI (1) SI1943654T1 (zh)
WO (1) WO2007051503A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009550A1 (fr) * 2013-08-08 2015-02-13 Commissariat Energie Atomique Procede pour traiter et/ou inerter une solution fortement saline eventuellement contaminee
KR101523312B1 (ko) * 2013-12-03 2015-05-27 한국원자력연구원 백금족 원소를 포함하는 방사성 요오드 포집 용액 및 이를 이용한 방사성 요오드의 포집 방법
JP7456916B2 (ja) * 2020-11-05 2024-03-27 日立Geニュークリア・エナジー株式会社 ヨウ素捕集装置及び原子力構造物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767776A (en) * 1971-11-09 1973-10-23 Kerr Mc Gee Chem Corp Process for the recovery of iodine
FR2277415A1 (fr) 1974-07-03 1976-01-30 Commissariat Energie Atomique Procede d'extraction, de piegeage et de stockage de l'iode radioactif contenu dans les combustibles nucleaires irradies
US4204980A (en) 1976-01-08 1980-05-27 American Air Filter Company, Inc. Method and composition for removing iodine from gases
DE2644657A1 (de) * 1976-10-02 1978-04-20 Schulz Werner Dekontaminierung von abwaessern
DE2700952C2 (de) 1977-01-12 1979-03-15 Gesellschaft Fuer Kernenergieverwertung In Schiffbau Und Schiffahrt Mbh, 2054 Geesthacht-Tesperhude Verfahren zur Identifikation undichter Komponenten aus einem Vielkomponentensystem
US4362660A (en) * 1980-07-14 1982-12-07 The United States Of America As Represented By The United States Department Of Energy Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution
JPS57142589A (en) * 1981-02-27 1982-09-03 Hitachi Ltd Vent container
DE3108991A1 (de) * 1981-03-10 1982-09-23 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Verfahren zum abtrennen und sammeln von jod
DE3112076A1 (de) * 1981-03-27 1982-11-25 Buchler GmbH, 3300 Braunschweig Verfahren und vorrichtung zum aussondern von radiojod aus waessrigen loesungen
US4595529A (en) * 1984-03-13 1986-06-17 The United States Of America As Represented By The Department Of Energy Solvent wash solution
JPS6275380A (ja) * 1985-09-30 1987-04-07 株式会社東芝 原子炉格納容器内の有機ヨウ素発生量の抑制方法
JP2971614B2 (ja) * 1991-05-22 1999-11-08 株式会社日立製作所 原子炉格納容器減圧装置
JP2738478B2 (ja) * 1992-02-10 1998-04-08 株式会社日立製作所 放射性廃液中の放射性核種の分離方法および産業廃液中の有用または有害元素の分離方法
JPH06258479A (ja) * 1993-03-03 1994-09-16 Toshiba Corp 放射性よう素の放出抑制方法
US5619545A (en) * 1994-01-28 1997-04-08 Mallinckrodt Medical, Inc. Process for purification of radioiodides
US5632898A (en) * 1996-08-13 1997-05-27 Isis Pharmaceuticals, Inc. Method for removing unreacted electrophiles from a reaction mixture
US6596168B2 (en) * 2001-01-16 2003-07-22 Outokumpu Oyj Filter element and method for the manufacture
ATE488489T1 (de) * 2003-01-07 2010-12-15 Daiichi Sankyo Co Ltd Verfahren zur reduktiven deshalogenierung

Also Published As

Publication number Publication date
CA2627743C (en) 2010-10-05
JP4921480B2 (ja) 2012-04-25
JP2009513684A (ja) 2009-04-02
EP1943654A1 (en) 2008-07-16
KR101261667B1 (ko) 2013-05-06
DE602006006206D1 (de) 2009-05-20
WO2007051503A1 (en) 2007-05-10
EP1943654B1 (en) 2009-04-08
US8142665B2 (en) 2012-03-27
EP1780730A1 (en) 2007-05-02
ES2324959T3 (es) 2009-08-20
US20090127202A1 (en) 2009-05-21
SI1943654T1 (sl) 2009-08-31
ATE428176T1 (de) 2009-04-15
CN101313367B (zh) 2012-07-11
CA2627743A1 (en) 2007-05-10
KR20080064196A (ko) 2008-07-08

Similar Documents

Publication Publication Date Title
US4512921A (en) Nuclear reactor cooling system decontamination reagent regeneration
CN101313367B (zh) 碘物质到碘化物的快速还原
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
Nerisson et al. Volatilization and trapping of ruthenium under a loss of cooling accident on high level liquid waste (HLLW) storage tanks in reprocessing plants
Jones Tritium issues in commercial pressurized water reactors
JP2012242092A (ja) 放射性セシウム含有汚染水の処理方法
Zabaluev Management of radionuclides from reprocessing plant gaseous effluents
EP0261662A2 (en) Method for removal of iodine in gas
Fukasawa et al. Influences of impurities on iodine removal efficiency of silver alibina adsorbent
Rao et al. Separation of cobalt from synthetic intermediate and decontamination radioactive wastes using polyurethane foam
JP2006194738A (ja) 加圧水型原子力発電プラントの一次冷却水系脱塩塔のスルホン酸型陽イオン交換樹脂の性能評価方法
Moore Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities
CA1250378A (en) Method of removing carbon-14 from particulate, ion exchange resin
Vijayan et al. Technology perspectives on the management of spent-resin wastes generated from nuclear power reactor operations
JP2022074625A (ja) ヨウ素捕集装置及び原子力構造物
Evans Effect of Service on Retention of Iodine by Activated Carbon
d'Entremont High-Level Waste System Process Interface Description
Collins et al. Iodox process tests in a transuranium element production campaign
Bruchertseifer et al. Experiments on the retention of the fission product iodine in nuclear reactor accidents
Mattus Study of the Potential Impact of Gamma-Induced Radiolytic Gases on Loading of Cesium Onto Crystalline Silicotitanate Sorbent at ORNL's High Flux Isotope Reactor
Miyamoto et al. Development of wet-oxidation treatment system for filter backwash sludge and ion exchange resins
KR20230098285A (ko) 음이온성 방사성핵종의 선택적 제거를 위한 방법
Forsberg Theoretical analysis and preliminary experiments on the feasibility of removing CO 2 containing 14 C selectively with a Ca (OH) 2 slurry from a 85 Kr-contaminated HTGR reprocessing plant off-gas stream
LaPointe et al. Control of Radioactive Material at Shippingport
Bujna et al. Monitoring liquid radioactive waste discharges released from nuclear power plant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120711

Termination date: 20170817