CN101241998B - 燃料电池系统 - Google Patents

燃料电池系统 Download PDF

Info

Publication number
CN101241998B
CN101241998B CN2008100829870A CN200810082987A CN101241998B CN 101241998 B CN101241998 B CN 101241998B CN 2008100829870 A CN2008100829870 A CN 2008100829870A CN 200810082987 A CN200810082987 A CN 200810082987A CN 101241998 B CN101241998 B CN 101241998B
Authority
CN
China
Prior art keywords
fuel
fuel cell
thermal medium
temperature
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100829870A
Other languages
English (en)
Other versions
CN101241998A (zh
Inventor
松林孝昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005285040A external-priority patent/JP4986432B2/ja
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN101241998A publication Critical patent/CN101241998A/zh
Application granted granted Critical
Publication of CN101241998B publication Critical patent/CN101241998B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

一种燃料电池系统及其运转方法,所述燃料电池系统包括燃料电池组、在将由燃料电池组排出的冷却水冷却后向燃料电池组投入而使冷却水循环时所必需的配管及循环泵、利用与冷却水的热交换将燃料加湿的燃料加湿器、利用与冷却水的热交换将空气加湿的空气加湿器、控制部,该控制部在系统停止时,使冷却水的循环继续进行,直至给定的冷却停止条件成立为止。所述燃料电池组包括层叠体,该层叠体是组合以下部件而形成的,即,在电解质膜的一面上接合了阳极而在电解质膜的另一面上接合了阴极的膜电极接合体、设置了向阳极供给燃料的燃料流路的燃料流路平板、设置了向阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了冷却水所流过的冷却水流路的冷却水流路平板。

Description

燃料电池系统 
本申请是申请号为200510127186.8、申请日为2005年11月30日、发明名称为燃料电池系统及其运转方法的发明专利申请的分案申请。 
技术领域
本发明涉及燃料电池系统,具体来说,涉及用于防止由起动和停止的循环造成的燃料电池的劣化的燃料电池系统。 
背景技术
虽然已经进入了IT、生物等新技术被以世界规模展开的时代,然而即使处于此种状况下,能源工业作为最大级别的主干产业的情况仍未改变。最近,伴随着以防止地球变暖为首的环境意识的渗透,对于所谓的新能源的期待逐渐提高。新能源由于除了环境性以外,还可以与电能需求者接近而以分散型生产,因此在送电损失方面和电能供给的安全方面都有优势。另外,还可以期待新能源的开发创造出新的周边产业的附属的效果。对于新能源的热衷是以大约30年前的石油危机为契机而正式化,现在,以太阳光发电等可再生能源、废弃物发电等循环能源、燃料电池等高效率能源及净能为代表的新领域能源等能源各自处于面向实用化的开发的阶段。 
这当中,燃料电池是在业界中最受关注的能源之一。燃料电池是使天然气或甲醇等与水蒸气反应而产生的氢与大气中的氧发生化学反应,同时生成电和热的装置,由发电形成的副产物仅为水,即使在低输出区域中也是高效率,而且发电不受气候影响,十分稳定。特别是固体高分子型燃料电池在以居住用为首的固定型、车载用或者携带用等用途中被看作下一代的一个标准电源。 
(第1课题) 
在将燃料电池实用化方面,在反复进行起动停止的运转中的耐久性提高成为研究课题,提出过用于防止燃料电池的劣化的停止方法。 
[专利文献1]特开2002-093448号公报 
[专利文献2]特开2005-071778号公报 
类似专利文献1那样的停止方法中,在停止燃料电池系统时,通过在停止了含氧气体的供给的状态下使单元电池发电,进行消耗阴极侧的氧的氧消耗处理,来实现燃料电池的耐久性的提高。但是,此种方法中,在将燃料电池停止保管期间,因氢从阳极经电解质层扩散,或者经过电解质层扩散来的质子被借助冷却水等发生短路而流过的电流(泄漏电流)还原,在阴极中产生氢,因此所产生的氢和残留的氧反应,从而有可能如式(1)所示产生过氧化氢,或发生如式(2)所示的燃烧反应。过氧化氢具有分解电解质的作用,另外燃烧反应会使催化剂、电解质劣化,引起燃料电池的劣化。 
[化1] 
H2+O2→H2O2...  (1) 
[化2] 
H2+1/2O2→H2O...(2) 
另外,类似专利文献1及2那样的停止保管方法中,在燃料系统的停止中,由于向阴极侧冲入惰性气体,因此就需要向燃料电池供给惰性气体的机构,从而有系统变得大型化的问题。 
(第2课题) 
在类似固体高分子型燃料电池那样的供给加湿了的反应气体而发电的燃料电池中,起动时的稳定性也是重要的课题。 
固体高分子型燃料电池通过在固体高分子电解质膜的一方的面上接合阳极(燃料极)、在另一方的面上接合阴极(空气极)而一体化形成单元电池(膜电极接合体),用在与阳极相面对的面上设置了凹槽状的燃料流路的平板、在与阴极相面对的面上设置了凹槽状的氧化剂流路的平板夹持单元电池而层叠多个,在两个端部添加端板,用贯穿螺栓紧固而构成燃料电池组。此外,使燃料(氢或氢主体的重整气体)在燃料流路中流通,并且使氧化剂(通常为空气)在氧化剂流路中流通,通过夹隔固体高分子电解质膜引起电化学反应而产生直流电能。 
在此种固体高分子型燃料电池中,由于固体高分子电解质膜在饱和湿 润状态下恰当地发挥作用,因此在将反应气体(燃料及/或氧化剂)用加湿器等加湿后使之流过平板的流路,这样就会将固体高分子电解质膜保持在饱和湿润状态。另外,虽然固体高分子型燃料电池的动作温度约为80℃,但是由于电化学反应为放热反应,因此在发电中温度上升。为了防止该情况,一般在燃料电池组内装入冷却平板,使冷却水流过其通道,从而将燃料电池组保持在动作温度。 
在使固体高分子型燃料电池动作的以往的燃料电池系统中,在系统停止时停止冷却水的流动(参照专利文献3)。 
[专利文献3]特开2004-296340号公报 
当在系统停止时停止冷却水的流动,使燃料电池组自然冷却时,则由于燃料电池组从其外侧开始依次冷却,因而在燃料电池组内产生温差。燃料电池组内的水蒸气由于从温度低的场所开始先结露,因此在自然冷却的过程中各单元电池内的水分布改变。这样,在下次起动时反应气体向各单元电池的分配就变得不均匀,发电时的各单元电池电压变得不稳定,在一部分的单元电池中反应气体不足而劣化。或者,有无法正常地起动,保护功能起动而停止的情况。另外,当由配管连接的燃料加湿器或空气加湿器的温度(水温)高于电池温度时,则由于即使停止反应气体的供给,蒸气也会从燃料加湿器或空气加湿器向电池扩散,在电池内结露,由此也会使电池内的水分布改变。同样地,会有如下的情况,即,在下次起动时,反应气体向各单元电池的分配变得不均匀,引起单元电池的劣化或系统停止。 
发明内容
实施方式1是鉴于所述第1课题而完成的,其目的在于,不追加新的机构(装置),通过改良燃料电池系统的运转方法,防止由起动和停止的循环造成的燃料电池的劣化。 
实施方式2是鉴于所述第2课题而完成的,其目的在于,提供使起动燃料电池系统时的输出稳定化的技术。 
(实施方式1) 
为了达成针对所述第1课题的目的,实施方式1的某个方式是,具备 从原燃料重整为含有氢的燃料的重整装置、利用所述燃料发电的燃料电池的燃料电池系统的运转方法,其特征是,在起动所述燃料电池系统时,包括向所述燃料电池供给比通常的运转时含有更多的一氧化碳的所述燃料的一氧化碳供给步骤。这里,所谓原燃料是指含有氢原子的烃类的燃料等,具体来说,可以举出一般家庭中所铺设的LPG或城市煤气或者甲醇等醇类。 
根据所述方式,由于将一氧化碳浓度高的燃料向燃料电池的阳极供给,因此一氧化碳就会吸附于阳极的催化剂(特别是铂)上而阻碍从阳极生成质子。所以,就可以抑制由泄漏电流造成的阴极上的氢生成以及向阴极供给氧化剂时的氢和氧的直接反应或过氧化氢生成。这样,就可以防止燃料电池的劣化。 
在所述方式中,其特征是,包括:从比所述燃料电池的通常的发电温度更低的温度开始所述燃料电池的发电的发电开始步骤。所谓燃料电池的通常的发电温度是指,例如如果燃料电池为固体高分子型燃料电池,则为70~80℃,比通常的发电温度更低的温度是至少低10℃的60℃以下,优选45℃以下。 
根据本实施方式,由于燃料电池的温度低,因此供给燃料时的一氧化碳的催化剂覆盖率提高,催化剂活性降低,由此就可以抑制由泄漏电流造成的阴极上的氢生成。另外,由于当燃料电池的温度低时,氢、氧的在电解质中的扩散速度低,因此渗透(crossover)被抑制。另外,由于燃料电池温度低,因此过氧化氢生成或燃料反应的反应速度也变低。这样,就可以进一步提高所述方式的效果。 
实施方式1的其他方式是燃料电池系统的运转方法,其特征是,在将所述燃料电池系统停止时,包括:将所述燃料电池冷却至比所述燃料电池的通常的发电温度更低的温度的燃料电池冷却步骤、被设定于所述燃料电池冷却步骤的后段的将所述燃料电池的发电停止的发电停止步骤。这里,固体高分子型燃料电池的情况下的所谓通常的发电温度是指70~80℃,比通常的发电温度更低的温度是指至少低10℃,即60℃以下,优选45℃以下。 
根据所述方式,在将所述燃料电池系统停止时,由于在将燃料电池冷 却后,停止燃料电池的发电,因此就可以抑制在停止了发电后氢、氧在电解质中扩散而渗透的情况。这样,就可以防止燃料电池的劣化。 
在所述方式中,提供具备从原燃料重整为含有氢的燃料的重整装置、利用所述燃料发电的燃料电池的燃料电池系统的运转方法,在将所述燃料电池系统停止时,也可以包括:向所述燃料电池供给比通常运转时含有更多一氧化碳的所述燃料的一氧化碳供给步骤、将所述燃料电池冷却至比所述燃料电池的通常的发电温度更低的温度的电池冷却步骤、被设定于所述电池冷却步骤的后段的将所述燃料电池的发电停止的发电停止步骤。 
根据该方式,在停止燃料电池系统时,由于将一氧化碳浓度高的燃料向燃料电池的阳极供给,因此一氧化碳就吸附于阳极的催化剂上,在将燃料电池系统停止期间,即使氧流入阳极,氧也会被消耗于将吸附于催化剂上的一氧化碳氧化的过程之中。所以,阳极的电位上升被抑制,可以防止催化剂劣化,特别是可以防止钌的氧化。另外,一氧化碳吸附于阳极催化剂上,特别是吸附于铂上,阻碍了从阳极生成质子,从而可以抑制由泄漏电流造成的阴极上的氢的生成以及氧流入阴极时氢和氧的直接反应或过氧化氢生成反应。这样,就可以防止燃料电池的劣化。 
实施方式1的其他的方式是燃料电池系统的运转方法,其特征是,在将所述燃料电池系统停止时,包括:将所述燃料电池的发电停止的发电停止步骤、被设定于所述发电停止步骤的后段的将燃料电池冷却至比所述燃料电池的通常的发电温度更低的温度的电池冷却步骤。这里,对于固体高分子型燃料电池的情况,所谓通常的发电温度是指70~80℃,比通常的发电温度更低的温度是指至少低10℃的温度,即60℃以下,优选45℃以下。 
根据所述方式,在将燃料电池系统停止时,由于在停止发电后不是将燃料电池自然冷却,而是强制性地冷却,因此就可以抑制在停止了发电后氢、氧在电解质中扩散而渗透的情况。这样就可以防止燃料电池的劣化。 
在所述方式中,是具备从原燃料重整为含有氢的燃料的重整装置、利用所述燃料发电的燃料电池的燃料电池系统的运转方法,在将所述燃料电池系统停止时,也可以包括:向所述燃料电池供给比通常的运转时含有更多的一氧化碳的所述燃料的一氧化碳供给步骤、将所述燃料电池的发电停止的发电停止步骤、被设定于所述发电停止步骤的后段的将燃料电池冷却至比所述燃料电池的通常的发电温度更低的温度的电池冷却步骤。 
根据该方式,在将燃料电池系统停止时,由于将一氧化碳浓度高的燃料向燃料电池的阳极供给,因此一氧化碳吸附于阳极的催化剂上,在将燃料电池系统停止期间,即使氧流入阳极,氧也被消耗于将吸附于催化剂上的一氧化碳氧化的过程之中。所以,阳极的电位上升被抑制,可以防止催化剂劣化,特别是可以防止钌的氧化。另外,一氧化碳吸附于阳极催化剂上,特别是吸附于铂上,阻碍了从阳极生成质子,从而可以抑制由于泄漏电流而在阴极上生成氢以及氧流入阴极时氢和氧的直接反应或过氧化氢生成反应。这样,就可以防止燃料电池的劣化。 
(实施方式2) 
为了达成针对所述第2课题的目的,实施方式2的某个方式是包括燃料电池组、使热介质循环的机构、燃料加湿机构、氧化剂加湿机构、控制机构;其中所述燃料电池组包括层叠体,该层叠体是组合以下部件而形成的,即,在电解质膜的一面上接合了阳极而在电解质膜的另一面上接合了阴极的膜电极接合体、设置了向阳极供给燃料的燃料流路的燃料流路平板、设置了向阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了热介质所流过的热介质流路的热介质流路平板;所述使热介质循环的机构,是在将由燃料电池组排出的热介质冷却后向燃料电池组投入而使热介质循环的机构;所述燃料加湿机构利用与热介质的热交换来调整燃料的温度;所述氧化剂加湿机构利用与热介质的热交换来调整氧化剂的温度;所述控制机构,在系统停止时,在将燃料电池的发电停止后继续热介质的循环,直至给定的冷却停止条件成立为止。 
而且,燃料流路平板、氧化剂流路平板及热介质流路平板并不限定为各自为不同构件,例如如下的构成也包含于本发明中,即,通过在平板的一面上设置燃料流路,在另一面上设置热介质流路,而用一个构件来实现燃料流路平板和热介质流路平板。 
根据所述构成,由于通过在燃料电池的发电停止后也使热介质流过燃料电池组,可以抑制在各单元电池的温度分布中产生偏差,因此各单元电池的水分布的偏差就被抑制。其结果是,下次起动时的各单元电池的发电量均匀化,可以实现输出的稳定化。 
实施方式2的其他的方式的特征是,包括燃料电池组、使热介质循环 的机构、燃料加湿机构、氧化剂加湿机构、控制机构;其中所述燃料电池组包括层叠体,该层叠体是组合以下部件而形成的,即,在电解质膜的一面上接合了阳极而在电解质膜的另一面上接合了阴极的膜电极接合体、设置了向阳极供给燃料的燃料流路的燃料流路平板、设置了向阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了热介质所流过的热介质流路的热介质流路平板;所述使热介质循环的机构,是在将由燃料电池组排出的热介质冷却后向燃料电池组投入而使热介质循环的机构;所述燃料加湿机构利用与热介质的热交换来调整燃料的温度;所述氧化剂加湿机构利用与热介质的热交换来调整氧化剂的温度;所述控制机构,当运转停止信号被输入所述燃料电池系统时,使所述热介质的循环继续进行,并且继续燃料电池的发电,直至给定的冷却停止条件成立,在给定的冷却停止条件成立时停止燃料电池的发电。 
根据所述构成,由于在停止了发电后可以抑制氢、氧在电解质中扩散而渗透所引起的劣化,并且可以抑制各单元电池的水分布的偏差,因此下次起动时的各单元电池的发电量均匀化,可以实现输出的稳定化。 
在所述构成中,控制机构也可以按照在从系统停止工序开始起直至给定的冷却停止条件成立时的期间,使由燃料电池组排出的热介质的温度与向燃料电池组投入的热介质的温度的温差达到给定的范围的方式,来调节热介质的循环量。这样,就可以使燃料电池组内的各单元电池的水分布进一步均匀化。 
在所述构成中,控制机构也可以将由燃料电池组排出的热介质的温度低于由外界空气温度的函数确定的值的情况作为冷却停止条件来设定。另外,控制机构也可以将从系统停止后起经过了给定时间的情况作为冷却停止条件来设定。这样,通过在适度的期间内结束热介质的循环,就可以降低电能消耗。 
而且,将所述的各要素适当地组合了的方式也应当包含于发明的范围中。 
附图说明
图1是示意性地表示实施方式1的燃料电池系统的构成的系统构成图。 
图2是表示实施例1的燃料电池系统的运转方法的流程图。 
图3是表示实施例2的燃料电池系统的运转方法的流程图。 
图4是表示实施例3的燃料电池系统的运转方法的流程图。 
图5是表示实施方式2的燃料电池系统的整体构成的图。 
图6是表示强制冷却时的温度变化的图表。 
图7是表示自然冷却时的温度变化(比较例)的图表。 
图8是表示强制冷却后将系统起动时的单元电池电流及各单元电池的电压的变化的图表。 
图9是表示自然冷却后将系统起动时的单元电池电流及各单元电池的电压的变化(比较例)的图表。 
具体实施方式
(实施方式1) 
下面将使用附图对本实施方式的燃料电池系统的运转方法进行说明。首先,图1是示意性地表示燃料电池系统1100的构成的系统构成图。 
燃料电池系统1100具备:将LPG或城市煤气等原燃料(烃类燃料)重整而生成含有大约80%的氢(燃料)的重整气体的重整装置1010、利用由重整装置1010供给的重整气体和空气中的氧(氧化剂)进行发电的燃料电池1030、将由重整装置1010或燃料电池1030等中产生的热以热水(40℃以上的水)这样的形式进行热回收并贮存的贮存热水装置1050,是具有发电功能和供给热水功能这两方面的热电联供系统。 
家庭中所铺设的LPG或城市煤气等原燃料通常作为针对气体泄漏的安全对策被用硫化物附加了臭味,然而由于该硫化物会使重整装置1010内的催化剂劣化,因此在重整装置1010中,首先要利用脱硫器1012将原燃料中的硫化物除去。被脱硫器1012脱硫后的原燃料继而被与水蒸气混合,被重整器1014进行水蒸气重整,导入转化器1016。此后,利用转化器1016,生成氢约80%、二氧化碳约20%、一氧化碳1%以下的重整气体,在向容易受到一氧化碳的影响的低温(100℃以下)下运转的燃料电池1030供给重整气体的本燃料电池系统1100中,继而混合重整气体和氧,利用CO除去器1018将一氧化碳选择性地氧化。利用CO除去器1018, 就可以将重整气体中的一氧化碳浓度设为10ppm以下。 
所谓重整装置1010至少包括重整器1014和转化器1016,在像本燃料电池系统1100那样,将在家庭中所铺设的气体作为原燃料的情况下,则还包括脱硫器1012,在作为燃料电池1030使用类似固体高分子型燃料电池那样的低温类型的燃料电池1030的情况下,则还包括CO除去器1018。 
由于水蒸气重整为吸热反应,因此在重整器1014中设有燃烧器1020。在重整装置1010起动时,也向该燃烧器1020供给原燃料,将重整器1014升温。详细情况将在后面叙述,如果要使燃料电池系统1100能够稳定地运转,则通过停止向燃烧器1020供给原燃料,将从燃料电池1030中排出的未反应的燃料向燃烧器1020供给,而向重整器1014供给热。利用燃烧器1020向重整器1014供给了热后的排出气体由于还具有很多的热量,因此该排出气体被在热交换器HEX01、HEX02中与贮存热水罐1052内的水进行热交换。此后,该水与来自燃料电池1030的阴极1032的排出气体进行热交换(HEX03),继而与来自阳极1034的排出气体也进行热交换(HEX04),返回贮存热水罐1052。在穿过该热交换器HEX01、HEX02、HEX03、HEX04的水配管1054中,为了可以利用穿过了热交换器HEX04后的水(热水)的温度来进行阴极侧加湿罐1038的升温或冷却,而设有分支配管1056。在燃料电池系统1100的起动时等阴极侧加湿罐1038的温度较低时,水穿过了热交换器HEX04后,穿过分支配管1056而用热交换器HEX05向阴极侧加湿罐1038供给热,之后返回贮存热水罐1052。 
该阴极侧加湿罐1038也作为冷却水罐发挥作用,阴极侧加湿罐1038内的水将燃料电池1030冷却后返回阴极侧加湿罐1038。如上所述,在燃料电池系统1100的起动时等燃料电池1030的温度较低时,通过将利用热交换器HEX05加热了的冷却水向燃料电池1030供给,也可以将燃料电池1030加热。另外,冷却水所穿过的冷却水通路1040被与设于阳极侧加湿罐1042上的热交换器HEX06连接,冷却水还起到将阴极侧加湿罐1038和阳极侧加湿罐1042的温度基本上设为相同温度的作用。 
来自重整装置1010的重整气体在该阳极侧加湿罐1042中被加湿(本燃料电池系统1100的情况为鼓泡)而被向阳极1034供给。在阳极1034中未参与发电的未反应的燃料被从燃料电池1030中排出而向燃烧器1020 供给。该燃料电池1030通常按照在70~80℃的范围中发电的方式运转,由于从燃料电池1030中排出的排出气体具有80℃左右的热量,因此在如上所述地在热交换器HEX04中进行了热交换后,继而在热交换器HEX07中,将向阴极侧加湿罐1038及阳极侧加湿罐1042供给的水升温后,向燃烧器1020供给。 
被向阴极侧加湿罐1038及阳极侧加湿罐1042供给的水由于最好为导电率低、有机物的混入少的洁净的水,因此在将来自上水的水用水处理装置1090实施利用反渗透膜和离子交换树脂进行的水处理后供给。另外,实施了该水处理的水也被用于重整器1014的水蒸气重整中。上水也被向贮存热水罐1052供给,而此时上水被从贮存热水罐1052的下部供给。另外,水配管1054也从贮存热水罐1052的下部引出温度低的水,将与各热交换器进行了热交换的水送回上部。 
HEX10为全热交换器。由于含有在阴极1032中未参与发电的未反应的氧的排出气体,含有80℃左右的热量和因反应而生成的生成水,因此利用全热交换器HEX10对向阴极1032供给的空气供给热量和水分。向阴极1032供给的空气继而在阴极侧加湿罐1038中被加湿(本燃料电池系统1100的情况为鼓泡)后被向阴极1032供给,另一方面,在全热交换器HEX10中供给了热量和水分的排出气体继而在热交换器HEX03中与水进行热交换后,被向燃料电池系统1100的外部排出。 
当将此种燃料电池系统1100起动时,以往是将重整装置1010升温,并且将燃料电池1030升温,当满足了从CO除去器1018中出来的重整气体的一氧化碳浓度在10ppm以下、燃料电池1030的温度在70℃以上的条件后,开始向燃料电池1030的重整气体的供给,然后开始了空气的供给。另外,在进行停止时,燃料电池系统1100一接受到停止信号就立即停止燃料电池1030的发电,然后依照空气、重整气体的顺序停止供给。 
以往的起动方法中,当在燃料电池1030被升温至70℃,电解质中的气体扩散速度大,一氧化碳吸附于催化剂上时的覆盖率低,催化剂的活性高的状态下,首先向阳极1034供给重整气体时,氢即从阳极向阴极扩散,并且在阳极氢变为质子而向阴极1032移动。当冷却水等穿过那里而流过泄漏电流时,在阴极1032中即生成氢。接下来当向阴极1032供给空气时, 由于在阴极1032中会引起直接燃烧或过氧化氢的生成,因此就有阴极1032或固体高分子膜1033劣化的问题。另外,以往的停止方法中,与起动时相同,有如下的问题,即,在阴极1032中引起直接燃烧或过氧化氢的生成,或在停止期间,空气特别是氧从外部或阴极1032侵入阳极1034,在阳极1034中也引起直接燃烧或过氧化氢的生成。所以,对于在将燃料电池系统1100起动时,或者在停止期间,使得燃料电池1030不劣化的运转方法,将在以下作为实施例而进行说明。 
[实施例1] 
图2是表示本燃料电池系统1100的运转方法(起动方法)的流程图。如图2所示,当运转开始信号被输入燃料电池系统1100(S11)时,即开始重整装置1010及燃料电池1030的升温(S12R、S12F)。当重整装置1010的升温结束(S13R)时,重整装置1010即开始重整(S14R),然而如果是以往的情况,则从重整装置1010中出来的重整气体中所含的一氧化碳浓度直至稳定在10ppm以下才向燃料电池1030供给。但是,本实施方式中,在重整装置1010的升温结束(S13R)后,开始重整(S14R),在重整气体中的一氧化碳浓度较高的状态下(例如100ppm)开始重整气体向燃料电池1030的供给(S15)。 
另一方面,如果是以往情况,则在开始向燃料电池1030供给重整气体时,将按照燃料电池的温度达到70℃以上的方式升温,然而本实施方式中,在开始重整气体向燃料电池1030的供给(S15)时,燃料电池1030的温度被升温至40±10℃左右即可(S13F),与之对应,开始燃料电池1030的升温(S12F)的时刻也不需要与开始重整装置1010的升温(S12R)的时刻同时。 
在开始了重整气体向燃料电池1030的供给(S15)后,开始空气向燃料电池1030的供给(S16),在确认开路电压(S17)后开始燃料电池1030的发电(S18)。即,燃料电池1030将从30~50℃左右开始发电。 
通过利用如上所示的流程起动燃料电池系统1100,就可以期待如下的作用。(1)由于在比通常发电的温度更低的温度下开始供给重整气体,因此氢、氧的向电解质(固体高分子膜33或阴极1032及阳极1034中所含的电解质)的扩散速度低,因而渗透被抑制。(2)在开始燃料电池1030 的发电前,由于将一氧化碳浓度高于通常的组成的重整气体向阳极1034供给,因此一氧化碳就吸附于阳极1034的催化剂(特别是铂)上而阻碍阳极34中的质子的生成。所以,就可以抑制由泄漏电流造成的阴极32中的氢生成以及向阴极1032供给空气时的氢与氧的直接反应或过氧化氢生成反应。(3)当开始燃料电池1030的发电时,由于阳极1034的电位上升而一氧化碳被氧化,因此就不需要将吸附了的一氧化碳除去的操作,而且由于利用过电压的增加和一氧化碳的氧化反应而发热,因此有助于电池升温速度上升。(4)虽然有因一氧化碳的影响而使电压变得不稳定的情况,然而该情况下,在开始燃料电池1030的发电时,如果将少量的空气添加到重整气体中,使吸附于阳极1034的催化剂表面的一氧化碳氧化,则可以提高稳定性。(5)在提高重整气体中所含的一氧化碳浓度时,可以通过选择减少向CO除去器1018的空气供给量、降低CO除去器1018的温度、升高转化器1016的温度、降低重整器1014的温度或降低向重整器1014供给的原燃料量和水蒸气量的比(S/C)的方法当中的至少一个来实现,或者由于在重整装置1010的升温结束后,在变为稳定状态之前,一氧化碳浓度高,因此也可以利用它。另外,为了防止重整装置1010的热平衡被破坏,也可以使此种提高一氧化碳浓度的手段周期性地变动。作为其他的方法,也可以减少向燃料电池供给的燃料,提高燃料利用率。当提高燃料利用率时,由于在重整器1014的燃烧器1020中燃烧的未反应的燃料减少,因此重整器1014的温度降低。另外,即使在燃料组成相同的情况下,由于伴随着在阳极中氢被消耗,沿着燃料的流动方向CO浓度逐渐提高,因此与燃料利用率低的情况相比,燃料利用率高的情况下,燃料下游侧的CO浓度变高。(6)在将燃料电池系统1100起动时,由于重整装置1010并未完全地(稳定地)开动,可以从一氧化碳浓度高的状态开始燃料电池1030的发电,因此根据本实施方式的起动方法,可以缩短燃料电池发电系统1100的起动中所用的时间。而且,当起动初期的燃料电池温度小于40℃时,虽然燃料电池输出降低,然而由于对起动没有妨碍,因此不一定需要将燃料电池升温。 
[实施例2] 
图3是表示本燃料电池系统1100的运转方法(停止方法)的流程图。 如图3所示,当运转停止信号被输入燃料电池系统1100(S21)时,就将燃料电池1030的温度冷却至40℃左右(S22)。通过将燃料电池1030冷却,电解质中的气体扩散速度低,一氧化碳吸附于催化剂上时的覆盖率高,催化剂的活性变为较低的状态。即使供给相同量的重整气体及空气,虽然燃料电池1030的发电量降低,然而燃料电池1030在被充分冷却后停止发电(S23)。此后,在停止了燃料电池1030的发电后,依照空气(S24)、重整气体的顺序停止向燃料电池1030的供给(S25)。此时,在向燃料电池系统1100输入了运转停止信号后,将一氧化碳浓度高(例如100ppm以上)的重整气体向燃料电池1030供给。而且,为了降低阴极的残留氧量,也可以在停止空气供给后停止发电,其后停止燃料供给。 
通过利用如上所示的流程来停止燃料电池系统1100,可以期待如下的作用。(1)由于在比通常发电的温度更低的温度下进行重整气体的供给停止,因此氢、氧在电解质中的扩散速度低,因而渗透被抑制。(2)由于在停止燃料电池1030的发电前,提高重整气体中的一氧化碳浓度,使一氧化碳吸附于催化剂上,因此在将燃料电池系统1100停止期间,即使空气流入阳极1034,空气中的氧也会被消耗于将吸附于催化剂上的一氧化碳氧化之中,阳极1034的电位上升被抑制,从而可以防止催化剂劣化,特别是可以防止钌的氧化。(3)由于在停止燃料电池1030的发电之前,将一氧化碳浓度高于通常的组成的重整气体向阳极1034供给,因此一氧化碳就吸附于阳极1034的催化剂(特别是铂)上而阻碍从阳极1034生成质子。所以,就可以抑制由泄漏电流造成的阴极1032中的氢生成以及空气(氧)流入阴极1032时的氢与氧的直接反应或过氧化氢生成反应。(4)当开始燃料电池1030的发电时,由于阳极1034的电位上升而一氧化碳被氧化,因此就不需要将吸附了的一氧化碳除去的操作,另外,由于利用过电压的增加和一氧化碳的氧化反应而发热,因此有助于电池升温。(5)在提高重整气体中所含的一氧化碳浓度时,可以通过选择减少向CO除去器1018的空气供给量、降低CO除去器1018的温度、升高转化器1016的温度、降低重整器1014的温度或降低向重整器1014供给的原燃料量和水蒸气量的比(S/C)的方法当中的至少一个来实现,另外,此种提高一氧化碳浓度的手段也可以是为了防止重整装置1010的热平衡偏移,而使其周期性 地变动。作为其他的方法,也可以减少向燃料电池供给的燃料,提高燃料利用率。 
[实施例3] 
图4是表示本燃料电池系统1100的运转方法(停止方法)的流程图。如图4所示,当运转停止信号被输入燃料电池系统1100(S31)时,就将燃料电池1030的发电停止(S32),此后,依照空气(S33)、重整气体的顺序停止向燃料电池1030的供给(S34)。此后,将燃料电池1030的温度冷却至40℃左右(S35)。通过将燃料电池1030冷却,电解质中的气体扩散速度低,一氧化碳吸附于催化剂上时的覆盖率高,催化剂的活性变为较低的状态。另外,也可以在向燃料电池系统1100输入了运转停止信号后,将一氧化碳浓度高(例如100ppm以上)的重整气体向燃料电池1030供给,在发电一定时间后停止发电。另外,为了降低阴极的残留氧量,也可以在停止空气供给后停止发电,其后停止燃料供给。 
通过利用如上所示的流程来停止燃料电池系统1100,可以期待如下的作用。(1)由于在发电停止后不久将燃料电池强制性地冷却,因此与不进行强制冷却的情况相比,氢、氧在电解质中的扩散速度降低,因而发电停止后的渗透被抑制。(2)由于在停止燃料电池1030的发电前,提高重整气体中的一氧化碳浓度,使一氧化碳吸附于催化剂上,因此在将燃料电池系统1100停止期间,即使空气流入阳极1034,空气中的氧也会被消耗于将吸附于催化剂上的一氧化碳氧化之中,阳极1034的电位上升被抑制,从而可以防止催化剂劣化,特别是可以防止钌的氧化。(3)由于在停止燃料电池1030的发电之前,将一氧化碳浓度高于通常的组成的重整气体向阳极1034供给,因此一氧化碳就吸附于阳极1034的催化剂(特别是铂)上而阻碍从阳极1034生成质子。所以,就可以抑制由泄漏电流造成的阴极1032中的氢生成以及空气(氧)流入阴极1032时的氢与氧的直接反应或过氧化氢生成反应。(4)当开始燃料电池1030的发电时,由于阳极1034的电位上升而一氧化碳被氧化,因此就不需要将吸附了的一氧化碳除去的操作,另外,由于利用过电压的增加和一氧化碳的氧化反应而发热,因此有助于电池升温。(5)在提高重整气体中所含的一氧化碳浓度时,可以通过选择减少向CO除去器1018的空气供给量、降低CO除去器1018的温 度、升高转化器1016的温度、降低重整器1014的温度或降低向重整器1014供给的原燃料量和水蒸气量的比(S/C)的方法当中的至少一个来实现。另外,为了防止重整装置1010的热平衡破坏,也可以使此种提高一氧化碳浓度的手段周期性地变动。作为其他的方法,也可以减少向燃料电池供给的燃料,提高燃料利用率。 
(实施方式2) 
以下将使用附图对实施方式2进行说明。图5表示实施方式2的燃料电池系统10的整体构成。燃料电池系统10具备:燃料电池组20、燃料供给机构30、燃料加湿器40、空气供给机构50、空气加湿器60、热介质用热交换器70、配管80、控制阀86、循环泵90及控制部100。 
燃料电池组20包括组合如下部件而形成的叠层体,即,在高分子电解质膜的一方的面上接合了阳极而在电解质膜的另一方的面上接合了阴极的膜电极接合体、设置了向阳极供给燃料的燃料流路的燃料流路平板、设置了向阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了热介质所流过的热介质流路的热介质流路平板。燃料电池组20可以采用公知的构成,作为其典型例,可以举出特开2004-185938的图1及图2所示的构成,或者特开2004-185934号的图1所示的构成。在本实施方式的燃料电池组20中,发电中所使用的燃料及空气以及在阳极及/或阴极的冷却中所使用的热介质的流动的方向采用重力方向的平行流。本实施方式中,虽然作为热介质使用水,但是只要可以实现热的交换,也可以使用其他的液体或气体。下面将被作为热介质使用的水称作冷却水。 
燃料供给机构30是供给成为燃料的氢的机构。例如,燃料供给机构30主要由贮存天然气或甲烷气体等烃类气体的燃料罐、从由燃料罐供给的烃类气体中除去硫成分的脱硫器及将脱硫后的烃类气体重整而取出氢的重整装置构成。 
燃料加湿器40将由燃料供给机构30供给的燃料加湿。具体来说,燃料加湿器40包括燃料加湿罐42及燃料用热交换器44,使用被加入燃料加湿罐42并被燃料用热交换器44升温了的水,利用鼓泡方式将燃料加湿,使燃料的相对湿度成为100%RH。 
空气供给机构50是供给包含成为氧化剂的氧的空气的机构。例如, 空气供给机构50由输入外界空气气体的鼓风机及根据需要设置的气体过滤器构成。 
空气加湿器60将由空气供给机构50供给的空气加湿。具体来说,空气加湿器60包括空气加湿罐62,使用被加入到空气加湿罐62中的水,利用鼓泡方式将空气加湿,使空气的相对湿度成为100%RH。 
热介质用热交换器70利用与外界空气气体等的热交换,降低由燃料电池组20排出的冷却水的温度。利用热介质用热交换器70,可以有效地降低由燃料电池组20排出的冷却水的温度。 
配管80具备能够实现如下的冷却水的循环的构成,即,流过设于燃料电池组20中的热介质流路而排出的冷却水可以被再次向热介质流路供给。具体来说,由燃料电池组20排出的冷却水首先被导向热介质用热交换器70,在设于热介质用热交换器70的下游的分支点82处,以给定的分配比分支为朝向燃料加湿器40的支线、朝向空气加湿器60的支线。由燃料电池组20排出的冷却水的一部分流过燃料加湿器40所具有的燃料用热交换器44,由燃料电池组20排出的冷却水的剩余部分被直接向空气加湿器60供给。流过燃料用热交换器44后的冷却水与在空气加湿器60的上流流过所述的朝向空气加湿器60的支线的冷却水在合流点84处合流。合流后的冷却水在流过了空气加湿器60的空气加湿罐62后,被从空气加湿器60中排出。循环泵90抽提从空气加湿器60中排出的冷却水,作为给定的水量的冷却水送入燃料电池组20。 
控制阀86是设于分支点82与合流点84之间的可以改变开闭度的阀。通过调节控制阀86的开度,就可以修正冷却水的分配比。而且,控制阀86的设置并非不可缺少,在根据运转条件不需要修正冷却水的分配比的情况下就不需要设置。 
控制部100除了控制燃料电池组20的发电量以外,还调节控制阀86的开度、循环泵90来控制冷却水的水量。另外,控制部100根据需要,控制来自燃料供给机构30的燃料供给量及来自空气供给机构50的空气供给量。 
(系统停止时的动作) 
对燃料电池系统10的系统停止时的动作进行说明。以下的说明中, 将设于燃料电池组20中的冷却水的入口附近的温度称作冷却水入口温度(T1),将设于燃料电池组20中的冷却水的出口附近的温度称作冷却水出口温度(T2)。另外,将被燃料加湿器40加湿了的燃料的温度称作加湿燃料温度(T3),将被空气加湿器60加湿了的空气的温度称作加湿空气温度(T4)。另外,将设于燃料电池组20中的燃料的入口附近的露点称作燃料露点(T5),将设于燃料电池组20中的空气的入口附近的露点称作空气露点(T6)。而且,T1、T2、T3、T4、T5及T6根据需要由未图示的温度传感器计测,所计测的值被发送给控制部100。 
控制部100在系统停止时,在继续维持利用循环泵90进行的冷却水的循环的状态下,切断负载电流,停止燃料电池的发电。冷却水的循环被持续至后述的冷却水停止条件成立为止。然后,控制部100停止来自燃料供给机构30的燃料的供给及来自空气供给机构50的空气的供给。对于燃料的供给停止和空气的供给停止的顺序,哪个在前面都可以,也可以同时将两者停止。控制部100在燃料电池的发电停止后判定冷却停止条件是否成立。作为冷却停止条件,例如可以举出电池温度、冷却水出口温度(T2)、加湿燃料温度(T3)或加湿空气温度(T5)的任意一个达到了设定温度的条件。此时,设定温度例如由(外界空气温度+5)℃这样的外界空气温度的函数来决定。此外,作为冷却停止条件,也可以采用从发电停止后经过了一定时间的条件。通过根据此种冷却停止条件的成立来停止冷却水的循环,就可以在实现各单元电池的水分布的均匀化的同时,降低电能消耗。 
而且,控制部100在发电停止后的冷却水循环时,也可以使用循环泵90来调节冷却水的水量,以使得冷却水出口温度(T2)和冷却水入口温度(T1)的差达到给定温度,例如2℃以下。这样,由于燃料电池组20内的冷却水的流动方向的温度分布变得平稳,因此就可以使得在各单元电池内的水分布中难以产生差别。 
图6是表示在发电停止后继续冷却水循环时(以下称作强制冷却)的温度变化的图表。另外,图7是表示与发电停止的同时停止冷却水循环而进行自然冷却时(以下称作自然冷却)的温度变化(比较例)的图表。温度的计测是在电池表面的2个部位、燃料加湿器40的表面及空气加湿器60的表面共4个点进行的。其结果是,在强制冷却时,确认从发电停止后 1小时以内,各温度并未产生偏差,迅速地降低至40℃以下。另一方面,在自然冷却时,即使从系统停止后经过了4小时以上,各温度仍保持在40℃以上,并且在各温度中并未观察到偏差。 
图8是表示在强制冷却后起动系统时的单元电池电流及各单元电池的电压的变化的图表。另外,图9是表示在自然冷却后起动系统时的单元电池电流及各单元电池的电压的变化(比较例)的图表。在自然冷却后的系统起动后的各单元电池电压中,并未观察到偏差。在自然冷却时,由于从燃料电池组20的外侧开始依次冷却,因此在燃料电池组20内产生温差。燃料电池组20内的水蒸气由于首先从温度低的场所结露,因此在自然冷却的过程中各单元电池内的水分布改变。这样,在下次起动时反应气体向各单元电池的分配就变得不均匀,发电时的各单元电池电压变得不稳定。另外,当由配管80连接的燃料加湿器40或空气加湿器60的温度(水温)高于电池温度时,由于即使停止反应气体,蒸气也会从燃料加湿器40或空气加湿器60向燃料电池组20扩散,在燃料电池组20内结露,由此也会使燃料电池组20内的水分布改变。 
另一方面,在强制冷却后的系统起动后的各单元电池电压中,并未观察到类似比较例那样的偏差,输出很稳定。这被认为是因为,通过在发电停止后也继续冷却水循环,就抑制了在冷却的过程中在燃料电池组20内产生温差的情况,结果燃料电池组20内的水分布就变得均匀。另外,由于通过在发电停止后仍继续冷却水循环,使燃料加湿器40或空气加湿器60与燃料电池组20的温度同等程度地推移,因此就抑制了蒸气从燃料加湿器40或空气加湿器60向燃料电池组20扩散的情况,这也成为输出稳定化的要因。 
本实施方式并不限定于所述的实施方式,也可以基于本领域技术人员的知识增加各种设计变更等变形,增加了此种变形的实施方式也应当包含于本实施方式的范围中。 
例如,在所述的实施方式中,虽然在发电停止后开始冷却,然而也可以先开始冷却,在燃料电池的温度达到比通常的发电温度更低的温度后停止发电,根据给定的冷却停止条件的成立来停止冷却水的循环。另外,也可以根据给定的冷却条件的成立来停止发电,并且停止冷却水的循环。此 时,当系统停止工序开始时的燃料电池输出大时,如果在降低输出的同时进行冷却,则可以缩短停止工序的时间。 
另外,在所述的实施方式中,虽然在发电停止后燃料及空气的供给也被切断,然而为了减少阴极的残留氧量,也可以在减少空气供给,提高空气利用率后停止发电,或者在停止空气供给后停止发电,其后停止燃料供给。作为其他的方法,为了提高阳极的CO浓度,也可以减少向燃料电池供给的燃料,提高燃料利用率后停止发电,或者在停止燃料供给后停止发电,其后停止空气供给。另外,也可以在提高空气利用率及燃料利用率后停止发电,或者停止空气供给及燃料供给,其后停止发电。 
利用这些方法,就可以抑制由发电停止后的反应气体渗透造成的劣化,可以进一步提高燃料电池的耐久性及输出的稳定性。而且,在任意的情况下,为了保护单元电池,最好在至少一个单元电池的电压或者由多个单元电池构成的单元电池块的电压达到给定的值以下的时刻停止发电。 
根据以上所说明的本发明,可以防止燃料电池的劣化。另外,可以提高燃料电池系统起动时的输出稳定性。 
本发明可以用于向阳极供给重整气体的类型的燃料电池中。另外,本发明可以用于类似固体高分子型燃料电池那样的供给加湿了的反应气体而进行发电的燃料电池中。 

Claims (8)

1.一种燃料电池系统,包括燃料电池组、燃料加湿机构、氧化剂加湿机构、使热介质循环的机构、控制机构,其中:
所述燃料电池组包括层叠体,该层叠体是组合以下部件而形成的,即,在电解质膜的一面上接合了阳极而在所述电解质膜的另一面上接合了阴极的膜电极接合体、设置了向所述阳极供给燃料的燃料流路的燃料流路平板、设置了向所述阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了热介质所流过的热介质流路的热介质流路平板;
所述燃料加湿机构利用与所述热介质的热交换来调整所述燃料的温度;
所述氧化剂加湿机构利用与所述热介质的热交换来调整所述氧化剂的温度;
所述使热介质循环的机构,是将由所述燃料电池组排出的热介质在冷却后与所述燃料加湿机构以及所述氧化剂加湿机构进行热交换并向所述燃料电池组投入而使热介质循环的机构;
所述控制机构,在系统停止时,在负载电流切断之后,使所述热介质的循环持续至规定的冷却停止条件成立,
所述使热介质循环的机构在所述负载电流切断后,通过使所述热介质循环而使燃料加湿机构的温度或空气加湿机构的温度与燃料电池组的温度同等程度地推移。
2.一种燃料电池系统,包括燃料电池组、燃料加湿机构、氧化剂加湿机构、使热介质循环的机构、控制机构,其中:
所述燃料电池组包括层叠体,该层叠体是组合以下部件而形成的,即,在电解质膜的一面上接合了阳极而在所述电解质膜的另一面上接合了阴极的膜电极接合体、设置了向所述阳极供给燃料的燃料流路的燃料流路平板、设置了向所述阴极供给氧化剂的氧化剂流路的氧化剂流路平板、设置了热介质所流过的热介质流路的热介质流路平板;
所述燃料加湿机构利用与所述热介质的热交换来调整所述燃料的温度;
所述氧化剂加湿机构利用与所述热介质的热交换来调整所述氧化剂的温度;
所述使热介质循环的机构,是将由所述燃料电池组排出的热介质在冷却后与所述燃料加湿机构以及氧化剂加湿机构进行热交换并向所述燃料电池组投入而使热介质循环的机构;
所述控制机构,在系统停止时,使所述热介质的循环持续至规定的冷却停止条件成立,并持续所述燃料或所述氧化剂的至少一方的供给,在规定的冷却停止条件成立时切断所述负载电流,
所述使热介质循环的机构通过使所述热介质循环而在切断所述负载电流之前使燃料加湿机构的温度或空气加湿机构的温度与燃料电池组的温度同等程度地推移。
3.根据权利要求1所述的燃料电池系统,其特征是,所述控制机构按照在从停止所述燃料电池的发电直至给定的冷却停止条件成立的期间,使由所述燃料电池组排出的热介质的温度与向燃料电池组投入的热介质的温度的温差达到给定的范围的方式,来调节热介质的循环量。
4.根据权利要求2所述的燃料电池系统,其特征是,所述控制机构在运转停止信号被输入所述燃料电池系统时,按照在直至给定的冷却停止条件成立的期间,使由所述燃料电池组排出的热介质的温度与向燃料电池组投入的热介质的温度的温差达到给定的范围的方式,来调节热介质的循环量。
5.根据权利要求1所述的燃料电池系统,其特征是,所述控制机构将由所述燃料电池组排出的热介质的温度低于由外界空气温度的函数确定的值的情况作为所述冷却停止条件来设定。
6.根据权利要求2所述的燃料电池系统,其特征是,所述控制机构将由所述燃料电池组排出的热介质的温度低于由外界空气温度的函数确定的值的情况作为所述冷却停止条件来设定。
7.根据权利要求1所述的燃料电池系统,其特征是,所述控制机构将从停止所述燃料电池的发电开始起经过了给定时间的情况作为所述冷却停止条件来设定。
8.根据权利要求2所述的燃料电池系统,其特征是,所述控制机构在运转停止信号被输入所述燃料电池系统时,将经过了给定时间的情况作为所述冷却停止条件来设定。
CN2008100829870A 2004-11-30 2005-11-30 燃料电池系统 Expired - Fee Related CN101241998B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004347668A JP4467415B2 (ja) 2004-11-30 2004-11-30 燃料電池システム
JP2004-347668 2004-11-30
JP2004347668 2004-11-30
JP2005285040 2005-09-29
JP2005-285040 2005-09-29
JP2005285040A JP4986432B2 (ja) 2005-09-29 2005-09-29 燃料電池システムの運転方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101271868A Division CN100405650C (zh) 2004-11-30 2005-11-30 燃料电池系统的运转方法

Publications (2)

Publication Number Publication Date
CN101241998A CN101241998A (zh) 2008-08-13
CN101241998B true CN101241998B (zh) 2011-03-16

Family

ID=36634253

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA2008100829885A Pending CN101241999A (zh) 2004-11-30 2005-11-30 燃料电池的运转方法
CNB2005101271868A Expired - Fee Related CN100405650C (zh) 2004-11-30 2005-11-30 燃料电池系统的运转方法
CN2008100829870A Expired - Fee Related CN101241998B (zh) 2004-11-30 2005-11-30 燃料电池系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CNA2008100829885A Pending CN101241999A (zh) 2004-11-30 2005-11-30 燃料电池的运转方法
CNB2005101271868A Expired - Fee Related CN100405650C (zh) 2004-11-30 2005-11-30 燃料电池系统的运转方法

Country Status (2)

Country Link
JP (1) JP4467415B2 (zh)
CN (3) CN101241999A (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041388A (ja) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 燃料電池システム
JP5298500B2 (ja) * 2006-11-06 2013-09-25 富士電機株式会社 燃料電池発電装置の停止方法及び燃料電池発電装置
KR100813275B1 (ko) 2007-01-23 2008-03-13 삼성전자주식회사 연료전지 시스템 및 그 운영방법
JP2008190741A (ja) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd 加湿器及び燃料電池システム
JP2008190743A (ja) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd 加湿器及び燃料電池システム
JP5138324B2 (ja) * 2007-05-21 2013-02-06 株式会社荏原製作所 改質器及び燃料電池システム
JP4847946B2 (ja) 2007-12-28 2011-12-28 三菱鉛筆株式会社 シャープペンシル
KR100986525B1 (ko) 2008-02-25 2010-10-07 현대자동차주식회사 증발냉각식의 연료전지 시스템과 그 냉각방법
JP5613374B2 (ja) * 2009-01-22 2014-10-22 パナソニック株式会社 燃料電池システム
JP2010232065A (ja) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd 固体高分子形燃料電池システムおよびその停止方法
JP6573149B2 (ja) * 2015-02-25 2019-09-11 株式会社Ihi 燃料電池発電装置と方法
CN107681177A (zh) * 2017-08-14 2018-02-09 中国东方电气集团有限公司 一种燃料电池系统及包括其的交通工具
CN111326772B (zh) * 2018-12-14 2022-03-04 中国科学院大连化学物理研究所 一种基于广谱燃料的燃料电池系统及其运行方法
WO2020230417A1 (ja) * 2019-05-14 2020-11-19 パナソニックIpマネジメント株式会社 水素システム
JP7434142B2 (ja) * 2020-12-18 2024-02-20 株式会社東芝 燃料電池システムの運転方法及び燃料電池システム
CN113764706B (zh) * 2020-12-31 2023-03-21 厦门大学 一种具有主动循环系统的二次燃料电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463474A (zh) * 2001-05-23 2003-12-24 松下电器产业株式会社 燃料电池发电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142138A (ja) * 2001-10-31 2003-05-16 Matsushita Electric Ind Co Ltd 燃料電池発電装置
US7192669B2 (en) * 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
JP4003130B2 (ja) * 2003-01-30 2007-11-07 富士電機ホールディングス株式会社 燃料電池発電装置とその運転方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463474A (zh) * 2001-05-23 2003-12-24 松下电器产业株式会社 燃料电池发电系统

Also Published As

Publication number Publication date
JP2006156252A (ja) 2006-06-15
CN101241998A (zh) 2008-08-13
CN101241999A (zh) 2008-08-13
CN100405650C (zh) 2008-07-23
CN1783562A (zh) 2006-06-07
JP4467415B2 (ja) 2010-05-26

Similar Documents

Publication Publication Date Title
CN101241998B (zh) 燃料电池系统
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
JP5149261B2 (ja) 燃料の脱硫方法
JP4491653B2 (ja) 燃料電池システム及びその発電方法
US8158287B2 (en) Fuel cell
US8883370B2 (en) Fuel cell system operated with liquid gas
CN111525164B (zh) 燃料电池再生控制方法及燃料电池系统
JPH09312167A (ja) 燃料電池発電装置およびその運転方法
US20070154752A1 (en) Starting up and shutting down a fuel cell stack
JP2002539586A (ja) 燃料電池及びその低温起動方法
CN101682065B (zh) 燃料电池系统及其运行方法
JP5127395B2 (ja) 燃料電池発電システム
CN102177086A (zh) 氢生成装置、燃料电池系统以及氢生成装置的运行方法
EP1998398A2 (en) Method and apparatus for fueling a solid oxide fuel cell stack
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
US8343678B2 (en) Fuel cell system to preheat fuel cell stack
US8455146B2 (en) Rapid start-up and operating system for a fuel cell power plant utilizing a reformate
JPS6282660A (ja) りん酸型燃料電池の停止方法
JP2007165130A (ja) 燃料電池システム及び燃料電池システムの制御方法
GB2405028A (en) Method and device for operating an immediate temperature solid oxide fuel cell
JP2000185901A (ja) 改質装置および燃料電池システム
CA2991562A1 (en) Fuel cell system
US20070298292A1 (en) Regenerating an adsorption bed in a fuel cell-based system
JP2012221934A (ja) 燃料電池モジュール
JP2001006710A (ja) 燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20080813

Assignee: Eneos Celltech Co. Ltd.

Assignor: Sanyo Electric Co., Ltd.

Contract record no.: 2012990000848

Denomination of invention: Working medium gas moistener for fuel battery system

Granted publication date: 20110316

License type: Exclusive License

Record date: 20121126

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract

Assignee: Eneos Celltech Co. Ltd.

Assignor: Sanyo Electric Co., Ltd.

Contract record no.: 2012990000848

Date of cancellation: 20130926

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20080813

Assignee: JX Nippon Oil & Energy Corp.

Assignor: Sanyo Electric Co., Ltd.

Contract record no.: 2013990000624

Denomination of invention: Working medium gas moistener for fuel battery system

Granted publication date: 20110316

License type: Exclusive License

Record date: 20130926

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract

Assignee: JX Nippon Oil & Energy Corp.

Assignor: Sanyo Electric Co., Ltd.

Contract record no.: 2013990000624

Date of cancellation: 20140506

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110316

Termination date: 20201130