JP2008041388A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008041388A
JP2008041388A JP2006213183A JP2006213183A JP2008041388A JP 2008041388 A JP2008041388 A JP 2008041388A JP 2006213183 A JP2006213183 A JP 2006213183A JP 2006213183 A JP2006213183 A JP 2006213183A JP 2008041388 A JP2008041388 A JP 2008041388A
Authority
JP
Japan
Prior art keywords
oxidant gas
humidifier
fuel cell
fuel
gas humidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213183A
Other languages
English (en)
Inventor
Susumu Hatano
進 波多野
Susumu Kobayashi
晋 小林
Yoshiteru Nagao
善輝 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006213183A priority Critical patent/JP2008041388A/ja
Publication of JP2008041388A publication Critical patent/JP2008041388A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池に供給するガスの加湿に要するエネルギーを削減することによりシステム全体のエネルギー効率を向上せせるとともに、システムのコンパクト化、システム動作の安定化、低コスト化が図れた燃料電池システムを提供する。
【解決手段】燃料ガス加湿器20と、第1の酸化剤ガス加湿器22と第2の酸化剤ガス加湿器21とを備え、燃料ガス加湿器20は、排出燃料ガスに含まれる水分を燃料電池11の発電時の熱を冷却する冷却水の温水で加温して加湿を行い、第1の酸化剤ガス加湿器22は排出酸化剤ガスに含まれる水分を利用して加湿を行い、第2の酸化剤ガス加湿器21は冷却水の温水を用いて加湿を行うものであり、さらに、加湿装置51は燃料ガス加湿器20と第1の酸化剤ガス加湿器22と第2の酸化剤ガス加湿器21を一体化構成する。
【選択図】図1

Description

本発明は、燃料電池を用いて発電と熱供給を行う燃料電池システムに関するものである。
燃料電池システムは、燃料電池において、燃料ガスとして供給される水素リッチなガスと、酸化剤ガスとして供給される空気等とを反応させることにより、電力及び熱を発生させることで知られている。
前記燃料ガス及び酸化剤ガスは、それぞれ加湿手段によって加湿された後に、燃料電池に供給される。前記燃料ガス及び酸化剤ガスの加湿手段としては、例えば、ヒータにより加熱された温水中に燃料ガス及び酸化剤ガスを通して加湿を行うバブラーがある(例えば、特許文献1参照)。
一方、燃料電池の空気極側から排出される排出空気(オフガス)に含まれる水分(水蒸気)を、水蒸気透過膜を介して前記燃料電池の空気極側に供給する空気に移動させ、それにより供給空気の加湿を行う加湿装置が知られている(例えば、特許文献2参照)。
この加湿装置は、高温の排出空気を用いて加湿を行うことにより、加湿に要するエネルギーの低減化を図るものである。
特開平7−288134号公報 特開平6−132038号公報
しかしながら、上記特許文献1に記載の加湿手段は、前記バブラーにおいて、水を加熱するためにエネルギーを消費するため、燃料電池システムのエネルギー効率の低下を招くものである。
また、上記特許文献2に記載の加湿装置は、被加湿ガス(ここでは加湿される供給空気)を、加湿ガス(ここでは水分の供給元となる排出空気)以上の露点温度に加湿することができず、また、被加湿ガスを高露点温度まで加湿するには、大きな膜面積の水蒸気透過膜が必要となり、よって、加湿装置の規模が大きくなるものである。
したがって、かかる加湿装置は、燃料電池システムのコンパクト化が困難となるものであった。
本発明は、上記従来の燃料電池システムが有する課題を解決するもので、燃料電池に供給するガスの加湿に要するエネルギーを削減することにより、システム全体のエネルギー効率を向上させるとともに、システムのコンパクト化、システム動作の安定化、低コスト化及び製造時の品質向上が図れた燃料電池システムを提供することを目的とする。
上記課題を解決するために、本発明に係わる燃料電池システムは、燃料電池に供給される供給燃料ガスを加湿する燃料ガス加湿器と、同様に前記燃料電池に供給される供給酸化剤ガスを加湿する酸化剤ガス加湿装置を備えた構成において、前記燃料ガス加湿器は、前記燃料電池からの排出燃料ガスに含まれる水分を、前記燃料電池の発電時の熱を冷却する冷却水の温水で加温して加湿を行い、また前記酸化剤ガス加湿装置は第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を備えた構成とし、さらに、前記第1の酸化剤ガス加湿器は前記燃料電池からの排出酸化剤ガスに含まれる水分を利用して加湿を行い、前記第2の酸化剤ガス加湿器は前記燃料電池の発電時の熱を冷却する冷却水の温水を用いて加湿を行うものとし、さらに、前記燃料ガス加湿器と前記第1の酸化剤ガス加湿器と前記第2の酸化剤ガス加湿器を、それぞれの外表面からの熱移動が可能な位置関係で一体化構成としたものである。
したがって、前記燃料ガス加湿器と前記第1の酸化剤ガス加湿器と前記第2の酸化剤ガス加湿器は、それぞれの外表面が接触もしくは極近接した配置構成となり、その結果、それぞれの接触面あるいは極近接面から大気への放熱を無くす、もしくは抑制することができ、効率の高いシステムを提供することができる。
また、本発明は、前記燃料ガス加湿器と前記第2の酸化剤ガス加湿器に流通する冷却水を、前記燃料ガス加湿器を流通した後に前記第2の酸化剤ガス加湿器を流通するように配管し、前記燃料ガスと前記酸化剤ガスの熱交換、湿度交換(以下、総合して湿熱交換と称す)がバランスよく行えるようにしたものである。
さらに、本発明は、前記酸化剤ガス加湿装置を構成する第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を、前記供給酸化剤ガスが、前記第2の酸化剤ガス加湿器で加湿された後に前記第1の酸化剤ガス加湿器で加湿されるように配置し、前記酸化剤ガス加湿装置の出口での露点が、冷却水温度に応じて安定して高露点で維持できるようにするものである。
すなわち、本発明の燃料電池システムは、エネルギー効率を向上させるとともに、耐久性に優れ、安定した燃料電池システムの運転を実現することが可能となる。また、燃料電池システムのコンパクト化及び簡素化が図れ、また、低コスト化及び製造時の工数低減と品質向上を図ることが可能となる。
請求項1に記載の発明は、燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、前記燃料電池に供給される供給燃料ガスを加湿する燃料ガス加湿器と、前記燃料電池に供給される供給酸化剤ガスを加湿する酸化剤ガス加湿装置を備え、前記燃料ガス加湿器は、前記燃料電池から排出された排出燃料ガスに含まれる水分を、前記燃料電池の発電時の熱を冷却した冷却水で加温して加湿を行い、前記酸化剤ガス加湿装置は、第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を備え、前記第1の酸化剤ガス加湿器は、前記燃料電池から排出された排出酸化剤ガスに含まれる水分を利用して加湿を行い、前記第2の酸化剤ガス加湿器は、前記燃料電池の発電時の熱を冷却する冷却水の温水を用いて加湿を行うものであり、さらに、前記燃料ガス加湿器と前記第1の酸化剤ガス加湿器と前記第2の酸化剤ガス加湿器を、それぞれの外表面からの熱移動が可能な位置関係で一体化構成したものである。
かかる構成とすることにより、前記燃料ガス加湿器と前記第1の酸化剤ガス加湿器と前記第2の酸化剤ガス加湿器は、相互の外表面間で熱移動が行える程度に接触(密着)あるいは極近接しているため、加湿要素が占めるスペースが小さくでき、その結果、燃料電池システムのコンパクト化が図れ、また、接触面あるいは極近接面から大気への放熱を無くす、もしくは抑制することができ、効率の高いシステムを提供することができる。
さらに、加湿要素としてユニット化された構成であるため、燃料電池システムの製造時における低コスト化および工数低減と品質の向上が可能となる。
請求項2および請求項4に記載の発明は、前記燃料ガス加湿器と前記第2の酸化剤ガス加湿器に流通する冷却水を、前記燃料ガス加湿器を流通した後に前記第2の酸化剤ガス加湿器を流通するように配管したものである。
かかる構成とすることにより、前記燃料ガス加湿器が、前記第2の酸化剤ガス加湿器に比べて吸熱が小さいため、冷却水の温度は、前記第2の酸化剤ガス加湿器の入口でも比較的高温の状態にあり、その結果、前記燃料ガスと前記酸化剤ガスがバランスよく加湿する。したがって、水蒸気透過膜を具備した加湿装置の場合は、適度な湿度が前記水蒸気透過膜に与えられ、その劣化が抑制されて耐久性の向上が図れるものである。
請求項3、請求項5および請求項6に記載の発明は、前記酸化剤ガス加湿装置を構成する第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を、前記供給酸化剤ガスが、前記第2の酸化剤ガス加湿器で加湿された後に前記第1の酸化剤ガス加湿器で加湿されるように配置したものである。
かかる構成とすることにより、前記第2の酸化剤ガス加湿器は熱源に前記燃料電池の発電時の熱を冷却する冷却水(温水)の温度を用いているため、前記燃料電池の排気酸化剤ガスに含まれるガス中の水分を熱源とする前記第1の酸化剤ガス加湿器に比べ高熱量を一定温度で安定して供給できるので、前記酸化剤ガス加湿装置の出口露点は、前記冷却水温度に応じて安定して高露点を維持することができる。このことは、前記酸化剤ガスと冷却水の湿熱交換が安定し、特に水蒸気透過膜を具備した加湿装置の場合は、効率性および耐久性の面で効果が大きい。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1に係わる燃料電池コージェネレーションシステム(以下、単に燃料電池システムと称す)の構成を示す模式図である。
図1に示すように、本実施の形態1における燃料電池システムは、空気供給装置40と、第1の酸化剤ガス加湿器22とおよび第2の酸化剤ガス加湿器21を備えた酸化剤ガス加湿装置50と、燃料電池11と、燃料供給装置41と、燃料処理装置42と、燃料ガス加湿器20と、冷却水放熱器13と、冷却水タンク14と、冷却水ポンプ12と、第1の空気経路1と、第2の空気経路2と、第3の空気経路3と、第1の冷却水経路6aと、第2の冷却水経路6bと、第3の冷却水経路6cと、第4の冷却水経路6dと、貯湯タンク45と、貯湯水循環経路15を主な要素として構成されている。
特に、燃料ガス加湿器20と酸化剤ガス加湿装置50は、一体化され加湿装置51を構成しており、その詳細については後述する。
次に、システム全体の動作について説明する。
空気供給装置40から第1の空気経路1を介して酸化剤ガス加湿装置50に供給された空気は、第1の酸化剤ガス加湿器22で加湿され、次に第2の空気経路2を通って、さらに第2の酸化剤ガス加湿器21によって加湿される。第2の加湿器21によって加湿された空気は、酸化剤ガスとして、第3の空気経路3を介して燃料電池11の空気極側に供給される。
一方、燃料供給装置41から第1の燃料ガス経路8を介して、燃料処理装置42に、原料が供給される。前記原料としては、少なくとも炭素及び水素から構成される化合物(例えば、都市ガス、プロパン、メタン、天然ガス等)を含むガス等あるいはアルコール等が好ましい。
ここでは、燃料処理装置42は、具体的には、改質反応により水素を含む改質ガスを生成する改質部、及び、改質ガス中の一酸化炭素を変成反応により低減する変成部、該変成部を経た改質ガス中の一酸化炭素をさらに選択酸化反応により低減する浄化部(いずれも図示せず)を備えており、かかる構成は周知であるため、説明を省略する。
そして、燃料処理装置42では、供給された原料を、水蒸気を含む雰囲気下で加熱することにより、水素リッチなガスが生成される。該水素リッチなガスは、第2の燃料ガス経路9aを介して燃料ガス加湿器20に供給され、加湿される。
加湿された水素リッチなガスは、燃料電池11の燃料ガスとして、第3の燃料ガス経路9bを通じて燃料電池11の燃料極側に供給される。燃料電池11では、空気極側に供給された空気と、燃料極側に供給された水素リッチなガス(以下、燃料ガスと称す)とが反応することにより発電が行われ、電気と熱とが発生する。この反応内容については周知であるため、説明を省略する。
第3の空気経路3から燃料電池11に供給された空気のうち、反応に利用されなかった空気は、排出空気となり、排出空気経路4を介して第1の酸化剤ガス加湿器22に供給される。
前述の第1の空気経路1から第1の酸化剤ガス加湿器22へ流入した空気(酸化剤ガス)の加湿は、ここで前記排出空気に含まれる水分を利用して行われるもので、厳密には前記排出空気の熱も利用されていることから、第1の酸化剤ガス加湿器22内では湿熱交換作用が行われている。
そして、第1の酸化剤ガス加湿器22を経た排出空気は、排出ガス経路5を通じて排出される。
また、燃料電池11で反応に利用されなかった燃料ガスは排出燃料ガスとなり、第4の燃料ガス経路10を介して燃料ガス加湿器20に供給され、燃料ガス排出経路10aを通じて排出される。
前述の燃料処理装置42で生成された水素リッチなガスの加湿は、第4の燃料ガス経路10を介して第2の酸化剤ガス加湿器21へ流入した排出ガスの水分を利用して行われるもので、厳密には前記排出燃料ガスの熱も利用されていることから、燃料ガス加湿器20内では湿熱交換作用が行われている。
また、燃料電池11で熱を回収した冷却水は、第1の冷却水経路6aを介して燃料ガス加湿器20に流入し、次に第2の冷却水経路6bより第2の酸化剤ガス加湿器21に流入し、そして、第3の冷却水経路6cを介して冷却水放熱器13に供給され、ここで熱回収される。
すなわち、前記冷却水は、第4の燃料ガス経路10を介して燃料ガス加湿器20に供給された排出ガスの凝縮水を加温し、その後、第2の加湿器21へ流れ、ここで燃料電池11へ供給される空気(酸化剤ガス)の加湿を行う。この第2の加湿器21で行われる加湿についても、厳密には前記冷却水の水分に加えて冷却水の温度も利用されていることから、湿熱交換作用が行われている。
換言すると、空気供給装置40から供給される空気の加湿(湿熱交換作用)は、第1の酸化剤ガス加湿器22では第1の排出空気経路4から流入する排出ガスの水分と熱を利用して、第2の酸化剤ガス加湿器21では冷却水の水分と熱を利用してそれぞれ行われるものである。
さらに、貯湯水タンク45と、該貯湯水タンク45に貯めた水を給水するための貯湯水ポンプ44と、貯湯タンク45から給水した水を冷却水放熱器(熱交換器)13を経由して再び該貯湯タンク45に戻す貯湯水循環経路15において、冷却水放熱器13には、前述の如く第2の酸化剤加湿器21で加湿に利用された後の冷却水の熱が与えられ、この熱が貯湯水循環経路15を通って貯湯水タンク45に供給、蓄熱される。
また、冷却水放熱器13を通過した冷却水は、第4の冷却水経路6dを介して冷却水タンク14へ流れる。そして、冷却水タンク14の冷却水は、燃料電池11で発生した熱を除去するために、冷却水ポンプ12によって加圧され、冷却水経路7を介して再び燃料電池11に供給される循環を繰り返す。
ここで、冷却水タンク14の冷却水は、70℃程度に維持されており、この温度は、燃料電池11と十分熱交換できる温度である。
さらに、前記冷却水について詳述すると、燃料電池11の熱を回収して温度が75℃程度となった冷却水は、第1の冷却水流路6a、第2の冷却水流路6b、第3の冷却水流路6c、第4の冷却水流路6dを介して再び冷却水タンク14に戻される。
ここで、第3の冷却水流路6cと第4の冷却水流路6dの間には、冷却水放熱器13が設けられており、前記冷却水の熱は、冷却水放熱器13によって放出される。このような放熱により、冷却水は、再び70℃程度まで冷却される。
本実施の形態1における燃料電池システムでは、このように冷却水が循環する構成となっており、また、該冷却水の温度が安定して所定の温度に維持されていることから、燃料電池11を所定の温度に維持することが可能となる。
さらに、本実施の形態1においては、燃料ガス加湿器20および酸化剤ガス加湿装置50が一体化された加湿装置51を構成しており、次に、本実施の形態1の特徴である、燃料ガス加湿装置20および加湿装置51について説明する。
図2は、図1に示す燃料電池システムにおける加湿装置の構成および湿熱交換作用を説明するための説明図である。
図2において、燃料ガス加湿器20および第1の酸化剤ガス加湿器22、第2の酸化剤ガス加湿器21はそれぞれ同様の構成を採用している。
すなわち、燃料ガス加湿器20および第1の酸化剤ガス加湿器22、第2の酸化剤ガス加湿器21は、内部が水分移動膜(水蒸気透過膜)23で区切られており、水分移動膜23によって高水分濃度側から低水分濃度側への水分(水蒸気)移動が可能で、加えて高温度側から低温度側への熱移動が可能な材料より構成されている。
ここで、水分移動膜23には、例えば、ナフィオン系膜等で代表されるプロトン導電性の高分子電解質膜が用いられる。
さらに詳述すると、燃料ガス加湿器20は、水分移動膜23によって燃料ガス室20aともう一つの部屋に区切られ、もう一つの部屋は、熱伝達良好な材料からなる仕切板20dによって凝縮水室20bと燃料ガス冷却水室20cに区切られている。
また、第1の酸化剤ガス加湿器22は、水分移動膜23により第1の酸化剤ガス室22aと排出酸化剤ガス室22bに区切られ、さらに、第2の酸化剤ガス加湿器21も同様に水分移動膜23により、第2の酸化剤ガス室21aと酸化剤ガス冷却水室21bに区切られている。
さらに、燃料ガス加湿器20、第1の酸化剤ガス加湿器22および第2の酸化剤ガス加湿器21は、図では説明の便宜上分離して記載しているが、それぞれの外殻が接触して配置されている構成であり、同図に示す如くそれらの両端が一対の端版52、53に適宜手段にて固定され、単一の加湿装置51となるようにユニット化されている。
このユニット化に際しての構成は、一対の端版52、53を用いる構成に限らず、各加湿器20、21、22を集合して金属バンド等で締結する構成、あるいは単一のケース内に配置固定する構成等、周知の技術で実現できる。
また、各加湿器20、21、22の外殻を角柱状とすることにより、相互の接触が面となって安定し、また接触面積も安定する。
さらに、各加湿器20、21、22の外殻に、相互に噛み合う凹凸を設け、接触面積の増加と一層の接触の安定化を図る構成とすることもできる。
上記構成とする加湿装置51の各加湿器20、21、22には、燃料ガス、酸化剤ガス(空気)および冷却水が次のように流れる。
燃料ガスは、第2の燃料ガス経路9aから燃料ガス加湿器20の燃料ガス室20aに流入し、第3の燃料ガス経路9bから燃料電池11の燃料極側に流入して酸化剤と反応する。この反応に伴って凝縮水も発生する。
前記酸化剤と反応せずに残った燃料ガスは、第4の燃料ガス経路10から再び燃料ガス加湿器20の凝縮水室20bへ凝縮水11aとともに流入し、一旦滞留する。そして、凝縮水室20b内の燃料ガスは、燃料ガス排出経路10aを通じて排出される。
凝縮水室20b内の凝縮水11aの水分(水蒸気)は、水分移動膜(水蒸気透過膜)23の水分を透過させる作用により、燃料ガス室20aへ透過する。
また、凝縮水室20bには、熱伝導性の良好な材料からなる仕切板20dを介して燃料ガス冷却水室20cが配設されている。燃料ガス冷却水室20cを流れる冷却水は、燃料電池11を出たとき、約75℃程度に加温されているが、凝縮水室20bで滞留し、燃料ガス室20aとの湿熱交換作用によって熱が奪われ、温度が50℃程度にまで降下する。
しかし、凝縮水室20bの凝縮水は、冷却水室20cの冷却水温度が燃料電池11を出たときの温度の約75℃を常に維持しているため、この熱の供給を受けて略一定温度に保たれる。
したがって、燃料ガス室20aへ透過した凝縮水分(水蒸気)も所定の温度であり、前記凝縮水分は、燃料ガス室20aを流れる燃料ガスと湿熱交換を行い、燃料ガスを加湿する。
また、酸化剤ガスは、第1の空気経路1から酸化剤ガス加湿装置50の第1の酸化剤ガス加湿器22に形成した第1の酸化剤ガス室22aに流入した後、第2の酸化剤ガス経路2から第2の酸化剤加湿器21に形成した第2の酸化剤ガス室21aに流入する。
その後、前記酸化剤ガスは、第3の空気経路3を通って燃料電池11の空気極側に流入し、燃料ガスと反応する。
そして、前記燃料ガスと反応せずに残った酸化剤ガスは、第1の排出空気経路4から再び第1の酸化剤ガス加湿器22に形成した排出酸化剤ガス室22bに流入し、第2の排出空気経路5から排出される。
燃料電池11から排出された排出酸化剤ガスは、燃料電池11内での反応により、供給空気よりも高温で多くの水分を含むことから、第1の酸化剤ガス加湿器22では、水分移動膜23を介して排出酸化剤ガス室22bを流れる排出酸化剤ガスから第1の酸化剤ガス室22aを流れる供給空気に水分(水蒸気)が与えられ、湿熱交換を行う。
ここで、第1の酸化剤ガス加湿器22において、第1、第2の排出空気経路4、5の接続位置を変更する等して前記供給空気と排出酸化剤ガスが水分移動膜23を介して対向して流れるようにすれば、前記水分の移動が一層効率よく行われる。
また、第2の酸化剤ガス加湿器21に形成した酸化剤ガス冷却水室21bには、燃料ガス冷却水室20cを経由した冷却水が第2の冷却水経路6bを通って流入する。この冷却水は、燃料電池11を出た後、燃料ガス冷却水室20cで放熱され約1K程度温度は低下するが、約74℃程度には加温されている。そのため、酸化剤ガス室21a内の酸化剤ガスは、酸化剤ガス冷却水室21bの冷却水を熱源とし、水分移動膜23を介して湿熱交換され、加湿される。
このように本実施の形態1においては、燃料電池11に供給される燃料ガスと酸化剤ガス(空気)を、水分移動膜23を介して燃料電池11で反応した排出燃料ガス、排出酸化剤ガス、冷却水のそれぞれがもつ熱、水分と湿熱交換を行い、加湿した状態で燃料電池11に供給するため、燃料電池11に設けられた電解質膜(図示せず)の劣化を抑制して燃料システムの耐久性を向上することができる。
また、燃料ガス加湿器20、酸化剤ガス加湿装置50は、相互に接触して一体化(連結)した加湿装置51とされているため、それぞれの加湿器の連結面が大気と接触することがなく、この連結面からの放熱をなくすことができ、各加湿器20、21、22で行われる湿熱交換の損失も抑制でき、その結果、システムの効率化が図れるものである。
また、加湿装置51の一体化により、システム全体のコンパクト化および簡素化が図れ、さらに、予めの加湿装置51のユニット化により、組立て性に優れた構成となり、低コスト化および製造時の工数低減と品質向上を図ることが可能となる。
さらに、前記コンパクト化に伴い、回路を形成する配管も最短化でき、より一層の低コスト化、湿熱交換効率の低下抑制が行え、システム効率を高めることができる。
さらに、かかる構成の燃料電池システムでは、燃料ガス加湿器20が、第2の酸化剤ガス加湿器21に比べて吸熱が小さいため、冷却水の温度は第2の酸化剤ガス加湿器21の入口でも比較的高温の状態であることから、前記燃料ガスと前記酸化剤ガスがバランスよく加湿することが可能となる。
さらに、かかる構成の燃料電池システムでは、第2の酸化剤ガス加湿器21は、熱源に燃料電池11の発電時の熱を冷却する冷却水の温水を用いているため、燃料電池11の排気酸化剤ガスに含まれるガス中の水分を熱源とする第1の酸化剤ガス加湿器22に比べ、高熱量を一定温度で安定して供給できるので、酸化剤ガス加湿装置50の出口露点は冷却水温度に応じて安定して高露点を維持することができる。その結果、前記酸化剤ガスと冷却水の湿熱交換が安定し、特に水分移動膜23を具備した加湿装置51の場合は、効率性および耐久性の面で効果が大きいものとなる。
なお、本実施の形態1においては、第1の酸化剤ガス加湿器22、第2の酸化剤ガス加湿器21および燃料ガス加湿器20を、それぞれ接触(連結)した一体化のユニット構成としたが、各加湿器20、21、22の外殻は接触に限らず、外気に影響されない程度で熱伝導が可能な極近接配置関係のユニット構成としてもよい。
以上のように本発明にかかる燃料電池システムは、システム全体のエネルギー効率を向上するとともに、小型化、安定した動作が可能となり、電気自動車等へも適用できるものである。
本発明の実施の形態1に係わる燃料電池システムの構成を示す模式図 同実施の形態1における加湿装置の構成および湿熱交換作用の説明図
符号の説明
1 第1の空気経路
2 第2の空気経路
3 第3の空気経路
4 第1の排出空気経路
5 第2の排出空気経路
6a 第1の冷却水流路
6b 第2の冷却水流路
6c 第3の冷却水流路
7 冷却水流路
11 燃料電池
12 冷却水ポンプ
13 冷却水放熱器
14 冷却水タンク
15 貯湯水経路
20 燃料ガス加湿器
20a 燃料ガス室
20b 凝縮水室
20c 燃料ガス冷却水室
21 第2の酸化剤ガス加湿器
21a 第2の酸化剤ガス室
21b 酸化剤ガス冷却水室
22 第1の酸化剤ガス加湿器
22a 第1の酸化剤ガス室
22b 排出酸化剤ガス室
23 水分移動膜
50 酸化剤ガス加湿装置
51 加湿装置

Claims (6)

  1. 燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、前記燃料電池に供給される供給燃料ガスを加湿する燃料ガス加湿器と、前記燃料電池に供給される供給酸化剤ガスを加湿する酸化剤ガス加湿装置を備え、前記燃料ガス加湿器は、前記燃料電池から排出された排出燃料ガスに含まれる水分を、前記燃料電池の発電時の熱を冷却した冷却水で加温して加湿を行い、前記酸化剤ガス加湿装置は、第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を備え、前記第1の酸化剤ガス加湿器は、前記燃料電池から排出された排出酸化剤ガスに含まれる水分を利用して加湿を行い、前記第2の酸化剤ガス加湿器は、前記燃料電池の発電時の熱を冷却する冷却水の温水を用いて加湿を行うものであり、さらに、前記燃料ガス加湿器と前記第1の酸化剤ガス加湿器と前記第2の酸化剤ガス加湿器を、それぞれの外表面からの熱移動が可能な位置関係で一体化構成した燃料電池システム。
  2. 前記燃料ガス加湿器と前記第2の酸化剤ガス加湿器に流通する冷却水を、前記燃料ガス加湿器を流通した後に前記第2の酸化剤ガス加湿器を流通するように配管した請求項1に記載の燃料電池システム。
  3. 前記酸化剤ガス加湿装置を構成する第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を、前記供給酸化剤ガスが、前記第2の酸化剤ガス加湿器で加湿された後に前記第1の酸化剤ガス加湿器で加湿されるように配置した請求項1または2に記載の燃料電池システム。
  4. 燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、前記燃料電池に供給される供給燃料ガスを加湿する燃料ガス加湿器と、前記燃料電池に供給される供給酸化剤ガスを加湿する酸化剤ガス加湿装置を備え、前記燃料ガス加湿器は、前記燃料電池から排出された排出燃料ガスに含まれる水分を、前記燃料電池の発電時の熱を冷却した冷却水で加温して加湿を行い、前記酸化剤ガス加湿装置は、第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を備え、前記第1の酸化剤ガス加湿器は、前記燃料電池から排出された排出酸化剤ガスに含まれる水分を利用して加湿を行い、前記第2の酸化剤ガス加湿器は、前記燃料電池の発電時の熱を冷却する冷却水の温水を用いて加湿を行うものであり、さらに、前記燃料ガス加湿器と前記第2の酸化剤ガス加湿器に流通する冷却水を、前記燃料ガス加湿器を流通した後に前記第2の酸化剤ガス加湿器を流通するように配管した燃料電池システム。
  5. 前記酸化剤ガス加湿装置を構成する第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を、前記供給酸化剤ガスが、前記第2の酸化剤ガス加湿器で加湿された後に前記第1の酸化剤ガス加湿器で加湿されるように配置した請求項4に記載の燃料電池システム。
  6. 燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、前記燃料電池に供給される供給燃料ガスを加湿する燃料ガス加湿器と、前記燃料電池に供給される供給酸化剤ガスを加湿する酸化剤ガス加湿装置を備え、前記燃料ガス加湿器は、前記燃料電池から排出された排出燃料ガスに含まれる水分を、前記燃料電池の発電時の熱を冷却した冷却水で加温して加湿を行い、前記酸化剤ガス加湿装置は、第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を備え、前記第1の酸化剤ガス加湿器は、前記燃料電池から排出された排出酸化剤ガスに含まれる水分を利用して加湿を行い、前記第2の酸化剤ガス加湿器は、前記燃料電池の発電時の熱を冷却する冷却水の温水を用いて加湿を行うものであり、さらに、前記酸化剤ガス加湿装置を構成する第1の酸化剤ガス加湿器と第2の酸化剤ガス加湿器を、前記供給酸化剤ガスが、前記第2の酸化剤ガス加湿器で加湿された後に前記第1の酸化剤ガス加湿器で加湿されるように配置した燃料電池システム。
JP2006213183A 2006-08-04 2006-08-04 燃料電池システム Pending JP2008041388A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213183A JP2008041388A (ja) 2006-08-04 2006-08-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213183A JP2008041388A (ja) 2006-08-04 2006-08-04 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008041388A true JP2008041388A (ja) 2008-02-21

Family

ID=39176176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213183A Pending JP2008041388A (ja) 2006-08-04 2006-08-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2008041388A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147076A (ja) * 2006-12-12 2008-06-26 Daihatsu Motor Co Ltd 燃料電池システム
JP2009301722A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 燃料電池システム
JP2009301723A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 燃料電池用ガスの加湿装置
US8697298B2 (en) 2008-08-01 2014-04-15 Toyota Boshoku Kabushiki Kaisha Fuel cell system with heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006309A (ja) * 2002-04-15 2004-01-08 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005100975A (ja) * 2003-08-25 2005-04-14 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池システム及びその運転方法
JP2006079896A (ja) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd 加湿装置
JP2006156252A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006309A (ja) * 2002-04-15 2004-01-08 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005100975A (ja) * 2003-08-25 2005-04-14 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池システム及びその運転方法
JP2006079896A (ja) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd 加湿装置
JP2006156252A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147076A (ja) * 2006-12-12 2008-06-26 Daihatsu Motor Co Ltd 燃料電池システム
JP2009301722A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 燃料電池システム
JP2009301723A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 燃料電池用ガスの加湿装置
US8697298B2 (en) 2008-08-01 2014-04-15 Toyota Boshoku Kabushiki Kaisha Fuel cell system with heater

Similar Documents

Publication Publication Date Title
US6416895B1 (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP2010147029A (ja) 燃料電池システム
JP3823181B2 (ja) 燃料電池用発電システム及び発電システムの廃熱再循環冷却システム
JP2008135395A (ja) 燃料電池パワープラント及び燃料電池パワープラントを作動させる方法
JP2007323982A (ja) 燃料電池システム
JP3685936B2 (ja) 固体高分子型燃料電池システム
WO2013046582A1 (ja) 高温動作型燃料電池モジュール、および高温動作型燃料電池システム
JP2006210150A (ja) 燃料電池システム
JP4978132B2 (ja) 燃料ガス加湿器及び酸化剤ガス加湿器
JP2008041388A (ja) 燃料電池システム
JP2004111397A (ja) 燃料電池における反応体流の加湿
JP4464066B2 (ja) 燃料電池システム
JP2009277505A (ja) 燃料電池装置
JP5332098B2 (ja) 燃料電池システム
JP5266635B2 (ja) 燃料電池システム
JP2008243540A (ja) 固体高分子電解質形燃料電池発電装置
JP2001068135A (ja) 燃料電池用改質システム
JP2006196249A (ja) 燃料電池システム
JP5830695B2 (ja) 燃料電池システム
JP3963368B2 (ja) 燃料電池用加湿器およびその加温方法
JP5098832B2 (ja) 燃料電池システム
JP2006210151A (ja) 燃料電池システム
JP4872390B2 (ja) 燃料電池システム
JP2008027752A (ja) 燃料電池システム
JPWO2015075889A1 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403