CN101207126B - 可缩放的应变fet器件及其制备方法 - Google Patents

可缩放的应变fet器件及其制备方法 Download PDF

Info

Publication number
CN101207126B
CN101207126B CN200710170211XA CN200710170211A CN101207126B CN 101207126 B CN101207126 B CN 101207126B CN 200710170211X A CN200710170211X A CN 200710170211XA CN 200710170211 A CN200710170211 A CN 200710170211A CN 101207126 B CN101207126 B CN 101207126B
Authority
CN
China
Prior art keywords
fet
cap
stress
dielectric stressor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710170211XA
Other languages
English (en)
Other versions
CN101207126A (zh
Inventor
B·J·格林
S·贾恩
W·K·亨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN101207126A publication Critical patent/CN101207126A/zh
Application granted granted Critical
Publication of CN101207126B publication Critical patent/CN101207126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31641Deposition of Zirconium oxides, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2

Abstract

通过利用已知的双应力衬垫效应并使用合适几何形状的压力氮化物以在n-FET沟道内引起压应力,并在p-FET内引起张应力,描述了具有增强性能的CMOS FET器件。应力增强被设计成对PC间距不敏感,并且随多晶硅叠层的高度的减少而增加,以至可缩放性有助于所述的性能改善。n-FET充分使用能够在压力衬垫中获得的较高的应力值,其应力值大于3GPa,而张力衬垫的应力值小于1.5GPa。

Description

可缩放的应变FET器件及其制备方法
技术领域
本发明涉及半导体器件,更特别地,涉及通过加入可缩放的应力沟道表现出改进性能的场效应晶体管(FET)。
背景技术
把CMOS器件缩放到更小尺寸的能力使集成电路得到连续不断的性能增强。此外,除了经济考虑,器件设计和材料方面的约束正在妨碍器件在缩放方面的进一步改进。由于缩放方面的约束带来正在快速接近的界限,在该界限之上工艺和经济约束使得额外的缩放处理没有了吸引力,所以人们开发出新的技术来不断提高器件性能。
已经得到普及的一种选择是在半导体器件衬底内强加能够有利地用来调节器件性能的某种机械应力。例如,在硅中,当硅膜受到压应力时空穴迁移率增加,而当硅膜受到张应力时电子迁移率增加。因此,为了增强此类器件的性能,可以在p-FET和/或n-FET的沟道区内有利地产生压应力和/或张应力。然而,不管是压应力还是张应力,相同的应力分量会对p-FET器件和n-FET器件的性能造成不同的影响。可选地,硅中的压应力在增强p-FET的性能的同时,对n-FET的性能造成不利影响,而张应力在增强n-FET的性能的同时,对p-FET的性能造成不利影响。因此,为了获得性能增强,p-FET和n-FET需要不同类型的应力,在同时制备高性能p-FET器件和n-FET器件时,这带来了一种挑战,原因在于难以同时向p-FET施加压应力并向n-FET施加张应力。
在p-FET器件和n-FET器件的沟道区内产生所需的压应力和张应力的一种方法是利用分开的压应力和张应力电介质膜覆盖p-FET器件和n-FET器件,以便分别向p-FET器件和n-FET器件,以便分别向n-FET器件和p-FET器件施加张应力和压应力。
另一个重要问题是器件尺寸越来越小的趋势。研究人员已经研究了工艺缩放对降低几乎所有已知应力增强工艺的有效性方面的影响。例如,更紧的PC间距、更短的多晶硅叠层和嵌入SiGe(以及嵌入碳)降低了应力衬垫的沟道应力,其中更小的RX-past-PC尺寸降低了有效性。因此,当从一个工艺节点转移到下一个节点时,必须找到用来克服与缩放有关的降级的方法,并且找到用来进一步改善工艺性能的附加选项。传统上,这是利用强力实现的,即利用更高的应力衬垫、eSiGe中更高的锗含量等等,或者通过显著变更器件材料/结构,如嵌入SiC。
目前,应力器件是由在栅极区、栅极区附近的衬底的暴露表面和硅化物接触的顶上有利地形成的应力诱发衬垫制造的。例如,在同一受让人的发明人为Xiangdon Chen等的美国专利号7,002,209中找到此类应力器件的例子。该专利描述了用于形成与栅极导体的侧壁相接触的衬垫的方法。当使用薄的侧壁隔离物时,应力诱发衬垫处在薄的侧壁隔离物的上面,以至薄的侧壁隔离物把应力诱发衬垫和栅极区分离开来。应力诱发衬垫是在产生压应力和张应力的条件下沉积的。然而,上述专利中描述的方法仅限于使用单一应力衬垫。
由不断缩小的嵌线尺寸引起的控制高性能工艺的另一个问题是在降低栅电极导体的间距时应力的缺失引起的。这种现象在近期的文献中有所描述,更特别地,参见论文″1-D and 2-D effects inuniaxially-strained dual etch stop layer stressor integrations″,作者Paul Grudowski et al.,发表于Digest of Technical Papers of the 2006Symposium on VLSI Technology。其中描述了高应力双蚀刻停止层集成的2-D边缘效应和1-D多间距响应的详细的电气和仿真特性,以及这些效应如何影响可实现的晶体管性能增益和改进的电路设计。用作应激物的接触蚀刻停止层已经显示了显著的性能改善,特别是在双集成中使用时。然而,因不断缩小器件引起的问题依然存在。
传统缩放方法强加的另一个问题是在降低栅极导体的高度时应力的缺失引起的。这种现象也在近期的文献中有所描述,更特别地,参见论文″MOSFET Current Drive Optimization Using SiliconNitride Capping Layer for 65-nm Technology Node″,作者S.Pidin etal,发表于Digest of Technical Papers of the 2004 Symposium onVLSI Technology。其中描述了器件沟道应力对高应力蚀刻停止层的栅极高度的响应的仿真特性。因此建立以下折衷,亦即在栅极高度减少的传统缩放益处,即由减少的栅极侧壁区引起的寄生电容减少以及应力衬垫给予沟道的应力之间的折衷。
为了更好地理解本发明的优势,其各个方面和优点,以下描述现有技术的应力互补FET器件,目的是在与常规现有技术器件相比时区分本发明的器件结构。
参照图1a,该图表示一对互补FET器件(即,n-FET和p-FET),用于说明为引起所需的迁移率增益已对其进行构图的晶体管顶上的第一应力衬垫。第一应力衬垫可以是张力或压力型的,并且厚度为40nm-100nm,通常为50nm。图1a中的应力衬垫是使用标准光刻和蚀刻工艺进行构图的,其中应力衬垫留在器件的顶上,导致有利于增加载子迁移率的机械应变。张应力衬垫给予增加电子迁移率的应力,而压应力衬垫给予增加空穴迁移率的应力。优选地,应力衬垫为半导体加工中通常使用的任何电介质(SiN,SiO2,SiCOH,HfO2,SiCN,ZrO2),尽管SiN是优选使用的。
参照图1b,该图表示已对其第二应力衬垫进行构图的同一对互补FET器件。第二应力衬垫应该提供与第一应力衬垫提供的应力相反的应力并且该应力衬垫应该从第一应力衬垫覆盖的晶体管中去除。例如,如果第一应力衬垫为张力,则第二应力衬垫应该为压力。优选地,第二应力衬垫的厚度为40nm-100nm,通常为50nm。第二应力衬垫可以是半导体加工中使用的任何标准电介质(SiN,SiO2,SiCOH,HfO2,ZrO2,SiCN),尽管SiN是优选使用的。
仍然参照图1b,如果第二应力衬垫是用与第一应力衬垫相似的材料制成的,则在构图第二衬垫之后但是在沉积第二衬垫之前沉积一个薄的氧化层,以便实现蚀刻选择性。
接着,参照图2,在硅晶片的顶上沉积另一个电介质层。该电介质通常为低温SiO2沉积,其厚度为150nm-250nm,通常为210nm。
参照图3,该图表示进行化学机械抛光(CMP)后的同一半导体结构,其结果是利用半导体加工中通常使用的标准抛光步骤去除了氧化物。优选地,将该氧化物去除直至露出栅极导体电极的顶部,不保留氧化物。最终的表面必须是平坦的,没有表面形貌,以使该表面直接在完全平坦化的目标FET之上。
当互补器件之间的间距随着工艺从一个节点转移到下一个节点而收缩时,迄今为止所示的器件要经受明显的降级。在间距减少期间,应力氮化硅膜界面的长度减少,实际上这会减少从衬垫到硅膜和MOSFET沟道的应力耦合。另外,迄今为止所示的所得应力诱发器件仍然容易由于栅极高度减少而降级。这是因为沟道中的应力是由处于应力衬垫/侧壁隔离物/硅膜交叉点引起的边缘力产生的,其强度依赖于多晶高度(poly height),以及应力衬垫厚度,多晶间距(poly pitch)等等。
因此,业界需要形成双应力衬垫的工艺,其中通过减少多晶硅高度,可以实现来自压力帽的增强n-FET应力,而在PC间距缩放期间又不产生降级。
发明内容
因此,本发明的目的是通过加入可缩放的应力沟道提供表现出改进性能的增强FET器件。
本发明的另一个目的是通过在互补FET器件的栅极顶上提供双应力衬垫来改善性能。
另一个目的是引发来自压力帽的不会随PC间距缩放处理而降级的n-FET应力,并且来自压力帽的增强随栅极高度的减少而增加。
另一个目的是提供比相应张力配对物具有更高应力的压力衬垫。
还有另一个目的是在确保低实现成本的情况下使发明的结构与取代栅极兼容。
根据本发明的一个方面,通过利用已知的双应力衬垫效应、通过使用合适几何形状的压力氮化物构造以在n-FET沟道中引起张应力、并同样采用张力氮化物用于p-FET中的压缩,使得CMOSFET器件的性能显著改善。
该方法特别重要的是其可缩放性。应力增强被设计成对PC间距不敏感,明显的优势为,其通过减少栅极叠层的高度而增加。另外,由于n-FET可以充分使用可利用压力衬垫获得的更高的应力值(亦即,>3GPa,对于张力而言,<1.5GPa),期望该方法有相当可观的优点。
本发明提供一种半导体器件,包括:在衬底上彼此隔开的至少一个n-沟道场效应晶体管(n-FET)和至少一个p-沟道场效应晶体管(p-FET);以及覆盖至少一个n-FET的栅极的第一电介质应激物层和覆盖至少一个p-FET的栅极的第二电介质应激物层,其中该第一电介质应激物层是压应力的,而该第二电介质应激物层是张应力的。
附图说明
通过连同附图一起参照本发明的下述说明,将更完整地理解本发明及其优势,其中:
图1a是一个示意图,说明衬底上的现有技术的互补FET器件,其中在选定区域(直至中线(MOL)电介质沉积)内沉积第一衬垫;
图1b是一个示意图,说明现有技术的一对互补FET器件,其中在选定区域(直至MOL电介质沉积)内沉积第二衬垫;
图2是一个示意图,说明图1b的两个现有技术的互补FET器件,其中在两个器件的顶上沉积垫层氧化层;
图3是一个示意图,其中为使目标FET之上的表面平坦化而优选地利用化学机械抛光去除多晶硅的顶部的氮化物层;
图4说明根据本发明优选实施例的改进的器件,其中在n-FET栅极的顶上沉积压力氮化物帽,并且在p-FET栅极的顶上沉积压力氮化物帽或张力氮化物帽抑或包含注入弛豫(implant relaxation)的压力层的组合,其中在帽的两端引起边缘力;
图5说明根据本发明另一实施例的图4中所示的改进的器件,其中利用压力氮化物帽盖住p-FET器件;以及
图6说明根据本发明另一个实施例的图4中所示的改进的器件,其中为n-FET提供应力帽工艺,而使p-FET器件完全未盖帽。
具体实施方式
在下面的描述中,阐述了许多具体细节,如特定结构、成分、材料和尺寸,目的是透彻地理解本发明。然而,本领域的一般技术人员容易理解,可以在没有上述具体细节的情况下实施本发明。在其它例子中,没有详细地描述众所周知的结构或加工步骤,以避免使本发明难以理解。
可以理解,诸如层、区域或衬底的要素被称为是“在”另一个要素“上面”时,它可以直接在其它要素上面,也可以存在居间要素。相反,当一个要素被称为是“直接在”另一个要素“上面”时,不存在居间要素。同样可以理解,当一个要素被称为是“连接”或“耦合”到另一个要素时,它可以直接连接或耦合到其它要素,或者存在居间要素。相反,当一个要素被称为是“直接连接”或“直接耦合”到另一个要素时,不存在居间要素。
图4表示根据本发明一个实施例的CMOS器件的横截面视图。
本发明为包括至少一个n-FET和至少一个p-FET的改进的CMOS器件提供电介质应激物,最好为氮化物层,直接连接到各FET器件的栅极,以下称为“帽”。电介质应激物帽在n-FET器件和p-FET器件上提供所需的应力。
更具体地,CMOS器件包括位于n-FET有源区2上方的n-FET以及位于p-FET有源区4上方的p-FET。n-FET有源区2和p-FET有源区4处于同一半导体衬底(未示出)中,由隔离区11彼此分开。n-FET有源区2包含带有源极和漏极硅化物接触21和23的n-型源极和漏极掺杂区(未示出)。同样,p-FET有源区4包含带有源极和漏极硅化物接触41和43的p-型源极和漏极掺杂区(未示出)。
分开的栅极结构,一个是由(1)第一栅极导体24,(2)栅极金属硅化物25和(3)至少一个隔离物27形成的,另一个包括:(1)第二栅极导体44,(2)第二栅极金属硅化物45和(3)至少一个隔离物47,它们是分别在n-FET有源区2和p-FET有源区4上形成的。栅极电介质22和42分别把n-FET有源区2和第一栅极导体24以及p-FET有源区4和第二栅极导体44隔离开来。
利用应力层,优选地,利用n-FET顶上的压应力氮化物帽或者利用压力氮化物帽或张力氮化物帽或包括注入弛豫的压应力氮化物帽盖住n-FET和p-FET的相应栅极。
优选地,电介质应激物帽层50和60包括可以调节或调整其应力分布的任何合适电介质材料。优选地,但不是必须地,连续电介质应激物层50包括SiN。
有利地,上述应激物层50和60是用选择UV-处理工艺形成的,本发明的发明人已经发现其在把电介质膜的压应力转换为张应力时特别有效。
现在更详细地描述用于形成图4所示的CMOS器件结构内的电介质应激物帽50和60的典型加工步骤。请注意,在该图中,该图不是按比例绘制的,并且利用相同的参考标号来表示相同的和/或相应的要素。另外请注意在附图中,仅示出一个n-FET和一个p-FET。尽管举例说明这样一种实施例,但是本发明并不限于形成任何具体数目的n-FET和/或p-FET器件,并且可以容易地包括阵列形成此类器件。
仍然参照图4,该图表示在沉积应力衬垫层(该图中的层C)并对其进行构图后的半导体结构,其中经构图的层位于栅极上方的中部。图4中的应力衬垫C的边缘给予沟道机械应力,从而可以增加载子的迁移率。
应力衬垫可以是半导体加工中使用的任何电介质(SiN,SiO2,SiCOH,HfO2,ZrO2,SiCN),尽管SiN是优选的。应力衬垫的厚度为10nm-800nm,但是40nm是优选的。应力衬垫产生压应力或张应力;然而,压应力是优选的,因为压力SiN应力衬垫能够比张应力衬垫获得更大的应力。优选地,典型压力SiN应力衬垫具有的应力值为3GPa或更高,而张力SiN应力衬垫具有的应力值为1.5GPa。业已发现,越大的压应力衬垫给予越多应力,从而转换为越高的迁移率增益。
如上所述,压应力电介质层是由例如SiN制成的,利用等离子增强化学气相沉积(PECVD)工艺或高密度等离子(HDP)工艺容易形成SiN,上述工艺是在约300℃-约450℃的温度范围内执行的,压力范围为约0.5torr-约6torr,等离子功率电平范围为约100W-约1500W,使用的加工气体包括三甲基硅烷、NH3和N2
仍然参照图4,压应力衬垫(衬垫C)导致在晶体管沟道内提供张力机械应力;因此,最好对n-FET晶体管上方的应力衬垫C进行构图,以产生所需的性能增益。
回到前面描述的图1b,该图表示n-FET上面的张应力衬垫和p-FET上面的压应力衬垫。n-FET(p-FET)的源极漏极区域上的张力(压力)氮化物在沟道区域内引起张(压)应力,由此改善沟道内的电子(空穴)迁移率。在硅内引起的应力的大小依赖于(除别的因素之外)远离硅沟道的氮化物的横向宽度。在缩放处理期间,由于嵌线尺寸缩小,相邻栅极彼此更加靠近。这导致氮化物的横向宽度越来越小,从而在沟道中引起的应力也变小。
仍然参照图1b,虽然在源极和漏极区上面的氮化物膜在沟道内引起张应力,但是相反地,在栅极顶上的张力氮化物在沟道内引起的压应力使位于底部的氮化物膜产生的应力降低。另外,随着栅极高度的减少,顶部的氮化物与沟道更接近,并且该氮化物膜引起的压应力增加。因此,减少栅极高度同样会减少整个张力氮化物膜引起的应力(对于氮化物膜中的给定应力而言)。
现在参照图4,仅仅去除n-FET顶部的张力氮化物,代之以压力氮化物层。然后,正如附图所示的那样,对压力衬垫进行蚀刻,从而在每个压力衬垫侧壁产生边缘力。在栅极顶上的压力氮化物在硅沟道内引起张应力(与栅极顶上的张力氮化物膜早先引起的应力相反)。这会增加源极-漏极区上方的张力氮化物引起的张应力,从而增加沟道中的应力。使得栅极顶上的压力氮化物与沟道更接近(亦即,通过减少栅极高度)将增加在沟道中引起的张应力。最后,注意到在间距(两个相邻器件之间的距离)减少时,压力氮化物的横向宽度(或长度)不需要缩放。本发明的方法避免了按比例缩减间距时改善有所减弱的问题。最后,压力氮化物膜的使用对具有约3.5GPa的压力氮化物膜的n-FET器件特别有益。这已被试验证实。相反,张力膜获得的最高应力的数量级为1.5GPa。
尽管以上发明是针对n-FET器件进行描述的,该结论同样适用于p-FET,但保留各种应力膜的应力。因此,源极和漏极上方的应力膜优选地是压力性的,而栅极上方的应力膜是张力性的。
为了获得最佳性能,应该同时在p-FET上面形成张应力衬垫帽并在n-FET上面形成压应力衬垫帽。然而,通过选择性盖住n-FET或p-FET,并对覆盖次最优配置的器件的应力帽执行注入驰豫(亦即,p-FET具有压力帽,或n-FET具有张力帽),可以以更低的成本或更少的复杂性获得性能收益。可选地,可以使用硅衬底,其某一型的FET对应力不太敏感,并使用单一应力衬垫帽,以改善另一个的性能。例如,(001)硅晶片,沿<100>轴定向的栅极导致对应力相当不敏感的p-FET。正如图5所示,在这种情况中,n-FET和p-FET上的压力帽是优选的,并且是这种结构的最经济的实现。
如图4所示对压力衬垫C进行构图的一个优点是,构图的膜的垂直边缘力引起的机械应力增加。来自边缘力的应力会增加沟道中已经存在的来自应力衬垫B的机械应力。另外,现有技术的压力衬垫能够获得比张力衬垫高得多的应力等级(压力为3.5GPa,张力为1.5GPa)。在图1a-1b(现有技术)所示的常规双应力衬垫方法中,在n-FET晶体管的上面使用压力衬垫是不可能的,因为它会在n-FET的沟道内产生不合需要的压应力(因为压应力降低n-FET迁移率,但增加空穴迁移率)。然而,与平面上的经过构图的压力衬垫(图4)一起使用CMP(图3)产生平坦化的平面,将引起在MOSFET的沟道内提供张应力的边缘力,并且已经证明这对n-FET器件的改善是非常有益的。因此,这种结构使得在n-FET晶体管上面使用更高的压应力膜有助于使性能达到最优。
图4所示的结构的另一个优点是降低对栅极之间的间隔的敏感性。使用图1a-图1b所示的现有技术的双应力衬垫的一个问题是,应力随栅极之间的间隔的缩减而减少。
现有技术的实践者认识到,在某些约束下,当栅极之间的间隔缩小时,驱动电流会下降。产生这种降级是因为只有少量应力衬垫材料用于在MOSFET的沟道内施加应力。由于衬垫C的长度(或体积)仅微弱依赖于2个栅极之间的距离,亦即,长度是间距不敏感的,所以它施加的应力与工艺间距无关。
最后,本结构显示应力随栅极的厚度的减少而增加。在先进CMOS工艺中减少厚度是合意的,并且仅能增强从经过构图的应力衬垫C获得的应力。
参照图6,本发明的另一个实施例表示p-FET器件的栅极顶上没有任何帽。这只有在另一个(亦即,互补)器件的对应栅极上配备合适的应力帽时才是有效的。获得的益处比得上压力+注入方案,但是它明显地节省了驰豫注入和附加光刻的成本。
尽管连同具体优选实施例一起详细描述了本发明,但是根据本发明的描述,许多选择方案、修改和变更对本领域的熟练技术人员都是显然的。因此,期望所附权利要求书包含属于本发明之真实范围和精神内的所有此类选择方案、修改和变更。

Claims (14)

1.一种半导体器件,包括:
在衬底上彼此隔开的至少一个n-沟道场效应晶体管n-FET和至少一个p-沟道场效应晶体管p-FET;以及
仅仅覆盖所述至少一个n-FET的栅极的第一电介质应激物帽和仅仅覆盖所述至少一个p-FET的栅极的第二电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而所述第二电介质应激物帽是张力氮化物帽或者是压力氮化物帽或者是包含注入驰豫的压应力氮化物帽,
其中所述第一电介质应激物帽和所述第二电介质应激物帽形成于平坦的表面上。
2.如权利要求1的半导体器件,其中所述第一电介质应激帽和第二电介质应激物帽的厚度为40nm-100nm。
3.如权利要求1的半导体器件,其中所述第一电介质应激物帽是从由SiN、SiO2、SiCOH、HfO2和ZrO2组成的组中选择的。
4.一种半导体器件,包括:
在衬底上彼此隔开的至少一个n-沟道场效应晶体管n-FET和至少一个p-沟道场效应晶体管p-FET;以及
仅仅覆盖所述至少一个n-FET的栅极的第一电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而没有电介质应激物帽覆盖所述至少一个p-FET的栅极。
5.如权利要求4的半导体器件,其中所述第一电介质应激物帽的厚度为40nm-100nm。
6.如权利要求4的半导体器件,其中所述第一电介质应激物帽是从由SiN、SiO2、SiCOH、HfO2和ZrO2组成的组中选择的。
7.一种半导体器件阵列,包括:
多个n-沟道场效应晶体管n-FET和p-沟道场效应晶体管p-FET,每对所述n-FET和p-FET在衬底上彼此隔开;以及
分别仅仅覆盖每个所述n-FET的栅极的第一电介质应激物帽和仅仅覆盖每个所述p-FET的栅极的第二电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而所述第二电介质应激物帽是张力氮化物帽或者是压力氮化物帽或者是包含注入弛豫的压应力氮化物帽,
其中所述第一电介质应激物帽和所述第二电介质应激物帽形成于平坦的表面上。
8.一种半导体器件阵列,包括:
多个n-沟道场效应晶体管n-FET和p-沟道场效应晶体管p-FET,每对所述n-FET和p-FET在衬底上彼此隔开;以及
仅仅覆盖每个所述n-FET的栅极的第一电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而没有电介质应激物帽覆盖每个所述p-FET的栅极,
其中所述第一电介质应激物帽形成于平坦的表面上。
9.一种用于形成半导体器件的方法,包括:
形成彼此隔开的至少一个n-沟道场效应晶体管n-FET和至少一个p-沟道场效应晶体管p-FET;以及
形成仅仅覆盖所述至少一个n-FET的栅极的第一电介质应激物帽和仅仅覆盖所述至少一个p-FET的栅极的第二电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而所述第二电介质应激物帽是张力氮化物帽或者是压力氮化物帽或者是包含注入弛豫的压应力氮化物帽,
其中所述第一电介质应激物帽和所述第二电介质应激物帽形成于平坦的表面上。
10.如权利要求9的方法,其中所述第一电介质应激帽和第二电介质应激物帽的厚度为40nm-100nm。
11.如权利要求9的方法,其中所述第一电介质应激物帽是从由SiN、SiO2、SiCOH、HfO2和ZrO2组成的组中选择的。
12.一种用于形成半导体器件的方法,包括:
形成彼此隔开的至少一个n-沟道场效应晶体管n-FET和至少一个p-沟道场效应晶体管p-FET;以及
形成仅仅覆盖所述至少一个n-FET的栅极的第一电介质应激物帽,其中所述第一电介质应激物帽是压应力的,而没有电介质应激物帽覆盖所述至少一个p-FET的栅极;
其中所述第一电介质应激物帽形成于平坦的表面上。
13.如权利要求12的方法,其中所述第一电介质应激帽的厚度为40nm-100nm。
14.如权利要求12的方法,其中所述第一电介质应激物帽是从由SiN、SiO2、SiCOH、HfO2和ZrO2组成的组中选择的。
CN200710170211XA 2006-12-22 2007-11-15 可缩放的应变fet器件及其制备方法 Active CN101207126B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/615,153 US7538339B2 (en) 2006-12-22 2006-12-22 Scalable strained FET device and method of fabricating the same
US11/615,153 2006-12-22

Publications (2)

Publication Number Publication Date
CN101207126A CN101207126A (zh) 2008-06-25
CN101207126B true CN101207126B (zh) 2010-06-09

Family

ID=39541604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710170211XA Active CN101207126B (zh) 2006-12-22 2007-11-15 可缩放的应变fet器件及其制备方法

Country Status (2)

Country Link
US (1) US7538339B2 (zh)
CN (1) CN101207126B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681616A (zh) * 2013-11-27 2015-06-03 台湾积体电路制造股份有限公司 半导体器件及制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154107B2 (en) * 2007-02-07 2012-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method of fabricating the device
US7816271B2 (en) * 2007-07-14 2010-10-19 Samsung Electronics Co., Ltd. Methods for forming contacts for dual stress liner CMOS semiconductor devices
US7911001B2 (en) * 2007-07-15 2011-03-22 Samsung Electronics Co., Ltd. Methods for forming self-aligned dual stress liners for CMOS semiconductor devices
US7761838B2 (en) * 2007-09-26 2010-07-20 Globalfoundries Inc. Method for fabricating a semiconductor device having an extended stress liner
US8122394B2 (en) * 2008-09-17 2012-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Performance-aware logic operations for generating masks
US7960223B2 (en) * 2008-06-16 2011-06-14 International Business Machines Corporation Structure and method to integrate dual silicide with dual stress liner to improve CMOS performance
US8313990B2 (en) 2009-12-04 2012-11-20 International Business Machines Corporation Nanowire FET having induced radial strain
US8309991B2 (en) * 2009-12-04 2012-11-13 International Business Machines Corporation Nanowire FET having induced radial strain
US8440532B2 (en) * 2010-07-27 2013-05-14 International Business Machines Corporation Structure and method for making metal semiconductor field effect transistor (MOSFET) with isolation last process
JP5569243B2 (ja) 2010-08-09 2014-08-13 ソニー株式会社 半導体装置及びその製造方法
CN102376579A (zh) * 2010-08-24 2012-03-14 中芯国际集成电路制造(上海)有限公司 Nmos晶体管的制作方法
CN102891109B (zh) * 2011-07-18 2015-04-01 中芯国际集成电路制造(上海)有限公司 半导体器件形成方法
CN103094108B (zh) * 2011-10-29 2015-12-02 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法
CN103367155B (zh) * 2012-03-31 2016-02-17 中芯国际集成电路制造(上海)有限公司 Nmos晶体管及mos晶体管的形成方法
CN103855025B (zh) * 2012-12-05 2017-06-13 中芯国际集成电路制造(上海)有限公司 Nmos晶体管及其制作方法
CN104681597A (zh) * 2013-11-28 2015-06-03 中国科学院微电子研究所 半导体器件及其制造方法
US9553172B2 (en) 2015-02-11 2017-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for FinFET devices
CN109713040A (zh) * 2018-12-20 2019-05-03 中国科学院微电子研究所 一种集成电路结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573172B1 (en) * 2002-09-16 2003-06-03 Advanced Micro Devices, Inc. Methods for improving carrier mobility of PMOS and NMOS devices
CN1449585A (zh) * 2000-11-22 2003-10-15 株式会社日立制作所 半导体器件及其制造方法
CN1783496A (zh) * 2004-11-30 2006-06-07 国际商业机器公司 将应力施加到pfet和nfet晶体管沟道以改善性能的结构和方法
CN1832142A (zh) * 2005-03-01 2006-09-13 国际商业机器公司 制作用于cmos器件的自对准双应力衬里的方法和结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053400B2 (en) * 2004-05-05 2006-05-30 Advanced Micro Devices, Inc. Semiconductor device based on Si-Ge with high stress liner for enhanced channel carrier mobility
US7002209B2 (en) * 2004-05-21 2006-02-21 International Business Machines Corporation MOSFET structure with high mechanical stress in the channel
US20070099360A1 (en) * 2005-11-03 2007-05-03 International Business Machines Corporation Integrated circuits having strained channel field effect transistors and methods of making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449585A (zh) * 2000-11-22 2003-10-15 株式会社日立制作所 半导体器件及其制造方法
US6573172B1 (en) * 2002-09-16 2003-06-03 Advanced Micro Devices, Inc. Methods for improving carrier mobility of PMOS and NMOS devices
CN1783496A (zh) * 2004-11-30 2006-06-07 国际商业机器公司 将应力施加到pfet和nfet晶体管沟道以改善性能的结构和方法
CN1832142A (zh) * 2005-03-01 2006-09-13 国际商业机器公司 制作用于cmos器件的自对准双应力衬里的方法和结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681616A (zh) * 2013-11-27 2015-06-03 台湾积体电路制造股份有限公司 半导体器件及制造方法
CN104681616B (zh) * 2013-11-27 2017-11-03 台湾积体电路制造股份有限公司 半导体器件及制造方法

Also Published As

Publication number Publication date
US20080150033A1 (en) 2008-06-26
CN101207126A (zh) 2008-06-25
US7538339B2 (en) 2009-05-26

Similar Documents

Publication Publication Date Title
CN101207126B (zh) 可缩放的应变fet器件及其制备方法
US8624334B2 (en) Strained semiconductor device and method of making the same
US7928474B2 (en) Forming embedded dielectric layers adjacent to sidewalls of shallow trench isolation regions
US7432149B2 (en) CMOS on SOI substrates with hybrid crystal orientations
US7888214B2 (en) Selective stress relaxation of contact etch stop layer through layout design
KR100968182B1 (ko) 고이동도 벌크 실리콘 pfet
US7618866B2 (en) Structure and method to form multilayer embedded stressors
US7138310B2 (en) Semiconductor devices having strained dual channel layers
US8815659B2 (en) Methods of forming a FinFET semiconductor device by performing an epitaxial growth process
US20050184345A1 (en) Strained-channel semiconductor structure and method of fabricating the same
US20120280291A1 (en) Semiconductor device including gate openings
US8368170B2 (en) Reducing device performance drift caused by large spacings between active regions
US20160035627A1 (en) High Performance CMOS Device Design
US20060131657A1 (en) Semiconductor integrated circuit device and method for the same
CN102157380B (zh) 制造半导体装置的方法
KR20070024581A (ko) 다수 반도체 층들을 갖는 반도체 디바이스
CN101123253A (zh) 集成电路以及制作集成电路的方法
TW201714301A (zh) 半導體元件及其製作方法
US20160118307A1 (en) Methods and devices for enhancing mobility of charge carriers
US7268362B2 (en) High performance transistors with SiGe strain
CN101226900A (zh) 具有改善的电荷迁移率的电结构的结构及其制造方法
US20070205444A1 (en) Architecture of a n-type metal-oxide-semiconductor transistor with a compressive strained silicon-germanium channel fabricated on a silicon (110) substrate
CN103094217A (zh) 晶体管、晶体管制作方法及包括该晶体管的半导体器件
US20230061138A1 (en) Semiconductor device structure and method of forming the same
CN103000522B (zh) Nmos晶体管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171108

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171108

Address after: American New York

Patentee after: Core USA second LLC

Address before: New York grams of Armand

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200925

Address after: Okatai Odawara

Patentee after: Alsefenna innovation

Address before: Grand Cayman Islands

Patentee before: GLOBALFOUNDRIES INC.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201113

Address after: No.8, Lixing 6th Road, Xinzhu City, Xinzhu Science Industrial Park, Taiwan, China

Patentee after: Taiwan Semiconductor Manufacturing Co.,Ltd.

Address before: Okatai Odawara

Patentee before: Alsefenna innovation

TR01 Transfer of patent right